Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774630

RESUMO

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas Fúngicas , Virulência , Animais , Feminino , Humanos , Camundongos , Parede Celular/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimologia , Modelos Animais de Doenças , Dano ao DNA , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Melaninas/metabolismo , Camundongos Endogâmicos BALB C , Estresse Oxidativo , Fosforilação , Sirolimo/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico
2.
Methods Mol Biol ; 2775: 225-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758321

RESUMO

The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size varies widely between strains, has the ability to grow rapidly when introduced to stressful or low-nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. Inducing the growth of the C. neoformans capsule is used during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here, we describe one of the standard methods of capsule induction and detail two accepted methods of staining: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we outline how to measure capsule diameter manually and offer a protocol for automated diameter measurement of India ink-stained samples using computational image analysis.


Assuntos
Cryptococcus neoformans , Coloração e Rotulagem , Cryptococcus neoformans/citologia , Coloração e Rotulagem/métodos , Microscopia Confocal/métodos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Cápsulas Fúngicas/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Corantes Fluorescentes/química , Carbono
3.
Methods Mol Biol ; 2775: 367-373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758330

RESUMO

Glucuronoxylomannan (GXM) is the principal capsular component in the Cryptococcus genus. This complex polysaccharide participates in numerous events related to the physiology and pathogenesis of Cryptococcus, which highlights the importance of establishing methods for its isolation and analysis. Conventional methods for GXM isolation have been extensively discussed in the literature. In this chapter, we describe two fast methods for obtaining extracellular fractions enriched with cryptococcal GXM.


Assuntos
Cryptococcus , Polissacarídeos , Polissacarídeos/química , Antígenos de Fungos/imunologia , Cryptococcus neoformans , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/química , Humanos
4.
J Biol Chem ; 298(4): 101769, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218774

RESUMO

The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall-associated polysaccharide aggregates that we call "capsule ghosts", implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.


Assuntos
Cryptococcus neoformans , Cápsulas Fúngicas , Polissacarídeos , Parede Celular/química , Parede Celular/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/química , Cápsulas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Fatores de Virulência/metabolismo
5.
BMC Microbiol ; 21(1): 341, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903172

RESUMO

BACKGROUND: Fungal infections impact over 25% of the global population. For the opportunistic fungal pathogen, Cryptococcus neoformans, infection leads to cryptococcosis. In the presence of the host, disease is enabled by elaboration of sophisticated virulence determinants, including polysaccharide capsule, melanin, thermotolerance, and extracellular enzymes. Conversely, the host protects itself from fungal invasion by regulating and sequestering transition metals (e.g., iron, zinc, copper) important for microbial growth and survival. RESULTS: Here, we explore the intricate relationship between zinc availability and fungal virulence via mass spectrometry-based quantitative proteomics. We observe a core proteome along with a distinct zinc-regulated protein-level signature demonstrating a shift away from transport and ion binding under zinc-replete conditions towards transcription and metal acquisition under zinc-limited conditions. In addition, we revealed a novel connection among zinc availability, thermotolerance, as well as capsule and melanin production through the detection of a Wos2 ortholog in the secretome under replete conditions. CONCLUSIONS: Overall, we provide new biological insight into cellular remodeling at the protein level of C. neoformans under regulated zinc conditions and uncover a novel connection between zinc homeostasis and fungal virulence determinants.


Assuntos
Cryptococcus neoformans/patogenicidade , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo , Secretoma/metabolismo , Zinco/metabolismo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Chaperonas Moleculares/genética , Mutação , Proteômica , Termotolerância , Virulência/genética
6.
mBio ; 12(6): e0279021, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724824

