Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
J Inorg Biochem ; 236: 111949, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36028338

RESUMO

While monitoring the reaction of ferric cytochrome P450cam (Cyp101) with substituted peroxybenzoic acids using rapid-scanning, stopped-flow (RSSF) spectroscopy, an intermediate appears en route to formation of the high-valent moiety known as Compound I [Fe(IV)=O/porphyrin radical cation] that is thought to be the key catalytic species for O-atom transfer to substrate. We have previously suggested (Spolitak, T., Dawson, J.H., Ballou, D.P., J. Biol. Chem.2005, 280, 20,300-20,309) that this species is an acylperoxo-ferric heme adduct that subsequently undergoes OO bond cleavage to generate Compound I. Singular value decomposition analysis of the RSSF data for formation of this intermediate shows that the energy of its Soret absorption peak is sensitive to the electron donor properties of the aryl substituents on the peracid. A linear Hammett correlation plot is seen for the energy of the Soret absorption peak vs. the Hammett σ constant. This correlation requires that the aryl substituents remain as part of the ligand bound to the heme iron, providing direct evidence that the adduct is indeed a ferric acylperoxo derivative. Linear Hammett correlation plots are also seen for both the rate of formation of the intermediate as well as for its conversion to Compound I. It is proposed that the electron donating/withdrawing properties of the aryl-bound substituents affect the electrophilic nature for binding substrate, changing the observed rate of formation for the acylperoxo intermediate, as well as the propensity and stability of the substituted benzoic acid to serve as the leaving group during OO bond cleavage yielding Compound I.


Assuntos
Cânfora 5-Mono-Oxigenase , Porfirinas , Benzoatos , Cânfora 5-Mono-Oxigenase/metabolismo , Heme , Ferro , Ligantes
2.
Faraday Discuss ; 233(0): 295-302, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34889330

RESUMO

Protein-protein interactions occur in a wide range of biological processes and are of great significance to life function. Characterization of transient protein-protein interactions remains a significant barrier to our understanding of cellular processes. Nanopores provide unique nanoscale environments that accommodate single molecules from the surrounding bulk solution. This method permits label-free sensing at the single-molecule level with extremely high sensitivity. Herein, the interaction between a single P450cam monooxygenase and its redox partner putidaredoxin (Pdx) was monitored via transient ionic current by using functionalized glass nanopores. Results show that the volume of P450cam determines the blockage current while the interactions between the P450cam and Pdx give a long blockage duration. Our glass nanopore sensor with adjustable diameter could be applied for real-time sensing of protein-protein interactions between individual proteins with a wide range of molecular weight.


Assuntos
Cânfora 5-Mono-Oxigenase , Nanoporos , Cânfora 5-Mono-Oxigenase/metabolismo , Transporte de Elétrons , Ferredoxinas , Oxigenases de Função Mista/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948012

RESUMO

Cytochrome P450 enzymes (CYPs) are the largest group of enzymes involved in human drug metabolism. Ligand tunnels connect their active site buried at the core of the membrane-anchored protein to the surrounding solvent environment. Recently, evidence of a superficial allosteric site, here denoted as hotspot 1 (H1), involved in the regulation of ligand access in a soluble prokaryotic CYP emerged. Here, we applied multi-scale computational modeling techniques to study the conservation and functionality of this allosteric site in the nine most relevant mammalian CYPs responsible for approximately 70% of drug metabolism. In total, we systematically analyzed over 44 µs of trajectories from conventional MD, cosolvent MD, and metadynamics simulations. Our bioinformatic analysis and simulations with organic probe molecules revealed the site to be well conserved in the CYP2 family with the exception of CYP2E1. In the presence of a ligand bound to the H1 site, we could observe an enlargement of a ligand tunnel in several members of the CYP2 family. Further, we could detect the facilitation of ligand translocation by H1 interactions with statistical significance in CYP2C8 and CYP2D6, even though all other enzymes except for CYP2C19, CYP2E1, and CYP3A4 presented a similar trend. As the detailed comprehension of ligand access and egress phenomena remains one of the most relevant challenges in the field, this work contributes to its elucidation and ultimately helps in estimating the selectivity of metabolic transformations using computational techniques.