RESUMO

The environmental yeast Cryptococcus neoformans is the most common cause of deadly fungal meningitis in primarily immunocompromised populations. A number of factors contribute to cryptococcal pathogenesis. Among them, inositol utilization has been shown to promote C. neoformans development in nature and invasion of central nervous system during dissemination. The mechanisms of the inositol regulation of fungal virulence remain incompletely understood. In this study, we analyzed inositol-induced capsule growth and the contribution of a unique inositol catabolic pathway in fungal development and virulence. We found that genes involved in the inositol catabolic pathway are highly induced by inositol, and they are also highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. This pathway in C. neoformans contains three genes encoding myo-inositol oxygenases that convert myo-inositol into d-glucuronic acid, a substrate of the pentose phosphate cycle and a component of the polysaccharide capsule. Our mutagenesis analysis demonstrates that inositol catabolism is required for C. neoformans virulence and deletion mutants of myo-inositol oxygenases result in altered capsule growth as well as the polysaccharide structure, including O-acetylation. Our study indicates that the ability to utilize the abundant inositol in the brain may contribute to fungal pathogenesis in this neurotropic fungal pathogen. IMPORTANCE The human pathogen Cryptococcus neoformans is the leading cause of fungal meningitis in primarily immunocompromised populations. Understanding how this environmental organism adapts to the human host to cause deadly infection will guide our development of novel disease control strategies. Our recent studies revealed that inositol utilization by the fungus promotes C. neoformans development in nature and invasion of the central nervous system during infection. The mechanisms of the inositol regulation in fungal virulence remain incompletely understood. In this study, we found that C. neoformans has three genes encoding myo-inositol oxygenase, a key enzyme in the inositol catabolic pathway. Expression of these genes is highly induced by inositol, and they are highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. Our mutagenesis analysis indeed demonstrates that inositol catabolism is required for C. neoformans virulence by altering the growth and structure of polysaccharide capsule, a major virulence factor. Considering the abundance of free inositol and inositol-related metabolites in the brain, our study reveals an important mechanism of host inositol-mediated fungal pathogenesis for this neurotropic fungal pathogen.


Assuntos
Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Cápsulas Fúngicas/química , Inositol/metabolismo , Meningite Criptocócica/microbiologia , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Feminino , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Masculino , Meningite Criptocócica/metabolismo , Camundongos , Oxigenases/genética , Oxigenases/metabolismo , Coelhos , Virulência
7.
Eur J Immunol ; 51(9): 2281-2295, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33728652

RESUMO

Cryptococcus gattii is a capsular pathogenic fungus causing life-threatening cryptococcosis. Although the capsular polysaccharides (CPs) of C. gattii are considered as virulence factors, the physiological significance of CP biosynthesis and of CPs themselves is not fully understood, with many conflicting data reported. First, we demonstrated that CAP gene deletant of C. gattii completely lacked capsule layer and its virulence, and that the strain was susceptible to host-related factors including oxidizing, hypoxic, and hypotrophic conditions in vitro. Extracellular CPs recovered from culture supernatant bound specifically to C. gattii acapsular strains, not to other fungi and immune cells, and rendered them the immune escape effects. In fact, dendritic cells (DCs) did not efficiently uptake the CP-treated acapsular strains, which possessed no visible capsule layer, and a decreased amount of phosphorylated proteins and cytokine levels after the stimulation. DCs recognized C. gattii acapuslar cells via an immune receptor CD11b- and Syk-related pathway; however, CD11b did not bind to CP-treated acapsular cells. These results suggested that CPs support immune evasion by coating antigens on C. gattii and blocking the interaction between CD11b and C. gattii cells. Here, we describe the importance of CPs in pathogenicity and immune evasion mechanisms of C. gattii.