Assuntos
Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Mamíferos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sítio Alostérico , Animais , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Citocromo P-450 CYP2C8/química , Citocromo P-450 CYP2C8/metabolismo , Citocromo P-450 CYP2D6/química , Citocromo P-450 CYP2D6/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Bibliotecas de Moléculas Pequenas/química
4.
Biochemistry ; 60(39): 2932-2942, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519197

RESUMO

Cytochrome P450cam (CYP101A1) catalyzes the regio- and stereo-specific 5-exo-hydroxylation of camphor via a multistep catalytic cycle that involves two-electron transfer steps, with an absolute requirement that the second electron be donated by the ferrodoxin, putidaredoxin (Pdx). Whether P450cam, once camphor has bound to the active site and the substrate entry channel has closed, opens up upon Pdx binding, during the second electron transfer step, or it remains closed is still a matter of debate. A potential allosteric site for camphor binding has been identified and postulated to play a role in the binding of Pdx. Here, we have revisited paramagnetic NMR spectroscopy data and determined a heterogeneous ensemble of structures that explains the data, provides a complete representation of the P450cam/Pdx complex in solution, and reconciles alternative hypotheses. The allosteric camphor binding site is always present, and the conformational changes induced by camphor binding to this site facilitates Pdx binding. We also determined that the state to which Pdx binds comprises an ensemble of structures that have features of both the open and closed state. These results demonstrate that there is a finely balanced interaction between allosteric camphor binding and the binding of Pdx at high camphor concentrations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/química , Ferredoxinas/metabolismo , Pseudomonas putida/enzimologia , Regulação Alostérica , Cânfora/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pseudomonas putida/química
5.
Anal Biochem ; 626: 114204, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961907

RESUMO

Covalent linkage between the single-walled carbon nanotube (SWCNT) and CYP101 through a specific site of the enzyme can provide a novel method of designing efficient enzyme electrodes using this prototype cytochrome P450 enzyme. We have chemically modified the SWCNT with linker 4-carboxy phenyl maleimide (CPMI) containing maleimide functional groups. The enzyme was covalently attached on to the SWCNT through the maleimide group of the linker (CPMI) to the thiolate group of the surface exposed Cys 58 or Cys 136 of the CYP101 forming a covalently immobilized protein on the nanotube. Thin film of the modified SWCNT-CPMI-CYP101conjugate was made on a glassy carbon (GC) electrode. Direct electrochemistry of the substrate (camphor)-bound enzyme was studied using this immobilized enzyme electrode system and the redox potential was found to be -320mV vs Ag/AgCl (3 M KCl), which agrees with the redox potential of the substrate bound enzyme reported earlier. The electrochemically driven enzymatic mono-oxygenation of camphor by this immobilized enzyme electrode system was studied by measurement of the catalytic current at different concentrations of camphor. The catalytic current was found to increase with increasing concentration of camphor in presence of oxygen. The product formed during the catalysis was identified by mass-spectrometry as hydroxy-camphor.


Assuntos
Técnicas Biossensoriais/métodos , Cânfora 5-Mono-Oxigenase/química , Eletroquímica , Enzimas Imobilizadas/química , Mutação , Nanotubos de Carbono/química , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Catálise , Enzimas Imobilizadas/metabolismo , Humanos
6.
Biophys J ; 120(9): 1732-1745, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33675756