Assuntos
Antígeno CD11b/imunologia , Cryptococcus gattii/imunologia , Cápsulas Fúngicas/imunologia , Polissacarídeos Fúngicos/imunologia , Evasão da Resposta Imune/imunologia , Quinase Syk/metabolismo , Animais , Criptococose/imunologia , Cryptococcus gattii/genética , Cryptococcus gattii/patogenicidade , Citocinas/biossíntese , Células Dendríticas/imunologia , Feminino , Cápsulas Fúngicas/genética , Polissacarídeos Fúngicos/genética , Deleção de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/genética , Polissacarídeos/imunologia , Fatores de Virulência/imunologia
8.
Nat Rev Microbiol ; 19(7): 454-466, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33558691

RESUMO

Cryptococcus spp., in particular Cryptococcus neoformans and Cryptococcus gattii, have an enormous impact on human health worldwide. The global burden of cryptococcal meningitis is almost a quarter of a million cases and 181,000 deaths annually, with mortality rates of 100% if infections remain untreated. Despite these alarming statistics, treatment options for cryptococcosis remain limited, with only three major classes of drugs approved for clinical use. Exacerbating the public health burden is the fact that the only new class of antifungal drugs developed in decades, the echinocandins, displays negligible antifungal activity against Cryptococcus spp., and the efficacy of the remaining therapeutics is hampered by host toxicity and pathogen resistance. Here, we describe the current arsenal of antifungal agents and the treatment strategies employed to manage cryptococcal disease. We further elaborate on the recent advances in our understanding of the intrinsic and adaptive resistance mechanisms that are utilized by Cryptococcus spp. to evade therapeutic treatments. Finally, we review potential therapeutic strategies, including combination therapy, the targeting of virulence traits, impairing stress response pathways and modulating host immunity, to effectively treat infections caused by Cryptococcus spp. Overall, understanding of the mechanisms that regulate anti-cryptococcal drug resistance, coupled with advances in genomics technologies and high-throughput screening methodologies, will catalyse innovation and accelerate antifungal drug discovery.


Assuntos
Criptococose/tratamento farmacológico , Cryptococcus/citologia , Cryptococcus/fisiologia , Antifúngicos/farmacologia , Parede Celular/química , Parede Celular/fisiologia , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus/química , Cryptococcus/efeitos dos fármacos , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Cápsulas Fúngicas/química , Cápsulas Fúngicas/fisiologia , Polissacarídeos Fúngicos/química , Fatores de Virulência
9.
Carbohydr Res ; 497: 108150, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32932031

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen, which is a frequent cause of a life-threatening meningitis in immunocompromised individuals. We report the first total synthesis of the serotype B heptasaccharide repeating motif. The use of di- and trisaccharide building blocks enabled a concise convergent synthesis of the protected 6-O-acetylated repeating motif in three steps. Glycosylations gave total 1,2-trans selectivity, despite the absence of a neighboring participating group. Using our recently disclosed catalyst pre-tuning strategy global deprotection gave the desired 6-O-acetylated heptasaccharide with no saturation by-products, overall in four steps 31% yield. The serotype B glucuronoxylomannan (GXM) glycans accessed in this study will increase the structurally diversity of our GXM microarray, allowing further steps towards the development of semi-synthetic vaccines against cryptococcal infections.


Assuntos
Cryptococcus neoformans/química , Cryptococcus neoformans/citologia , Cápsulas Fúngicas/química , Oligossacarídeos/química , Oligossacarídeos/síntese química , Sequências Repetitivas de Ácido Nucleico , Acetilação , Técnicas de Química Sintética
10.
N Biotechnol ; 58: 55-60, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32562862

RESUMO

Co-culture conditions are beneficial for study due to the advances which arise from symbiotic interactions and which cannot be replicated under pure culture conditions. Here, the focus is on the connection between two fungi - a yeast, Saccharomyces cerevisiae, and a filamentous fungus, Penicillium chrysogenum - in a yeast immobilization system termed' yeast biocapsules', where the yeast and filamentous fungus are strongly attached to one another, forming spherical structures. This co-culture condition hinders filamentous fungal biomass growth, while immobilization of yeast cells continues to increase. The effect of the co-culture condition on endometabolites or intracellular metabolites were tracked during the beginning and end of the yeast biocapsule formation period, and metabolites analyzed by Gas Chromatography-Mass Spectrometry Detector (GC-MSD). Distinct metabolite profiles were found between single culture conditions, involving each organism separately, and with the co-culture condition, where there were differences in 54 endometabolites. Specifically, co-culture condition compounds such as fructose, glycolic acid and glyceric acid were present in higher concentrations at the end of biocapsule formation. These results shed light on the mechanisms and biochemical impact of the interaction between the yeast and filamentous fungus and serve as a basis to apply and further develop yeast biocapsules as a new biotechnological tool with benefits for industry.