RESUMO

Cytochrome P450, the ubiquitous metalloenzyme involved in detoxification of foreign components, has remained one of the most popular systems for substrate-recognition process. However, despite being known for its high substrate specificity, the mechanistic basis of substrate-binding by archetypal system cytochrome P450cam has remained at odds with the contrasting reports of multiple diverse crystallographic structures of its substrate-free form. Here, we address this issue by elucidating the probability of mutual dynamical transition to the other crystallographic pose of cytochrome P450cam and vice versa via unbiased all-atom computer simulation. A robust Markov state model, constructed using adaptively sampled 84-µs-long molecular dynamics simulation trajectories, maps the broad and heterogenous P450cam conformational landscape into five key substates. In particular, the Markov state model identifies an intermediate-assisted dynamic equilibrium between a pair of conformations of P450cam, in which the substrate-recognition sites remain "closed" and "open," respectively. However, the estimate of a significantly higher stationary population of closed conformation, coupled with faster rate of open → closed transition than its reverse process, dictates that the net conformational equilibrium would be swayed in favor of "closed" conformation. Together, the investigation quantitatively infers that although a potential substrate of cytochrome P450cam would, in principle, explore a diverse array of conformations of substrate-free protein, it would mostly encounter a "closed" or solvent-occluded conformation and hence would follow an induced-fit-based recognition process. Overall, the work reconciles multiple precedent crystallographic, spectroscopic investigations and establishes how a statistical elucidation of conformational heterogeneity in protein would provide crucial insights in the mechanism of potential substrate-recognition process.


Assuntos
Cânfora 5-Mono-Oxigenase , Sistema Enzimático do Citocromo P-450 , Cânfora 5-Mono-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
7.
Biophys J ; 120(5): 912-923, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545101

RESUMO

Structural heterogeneity and the dynamics of the complexes of enzymes with substrates can determine the selectivity of catalysis; however, fully characterizing how remains challenging as heterogeneity and dynamics can vary at the spatial level of an amino acid residue and involve rapid timescales. We demonstrate the nascent approach of site-specific two-dimensional infrared (IR) spectroscopy to investigate the archetypical cytochrome P450, P450cam, to better delineate the mechanism of the lower regioselectivity of hydroxylation of the substrate norcamphor in comparison to the native substrate camphor. Specific locations are targeted throughout the enzyme by selectively introducing cyano groups that have frequencies in a spectrally isolated region of the protein IR spectrum as local vibrational probes. Linear and two-dimensional IR spectroscopy were applied to measure the heterogeneity and dynamics at each probe and investigate how they differentiate camphor and norcamphor recognition. The IR data indicate that the norcamphor complex does not fully induce a large-scale conformational change to a closed state of the enzyme adopted in the camphor complex. Additionally, a probe directed at the bound substrate experiences rapidly interconverting states in the norcamphor complex that explain the hydroxylation product distribution. Altogether, the study reveals large- and small-scale structural heterogeneity and dynamics that could contribute to selectivity of a cytochrome P450 and illustrates the approach of site-selective IR spectroscopy to elucidate protein dynamics.


Assuntos
Cânfora 5-Mono-Oxigenase , Sistema Enzimático do Citocromo P-450 , Cânfora , Cânfora 5-Mono-Oxigenase/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hidroxilação , Conformação Proteica , Especificidade por Substrato
8.
Biochemistry ; 59(29): 2743-2750, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32551522

RESUMO

The bacterial cytochrome P450cam catalyzes the oxidation of camphor to 5-exo-hydroxycamphor as the first step in the oxidative assimilation of camphor as a carbon/energy source. CYP101D1 is another bacterial P450 that catalyzes the same reaction. A third P450 (P450tcu) has recently been discovered that has ≈86% sequence identity to P450cam as well as very similar enzymatic properties. P450tcu, however, exhibits three unusual features not found in P450cam. First, we observe product in at least two orientations in the X-ray structure that indicates that, unlike the case for P450cam, X-ray-generated reducing equivalents can drive substrate hydroxylation in crystallo. We postulate, on the basis of molecular dynamics simulations, that greater flexibility in P450tcu enables easier access of protons to the active site and, together with X-ray driven reduction, results in O2 activation and substrate hydroxylation. Second, the characteristic low-spin to high-spin transition when camphor binds occurs immediately with P450cam but is very slow in P450tcu. Third, isothermal titration calorimetry shows that in P450cam substrate binding is entropically driven with a ΔH of >0 while in P450tcu with a ΔH of <0 with a more modest change in -TΔS. These results indicate that despite nearly identical structures and enzymatic properties, these two P450s exhibit quite different properties most likely related to differences in conformational dynamics.


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/metabolismo , Pseudomonas/enzimologia , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica , Pseudomonas/química , Pseudomonas/metabolismo , Especificidade por Substrato , Termodinâmica
9.
Biochemistry ; 59(31): 2896-2902, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32574066

RESUMO

Cytochrome P450s are among nature's most powerful catalysts. Their ability to activate molecular dioxygen to form high-valent ferryl intermediates (Compounds I and II) enables a wide array of chemistries ranging from simple epoxidations to more complicated C-H bond oxidations. Oxygen activation is achieved by reduction of the ferrous dioxygen complex, which requires the transfer of an electron from a redox partner and subsequent double protonation to yield a water molecule and a ferryl porphyrin π-cation radical (Compound I). Previous studies of the CYP101 family of cytochrome P450s demonstrated the importance of the conserved active site Asp25X residue in this protonation event, although its precise role is yet to be unraveled. To further explore the origin of protons in oxygen activation, we analyzed the effects of an Asp to Glu mutation at the 25X position in P450cam and in CYP101D1. This mutation inactivates P450cam but not CYP101D1. A series of mutagenic, crystallographic, kinetic, and molecular dynamics studies indicate that this mutation locks P450cam into a closed, inactive conformation. In CYP101D1, the D259E mutant changes the rate-limiting step to reduction of the P450-oxy complex, thus opening a window into the critical proton-coupled electron transfer step in P450 catalysis.


Assuntos
Bactérias/enzimologia , Cânfora 5-Mono-Oxigenase/química , Prótons , Cânfora 5-Mono-Oxigenase/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica
10.
Proteins ; 88(4): 558-572, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31597203

RESUMO

Cytochromes P450 are versatile heme-based enzymes responsible for vital life processes. Of these, P450cam (substrate camphor) has been most studied. Despite this, precise mechanisms of the key O─O cleavage step remain partly elusive to date; effects observed in various enzyme mutants remain partly unexplained. We have carried out extended (to 1000 ns) MM-MD and follow-on quantum mechanics/molecular mechanics computations, both on the well-studied FeOO state and on Cpd(0) (compound 0). Our simulations include (all camphor-bound): (a) WT (wild type), FeOO state. (b) WT, Cpd(0). (c) Pdx (Putidaredoxin, redox partner of P450)-docked-WT, FeOO state. (d) Pdx-docked WT, Cpd(0). (e) Pdx-docked T252A mutant, Cpd(0). Among our key findings: (a) Effect of Pdx docking appears to go far beyond that indicated in prior studies: it leads to specific alterations in secondary structure that create the crucial proton relay network. (b) Specific proton relay networks we identify are: FeOO(H)⋯T252⋯nH 2 O⋯D251 in WT; FeOO(H)⋯nH 2 O⋯D251 in T252A mutant; both occur with Pdx docking. (c) Direct interaction of D251 with -FeOOH is, respectively, rare/frequent in WT/T252A mutant. (d) In WT, T252 is in the proton relay network. (e) Positioning of camphor appears significant: when camphor is part of H-bonding network, second protonation appears to be facilitated.