Assuntos
Cápsulas Fúngicas/metabolismo , Penicillium chrysogenum/metabolismo , Saccharomyces cerevisiae/metabolismo , Biomassa , Biotecnologia , Técnicas de Cocultura , Frutose/química , Frutose/metabolismo , Cápsulas Fúngicas/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Glicolatos/química , Glicolatos/metabolismo , Penicillium chrysogenum/química , Penicillium chrysogenum/citologia , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia
11.
Med Mycol ; 58(8): 1149-1161, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32196550

RESUMO

We previously observed a substantial burden of cryptococcal meningitis in Vietnam atypically arising in individuals who are uninfected with human immunodeficiency virus (HIV). This disease was associated with a single genotype of Cryptococcus neoformans (sequence type [ST]5), which was significantly less common in HIV-infected individuals. Aiming to compare the phenotypic characteristics of ST5 and non-ST5 C. neoformans, we selected 30 representative Vietnamese isolates and compared their in vitro pathogenic potential and in vivo virulence. ST5 and non-ST5 organisms exhibited comparable characteristics with respect to in vitro virulence markers including melanin production, replication at 37°C, and growth in cerebrospinal fluid. However, the ST5 isolates had significantly increased variability in cellular and capsular sizing compared with non-ST5 organisms (P < .001). Counterintuitively, mice infected with ST5 isolates had significantly longer survival with lower fungal burdens at day 7 than non-ST5 isolates. Notably, ST5 isolates induced significantly greater initial inflammatory responses than non-ST5 strains, measured by TNF-α concentrations (P < .001). Despite being generally less virulent in the mouse model, we hypothesize that the significant within strain variation seen in ST5 isolates in the tested phenotypes may represent an evolutionary advantage enabling adaptation to novel niches including apparently immunocompetent human hosts.


Assuntos
Infecções Oportunistas Relacionadas com a AIDS/microbiologia , Cryptococcus neoformans/patogenicidade , Meningite Criptocócica/microbiologia , Infecções Oportunistas Relacionadas com a AIDS/patologia , Animais , Contagem de Colônia Microbiana , Cryptococcus neoformans/genética , Citocinas/metabolismo , Feminino , Cápsulas Fúngicas/patologia , Genótipo , Humanos , Imunocompetência , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Masculino , Meningite Criptocócica/patologia , Camundongos , Fenótipo , Vietnã/epidemiologia , Virulência
12.
Artigo em Inglês | MEDLINE | ID: mdl-32094132

RESUMO

Lactoferrin (LF) is a multifunctional milk protein with antimicrobial activity against a range of pathogens. While numerous studies report that LF is active against fungi, there are considerable differences in the level of antifungal activity and the capacity of LF to interact with other drugs. Here we undertook a comprehensive evaluation of the antifungal spectrum of activity of three defined sources of LF across 22 yeast and 24 mold species and assessed its interactions with six widely used antifungal drugs. LF was broadly and consistently active against all yeast species tested (MICs, 8 to 64 µg/ml), with the extent of activity being strongly affected by iron saturation. LF was synergistic with amphotericin B (AMB) against 19 out of 22 yeast species tested, and synergy was unaffected by iron saturation but was affected by the extent of LF digestion. LF-AMB combination therapy significantly prolonged the survival of Galleria mellonella wax moth larvae infected with Candida albicans or Cryptococcus neoformans and decreased the fungal burden 12- to 25-fold. Evidence that LF directly interacts with the fungal cell surface was seen via scanning electron microscopy, which showed pore formation, hyphal thinning, and major cell collapse in response to LF-AMB synergy. Important virulence mechanisms were disrupted by LF-AMB treatment, which significantly prevented biofilms in C. albicans and C. glabrata, inhibited hyphal development in C. albicans, and reduced cell and capsule size and phenotypic diversity in Cryptococcus Our results demonstrate the potential of LF-AMB as an antifungal treatment that is broadly synergistic against important yeast pathogens, with the synergy being attributed to the presence of one or more LF peptides.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Lactoferrina/farmacologia , Leveduras/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/ultraestrutura , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/ultraestrutura , Sinergismo Farmacológico , Cápsulas Fúngicas/efeitos dos fármacos , Hifas/efeitos dos fármacos , Larva/microbiologia , Testes de Sensibilidade Microbiana , Mariposas , Leveduras/ultraestrutura
13.
Sci Rep ; 10(1): 2362, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047210