Assuntos
Proteínas de Bactérias/química , Cânfora 5-Mono-Oxigenase/química , Cânfora/química , Ferredoxinas/química , Heme/química , Prótons , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cânfora/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Cristalografia por Raios X , Ferredoxinas/metabolismo , Heme/metabolismo , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Especificidade por Substrato , Termodinâmica
11.
Biochemistry ; 58(18): 2353-2361, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30994334

RESUMO

Cytochrome P450cam is an archetypal example of the vast family of heme monooxygenases and serves as a model for an enzyme that is highly specific for both its substrate and reductase. During catalysis, it undergoes significant conformational changes of the F and G helices upon binding its substrate and redox partner, putidaredoxin (Pdx). Recent studies have shown that Pdx binding to the closed camphor-bound form of ferric P450cam results in its conversion to a fully open state. However, during catalytic turnover, it remains unclear whether this same conformational change also occurs or whether it is coupled to the formation of the critical compound I intermediate. Here, we have examined P450cam bound simultaneously by camphor, CN-, and Pdx as a mimic of the catalytically competent ferrous oxy-P450cam-Pdx state. The combined use of double electron-electron resonance and molecular dynamics showed direct observation of intermediate conformational states of the enzyme upon CN- and subsequent Pdx binding. This state is coupled to the movement of the I helix and residues at the active site, including Arg-186, Asp-251, and Thr-252. These movements enable occupation of a water molecule that has been implicated in proton delivery and peroxy bond cleavage to give compound I. These findings provide a detailed understanding of how the Pdx-induced conformational change may sequentially promote compound I formation followed by product release, while retaining stereoselective hydroxylation of the substrate of this highly specific monooxygenase.


Assuntos
Proteínas de Bactérias/química , Cânfora 5-Mono-Oxigenase/química , Ferredoxinas/química , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Domínio Catalítico , Ferredoxinas/metabolismo , Oxirredução , Ligação Proteica , Pseudomonas putida/enzimologia , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Especificidade por Substrato
12.
Acc Chem Res ; 52(2): 389-399, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30633519

RESUMO

This Account addresses the catalytic cycle of the enzyme cytochrome P450 (CYP450) as a prototypical biological machine with automatic features. CYP450 is a nanomachine that uses dioxygen and two reducing and two proton equivalents to oxidize a plethora of molecules (so-called substrates) as a means of supplying bio-organisms with essential molecules (e.g., brain neurotransmitters, sex hormones, etc.) and protecting biosystems against poisoning. An enticing property of CYP450s is that entrance of an oxidizable substrate into the active site initiates a series of events that constitute the catalytic cycle, which functions "automatically" in a regulated sequence of events culminating in the production of the oxidized substrates (e.g., hydroxylated, epoxidized, etc.), oftentimes with remarkable stereo- and regioselectivities. It is timely to demonstrate how theory uses molecular dynamics (MD) simulations and quantum-mechanical/molecular-mechanical (QM/MM) calculations to complement experiments and elucidate the choreography by which the protein regulates the catalytic cycle. CYP450 is a heme enzyme that contains a ferric ion (FeIII) coordinated by a porphyrin ligand, a water molecule, and a cysteinate ligand that is provided by a strategic residue of the encapsulating protein. While many of the individual steps are sufficiently well-understood, we shall provide here an overview of the factors that cause all of the steps to be sequentially coordinated. To this end, we use examples from three different CYP450 enzymes: the bacterial ones CYP450BM3 and CYP450CAM and the mammalian enzyme CYP4503A4. The treatment is limited to the catalytic cycle, as aspects of two-state reactivity were reviewed previously (e.g., Shaik , S. ; et al. Chem. Rev. 2005 , 105 , 2279 ). What are the principles that govern the seeming automatic feature? For example, how do substrate entrance and binding gate the enzyme? How does the reductase attachment to the enzyme affect the next steps? What triggers the attachment of the reductase? How does the electron transfer (ET) that converts FeIII to FeII occur? Is the ET coordinated with the entrance of O2 into the active site? What is the mechanism of the latter step? Since the entrance of the substrate expels the water molecules from the active site, how do water molecules re-enter to form a proton channel, which is necessary for creating the ultimate oxidant Compound I? How do mutations that disrupt the water channel nevertheless create a competent oxidant? By what means does the enzyme produce regio- and stereoselective oxidation products? What triggers the departure of the oxidized product, and how does the exit occur in a manner that generates the resting state ready for the next cycle? This Account shows that the entrance of the substrate triggers all of the ensuing events.


Assuntos
Proteínas de Bactérias/química , Cânfora 5-Mono-Oxigenase/química , Citocromo P-450 CYP3A/química , Sistema Enzimático do Citocromo P-450/química , NADPH-Ferri-Hemoproteína Redutase/química , Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Catálise , Domínio Catalítico , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Heme/química , Heme/metabolismo , Ferro/química , Ferro/metabolismo , Modelos Químicos , Simulação de Dinâmica Molecular , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Ligação Proteica , Conformação Proteica , Teoria Quântica , Água/química , Água/metabolismo
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 209: 186-195, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30388588

RESUMO

Camphor is known to be held in the substrate pocket of cytochrome P450cam enzyme via H-bond with a tyrosine residue of the enzyme in a unique orientation. This structural exclusivity results in regio- and stereo-specific hydroxylation of camphor by the enzyme. We have carried out a combined IR spectroscopic and quantum chemical investigation to shed light on the factors influencing the conformational exclusivity of 1R-(+)-camphor in the substrate pocket of Cytochrome P450cam, and to determine whether the selectivity is an inherent property of the substrate itself, or is imposed by the enzyme. For this purpose, complexes of camphor have been studied with three H-bond donors namely phenol, methanol and chloroform. Each of the three donors was found to form stable complexes with two distinct conformers; the one mimicking the conformation in enzyme substrate pocket was found to be more stable of the two, for all three donors. Experimentally, both conformers of the H-bonded complexes were identified separately for phenol and methanol in an argon matrix at 8 K, but not for chloroform due to very small energy barrier for interconversion of the two conformers. In room temperature solution phase spectra of camphor with all three donors, the differences in spectral attributes between the two isomeric H-bonded complexes were lost due to thermal motions.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Cânfora/química , Clorofórmio/química , Metanol/química , Fenol/química , Teoria Quântica , Espectrofotometria Infravermelho/métodos , Sítios de Ligação , Cânfora/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Clorofórmio/metabolismo , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Cinética , Metanol/metabolismo , Modelos Moleculares , Fenol/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
14.
J Am Chem Soc ; 140(50): 17743-17752, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30479124

RESUMO

Cytochrome P450s are ubiquitous metalloenzymes involved in the metabolism and detoxification of foreign components via catalysis of the hydroxylation reactions of a vast array of organic substrates. However, the mechanism underlying the pharmaceutically critical process of substrate access to the catalytic center of cytochrome P450 is a long-standing puzzle, further complicated by the crystallographic evidence of a closed catalytic center in both substrate-free and substrate-bound cytochrome P450. Here, we address a crucial question whether the conformational heterogeneity prevalent in cytochrome P450 translates to heterogeneous pathways for substrate access to the catalytic center of these metalloenzymes. By atomistically capturing the full process of spontaneous substrate association from bulk solvent to the occluded catalytic center of an archetypal system P450cam in multi-microsecond-long continuous unbiased molecular dynamics simulations, we here demonstrate that the substrate recognition in P450cam always occurs through a single well-defined dominant pathway. The simulated final bound pose resulting from these unguided simulations is in striking resemblance with the crystallographic bound pose. Each individual binding trajectory reveals that the substrate, initially placed at random locations in bulk solvent, spontaneously lands on a single key channel on the protein-surface of P450cam and resides there for an uncharacteristically long period, before correctly identifying the occluded target-binding cavity. Surprisingly, the passage of substrate to the closed catalytic center is not accompanied by any large-scale opening in protein. Rather, the unbiased simulated trajectories (∼57 µs) and underlying Markov state model, in combination with free-energy analysis, unequivocally show that the substrate recognition process in P450cam needs a substrate-induced side-chain displacement coupled with a complex array of dynamical interconversions of multiple metastable substrate conformations. Further, the work reconciles multiple precedent experimental and theoretical observations on P450cam and establishes a comprehensive view of substrate-recognition in cytochrome P450 that only occurs via substrate-induced structural rearrangements.