RESUMO

Phenotypic heterogeneity is an important trait for the development and survival of many microorganisms including the yeast Cryptococcus spp., a deadly pathogen spread worldwide. Here, we have applied scanning electron microscopy (SEM) to define four Cryptococcus spp. capsule morphotypes, namely Regular, Spiky, Bald, and Phantom. These morphotypes were persistently observed in varying proportions among yeast isolates. To assess the distribution of such morphotypes we implemented an automated pipeline capable of (1) identifying potentially cell-associated objects in the SEM-derived images; (2) computing object-level features; and (3) classifying these objects into their corresponding classes. The machine learning approach used a Random Forest (RF) classifier whose overall accuracy reached 85% on the test dataset, with per-class specificity above 90%, and sensitivity between 66 and 94%. Additionally, the RF model indicates that structural and texture features, e.g., object area, eccentricity, and contrast, are most relevant for classification. The RF results agree with the observed variation in these features, consistently also with visual inspection of SEM images. Finally, our work introduces morphological variants of Cryptococcus spp. capsule. These can be promptly identified and characterized using computational models so that future work may unveil morphological associations with yeast virulence.


Assuntos
Variação Anatômica , Cryptococcus/ultraestrutura , Cápsulas Fúngicas/ultraestrutura , Aprendizado de Máquina , Microscopia Eletrônica de Varredura/métodos , Cryptococcus/genética , Fenótipo
14.
J Mycol Med ; 30(1): 100905, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31706700

RESUMO

INTRODUCTION: Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS: Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS: Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200µg/mL to 6.25 or 12.5µg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION: Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.


Assuntos
Cryptococcus/efeitos dos fármacos , Cryptococcus/crescimento & desenvolvimento , Cryptococcus/genética , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Criptococose/microbiologia , Cryptococcus/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/metabolismo , Deferasirox/farmacologia , Desferroxamina/farmacologia , Sinergismo Farmacológico , Cápsulas Fúngicas/efeitos dos fármacos , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Humanos , Infecções Fúngicas Invasivas/complicações , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/microbiologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/microbiologia , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Testes de Sensibilidade Microbiana , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Future Microbiol ; 14: 867-884, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31340660

RESUMO

Aim:Cryptococcus neoformans is the major agent of cryptococcosis. The main virulence factor is the polysaccharide (PS) capsule. Changes in cryptococcal PS properties have been poorly elucidated. Materials & methods: We analyzed the mechanical properties of secreted PS and intact capsules, using dynamic light scattering and optical tweezers. Results: Storage and loss moduli showed that secreted PS behaves as a viscoelastic liquid, while capsular PS behaves as a viscoelastic solid. The secreted PS remains as a viscoelastic fluid at different temperatures with thermal hysteresis after 85°C. Antibody binding altered the viscoelastic behavior of both secreted and capsular PS. Conclusion: Deciphering the mechanical aspects of these structures could reveal features that may have consequences in novel therapies against cryptococcosis.


Assuntos
Anticorpos Antifúngicos/metabolismo , Cryptococcus neoformans/química , Polissacarídeos/fisiologia , Temperatura , Fatores de Virulência/fisiologia , Anticorpos Antifúngicos/imunologia , Cápsulas Fúngicas/química , Cápsulas Fúngicas/imunologia , Cápsulas Fúngicas/fisiologia , Pinças Ópticas , Tamanho da Partícula , Polissacarídeos/química , Polissacarídeos/imunologia , Polissacarídeos/metabolismo , Reologia , Fatores de Virulência/química , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Substâncias Viscoelásticas
16.
Fungal Genet Biol ; 132: 103258, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356873

RESUMO

Cryptococcus neoformans is an opportunistic encapsulated pathogen that causes life-threatening meningoencephalitis in individuals with immunosuppression. We compared the interactions of C. neoformans planktonic and biofilm-derived cells with J774.16 macrophage-like cells. Planktonic cells are more phagocytized and killed by J774.16 cells than biofilm-derived fungal cells. Biofilm-derived cryptococci possess larger capsule size and release significantly more capsular polysaccharide than planktonic cells in culture. Biofilm-derived fungi exhibited upregulation of genes involved in capsular production. Capsular-specific monoclonal antibody 18B7 demonstrated differential binding to the surface of planktonic and biofilm-derived cryptococci providing a plausible strategy for fungal evasion of macrophages and persistence. Future studies are necessary to elucidate how C. neoformans biofilm-derived cells regulate their virulence factors when interacting with cells of the immune system.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cryptococcus neoformans/fisiologia , Cápsulas Fúngicas/fisiologia , Macrófagos/microbiologia , Fagocitose , Animais , Anticorpos Monoclonais , Sítios de Ligação de Anticorpos , Linhagem Celular , Cryptococcus neoformans/genética , Cápsulas Fúngicas/genética , Polissacarídeos Fúngicos/biossíntese , Evasão da Resposta Imune , Macrófagos/imunologia , Camundongos
17.
Micron ; 124: 102708, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265985

RESUMO

Stress response due to the lack of essential nutrient(s) for an organism has been a focal point of several scientific investigations. The present study investigates the cellular adaptations behind the ability of Papiliotrema laurentii strain RY1 to perpetuate without added nitrogen and propagate robustly in growth- limiting amount of nitrogen. We executed phenotypic (using scanning electron microscopy, differential interference contrast microscopy and transmission electron microscopy), microbiological and computational analyses to show multiple responses of dimorphism, capsule formation and autophagy as a survival strategy by the yeast upon nitrogen starvation. The roles of phosphomannose isomerase, phosphomannomutase and several autophagy-related transcripts aiding in such a response have been discussed.


Assuntos
Autofagia , Basidiomycota/fisiologia , Basidiomycota/ultraestrutura , Cápsulas Fúngicas/fisiologia , Nitrogênio/química , Adaptação Fisiológica , Meios de Cultura/química , Hifas/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão
18.
mSphere ; 4(3)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167944