Assuntos
Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Proteínas de Bactérias/química , Cânfora/química , Cânfora/metabolismo , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Cadeias de Markov , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Pseudomonas putida/enzimologia , Especificidade por Substrato
15.
J Am Chem Soc ; 140(47): 16222-16228, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30376314

RESUMO

Various biophysical methods have provided evidence of a second substrate binding site in the well-studied cytochrome P450cam, although the location and biological relevance of this site has remained elusive. A related question is how substrate and product binding and egress occurs. While many active site access channels have been hypothesized, only one, channel 1, has been experimentally validated. In this study, molecular dynamics simulations reveal an allosteric site related to substrate binding and product egress. The remote allosteric site opens channel 1 and primes the formation of a new channel that is roughly perpendicular to channel 1. Substrate entry to the active site via channel 1 as well as substrate/product egress via channel 2 is observed after binding of a second molecule of substrate to the allosteric site, indicating cooperativity between these two sites. These results are consistent with and bring together many early and recent experimental results to reveal a dynamic interplay between a weak allosteric site and substrate binding to the active site that controls P450cam activity.


Assuntos
Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/química , Cânfora/metabolismo , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Ferredoxinas/metabolismo , Modelos Químicos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Pseudomonas putida/enzimologia
16.
J Inorg Biochem ; 183: 179-183, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29550100

RESUMO

We have compared the thermodynamics of substrate and redox partner binding of P450cam to its close homologue, CYP101D1, using isothermal titration calorimetry (ITC). CYP101D1 binds camphor about 10-fold more weakly than P450cam which is consistent with the inability of camphor to cause a complete low- to high-spin shift in CYP101D1. Even so molecular dynamics simulations show that camphor is very stable in the CYP101D1 active site similar to P450cam. ITC data on the binding of the CYP101D1 ferredoxin redox partner (abbreviated Arx) shows that the substrate-bound closed state of CYP101D1 binds Arx more tightly than the substrate-free open form. This is just the opposite to P450cam where Pdx (ferredoxin redox partner of P450cam) favors binding to the P450cam open state. In addition, CYP101D1-Arx binding has a large negative ΔS while the P450cam-Pdx has a much smaller ΔS indicating that interactions at the docking interface are different. The most obvious difference is that PDXD38 which forms an important ion pair with P450camR112 at the center of the interface is ArxL39 in Arx. This suggests that Arx may adopt a different orientation than Pdx in order to optimize nonpolar interactions with ArxL39.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Simulação de Dinâmica Molecular , Calorimetria , Ferredoxinas/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica
17.
Enzyme Microb Technol ; 111: 29-37, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29421034

RESUMO

The stereoselective oxidation of hydrocarbons is an area of research where enzyme biocatalysis can make a substantial impact. The cyclic ketone isophorone was stereoselectively hydroxylated (≥95%) by wild-type CYP102A1 to form (R)-4-hydroxyisophorone, an important chiral synthon and flavour and fragrance compound. CYP102A1 variants were also selective for 4-hydroxyisophorone formation and the product formation rate increased over the wild-type enzyme by up to 285-fold, with the best mutants being R47L/Y51F/I401P and A74G/F87V/L188Q. The latter variant, which contained mutations in the distal substrate binding pocket, was marginally less selective. Combining perfluorodecanoic acid decoy molecules with the rate accelerating variant R47L/Y51F/I401P engendered further improvement with the purified enzymes. However when the decoy molecules were used with A74G/F87V/L188Q the amount of product generated by the enzyme was reduced. Addition of decoy molecules to whole-cell turnovers did not improve the productivity of these CYP102A1 systems. WT CYP101A1 formed significant levels of 7-hydroxyisophorone as a minor product alongside 4-hydroxyisophorone. However the F87W/Y96F/L244A/V247L CYP101A1 mutant was ≥98% selective for (R)-4-hydroxyisophorone. A comparison of the two enzyme systems using whole-cell oxidation reactions showed that the best CYP101A1 variant was able to generate more product. We also characterised that the further oxidation metabolite 4-ketoisophorone was produced and then subsequently reduced to levodione by an endogenous Escherichia coli ene reductase.