RESUMO

Rhodotorula yeasts are pink, encapsulated basidiomycetes isolated from a variety of environments and clinical settings. They are increasingly linked with disease, particularly central venous catheter infections and meningitis, in immunocompromised patients. Eight clinical and eight environmental strains molecularly typed as Rhodotorula mucilaginosa were compared to six Cryptococcus neoformans strains for phenotypic variability. Growth on cell integrity-challenging media suggested that R. mucilaginosa cells possess differences in signaling pathways, cell wall composition, or assembly and that their membranes are more susceptible to perturbations than those of C. neoformans All 16 R. mucilaginosa strains produced urease, while none produced melanin with l-3,4-dihydroxyphenylalanine (l-DOPA) as a substrate. India ink staining reveals that clinical R. mucilaginosa capsules are larger than environmental capsules but that both are generally smaller than C. neoformans capsules. All R. mucilaginosa strains were resistant to fluconazole. Only two clinical strains were susceptible to voriconazole; all of the environmental strains were resistant. We generated an anticapsular antibody (Rh1) to R. mucilaginosa; Rh1 did not bind C. neoformans control strains, was specific to Rhodotorula species, and bound to all tested Rhodotorula strains. Binding assays performed with wheat germ agglutinin (WGA), concanavalin A (ConA), calcofluor white (CFW), and eosin Y dye (EY) cell surface probes suggested that chitin may be more accessible in R. mucilaginosa but that the total abundance of chitooligomers is less than in C. neoformans This report describes a novel reagent that can be used to identify Rhodotorula species and lays the foundation for future cell envelope composition analysis.IMPORTANCE Currently, there is very little known about the phenotypic variability within species of Rhodotorula strains and the role of their capsule. Cryptococcus neoformans has been considered the only encapsulated human fungal pathogen, but as more individuals come to live in states of immunocompromised health, they are more susceptible to fungal infections, including those by RhodotorulaR. mucilaginosa species are some of those most commonly associated with clinical infections. We wanted to know if clinical and environmental strains of R. mucilaginosa demonstrated disparate capsule phenotypes. With limited antifungal options available and clinical Rhodotorula spp. often resistant to common antifungal drugs such as fluconazole, caspofungin (1, 2), and voriconazole (2), a better understanding of the fungal biology could inform the design and use of future antifungal drugs. The generation of an antibody specific to Rhodotorula fungi could be a useful diagnostic tool, and this work presents the first mention of such in the literature.


Assuntos
Parede Celular/química , Cápsulas Fúngicas/química , Rhodotorula/química , Animais , Anticorpos Antifúngicos/imunologia , Antifúngicos/farmacologia , Parede Celular/efeitos dos fármacos , Cryptococcus neoformans/química , Cryptococcus neoformans/efeitos dos fármacos , Cápsulas Fúngicas/efeitos dos fármacos , Humanos , Melaninas , Fenótipo , Coelhos , Rhodotorula/efeitos dos fármacos , Transdução de Sinais , Urease/biossíntese
19.
Fungal Genet Biol ; 124: 59-72, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630094

RESUMO

Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.


Assuntos
Cryptococcus neoformans/fisiologia , Cryptococcus neoformans/patogenicidade , Proteínas Fúngicas/fisiologia , Dedos de Zinco/fisiologia , Motivos de Aminoácidos , Animais , Western Blotting , Membrana Celular/metabolismo , Divisão do Núcleo Celular/fisiologia , Criptococose/microbiologia , Criptococose/patologia , Cryptococcus neoformans/genética , Feminino , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Meiose/fisiologia , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real , Virulência , Zinco/metabolismo , Dedos de Zinco/genética
20.
Virulence ; 10(1): 822-831, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-29436899

RESUMO

The capsule of Cryptococcus neoformans is its dominant virulence factor and plays a key role in the biology of this fungus. In this essay, we focus on the capsule as a cellular structure and note the limitations inherent in the current methodologies available for its study. Given that no single method can provide the structure of the capsule, our notions of what is the cryptococcal capsule must be arrived at by synthesizing information gathered from very different methodological approaches including microscopy, polysaccharide chemistry and physical chemistry of macromolecules. The emerging picture is one of a carefully regulated dynamic structure that is constantly rearranged as a response to environmental stimulation and cellular replication. In the environment, the capsule protects the fungus against desiccation and phagocytic predators. In animal hosts the capsule functions in both offensive and defensive modes, such that it interferes with immune responses while providing the fungal cell with a defensive shield that is both antiphagocytic and capable of absorbing microbicidal oxidative bursts from phagocytic cells. Finally, we delineate a set of unsolved problems in the cryptococcal capsule field that could provide fertile ground for future investigations.


Assuntos
Cryptococcus neoformans/patogenicidade , Cápsulas Fúngicas/química , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Humanos , Fagocitose , Polissacarídeos , Virulência , Fatores de Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...