Assuntos
Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/metabolismo , Cicloexanonas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cânfora 5-Mono-Oxigenase/genética , Cicloexanonas/química , Sistema Enzimático do Citocromo P-450/genética , Variação Genética , Hidroxilação , Cinética , NADP/metabolismo , NADPH-Ferri-Hemoproteína Redutase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo
18.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 126-133, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28473297

RESUMO

The existence of a substrate-sensitive equilibrium between high spin (S=5/2) and low spin (S=1/2) ferric iron is a well-established phenomenon in the cytochrome P450 (CYP) superfamily, although its origins are still a subject of discussion. A series of mutations that strongly perturb the spin state equilibrium in the camphor hydroxylase CYP101A1 were recently described (Colthart et al., Sci. Rep. 6, 22035 (2016)). Wild type CYP101A1 as well as some CYP101A1 mutants are herein shown to be capable of catalyzing the reduction of nitroacetophenones by NADH to the corresponding anilino compounds (nitroreductase or NRase activity). The distinguishing characteristic between those mutants that catalyze the reduction and those that cannot appears to be the extent to which residual high spin form exists in the absence of the native substrate d-camphor, with those showing the largest spin state shifts upon camphor binding also exhibiting NRase activity. Optical and EPR spectroscopy was used to further examine these phenomena. These results suggest that reduction of nitroaromatics may provide a useful probe of residual high spin states in the CYP superfamily. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Assuntos
Acetofenonas/química , Proteínas de Bactérias/química , Cânfora 5-Mono-Oxigenase/química , Cânfora/química , Compostos Férricos/química , Heme/química , NAD/química , Acetofenonas/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise , Cânfora/metabolismo , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Clonagem Molecular , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Heme/metabolismo , Cinética , Modelos Moleculares , NAD/metabolismo , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
19.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 68-79, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28923662

RESUMO

Cytochrome P450cam (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450cam mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate. Mutant (E156G/V247F/V253G/F256S) had the highest maximal velocity in the conversion of 3-chloroindole to isatin, whereas mutants (T56A/N116H/D297N) and (G60S/Y75H) had highest kcat/KM values. Six of the mutants had more than one mutation, and within this set, mutation of residues 297 and 179 was observed twice. Docking simulations were performed on models of the mutant enzymes; the wild-type did not accommodate 3-chloroindole in the active site, whereas all the mutants did. We propose two potential reaction pathways for dechlorination of 3-chloroindole. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Assuntos
Proteínas de Bactérias/química , Cânfora 5-Mono-Oxigenase/química , Endossulfano/metabolismo , Biblioteca Gênica , Indóis/metabolismo , Pseudomonas putida/enzimologia , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biodegradação Ambiental , Cânfora 5-Mono-Oxigenase/genética , Cânfora 5-Mono-Oxigenase/metabolismo , Clonagem Molecular , Endossulfano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Halogenação , Indóis/química , Isatina/química , Isatina/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutação , Oxirredução , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Pseudomonas putida/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
J Biol Chem ; 292(52): 21481-21489, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109145

RESUMO

Cytochrome P450cam (CYP101Fe3+) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO2]2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH]2+ (compound 0) accumulates within 5 µs and decays rapidly to CYP101Fe3+, with a k440 nm of 9.6 × 104 s-1 All processes are complete within 40 µs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO2+por•+] (compound 1) or CYP101[FeO2+] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe3+, yielding a ΔG‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 µs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time.


Assuntos
Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Transporte de Elétrons/fisiologia , Sítios de Ligação/fisiologia , Cânfora 5-Mono-Oxigenase/fisiologia , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Elétrons , Compostos Férricos/metabolismo , Cinética , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...