Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.967
Filtrar
1.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822881

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Linhagem Celular Tumoral , Elementos de Resposta Antioxidante/genética , Antineoplásicos/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
2.
J Cell Mol Med ; 28(11): e18406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822457

RESUMO

Increasing evidence has shown that homologous recombination (HR) and metabolic reprogramming are essential for cellular homeostasis. These two processes are independent as well as closely intertwined. Nevertheless, they have rarely been reported in lung adenocarcinoma (LUAD). We analysed the genomic, immune microenvironment and metabolic microenvironment features under different HR activity states. Using cell cycle, EDU and cell invasion assays, we determined the impacts of si-SHFM1 on the LUAD cell cycle, proliferation and invasion. The levels of isocitrate dehydrogenase (IDH) and α-ketoglutarate dehydrogenase (α-KGDH) were determined by ELISA in the NC and si-SHFM1 groups of A549 cells. Finally, cell samples were used to extract metabolites for HPIC-MS/MS to analyse central carbon metabolism. We found that high HR activity was associated with a poor prognosis in LUAD, and HR was an independent prognostic factor for TCGA-LUAD patients. Moreover, LUAD samples with a high HR activity presented low immune infiltration levels, a high degree of genomic instability, a good response status to immune checkpoint blockade therapy and a high degree of drug sensitivity. The si-SHFM1 group presented a significantly higher proportion of cells in the G0/G1 phase, lower levels of DNA replication, and significantly lower levels of cell migration and both TCA enzymes. Our current results indicated that there is a strong correlation between HR and the TCA cycle in LUAD. The TCA cycle can promote SHFM1-mediated HR in LUAD, raising their activities, which can finally result in a poor prognosis and impair immunotherapeutic efficacy.


Assuntos
Adenocarcinoma de Pulmão , Ciclo do Ácido Cítrico , Recombinação Homóloga , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Prognóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Proliferação de Células , Microambiente Tumoral , Linhagem Celular Tumoral , Ciclo Celular/genética , Reprogramação Celular/genética , Feminino , Células A549 , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Movimento Celular , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Reprogramação Metabólica
3.
Mikrochim Acta ; 191(7): 372, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38839678

RESUMO

A highly sensitive micelle-induced sensory has been developed for detection of long-chain aldehydes as potential biomarkers of respiratory cancers. The micelle-like sensor was fabricated through the partial self-assembly of CTAB and S2 surfactants, containing a fluorescent hydrazine-functionalized dye (Naph-NH2). In principle, long-chain aldehydes with amphiphilic character act as the induced-fit surfactants to form well-entrapped micellar particles, as well as react with Naph-NH2 to form hydrazone derivatives resulting in fluorescent enhancement. The limit of detection (LOD) of micellar Naph-NH2/CTAB/S2 platform was calculated to be ∼  64.09-80.98 µM for detection of long-chain aldehydes, which showed fluorescent imaging in lung cancer cells (A549). This micellar sensory probe demonstrated practical applicability for long-chain aldehyde sensing in human blood samples with an accepted percent recovery of ~ 94.02-102.4%. Beyond Naph-NH2/CTAB/S2 sensor, the milcellar hybrid sensor was successfully developed by incorporating a micelle-like platform with supramolecular gel regarding to carboxylate-based gelators (Gel1), which showed a tenfold improvement in sensitivity. Expectedly, the determination of long-chain aldehydes through these sensing platforms holds significant promise for point-of-care cancer diagnosis and therapy.


Assuntos
Aldeídos , Corantes Fluorescentes , Hidrogéis , Limite de Detecção , Micelas , Humanos , Aldeídos/química , Corantes Fluorescentes/química , Hidrogéis/química , Células A549 , Hidrazinas/química , Cetrimônio/química , Tensoativos/química
4.
Iran J Allergy Asthma Immunol ; 23(2): 220-230, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38822516

RESUMO

During epithelial to mesenchymal transition, the ability of cancer cells to transform and metastasize is primarily determined by N-cadherin-mediated migration and invasion. This study aimed to evaluate whether the N-cadherin promoter can induce diphtheria toxin expression as a suicide gene in epithelial to mesenchymal transition (EMT)-induced cancer cells and whether this can be used as potential gene therapy. To investigate the expression of diphtheria toxin under the N-cadherin promoter, the promoter was synthesized, and was cloned upstream of diphtheria toxin in a pGL3-Basic vector. The A-549 cells was transfected by electroporation. After induction of EMT by TGF-ß and hypoxia treatment, the relative expression of diphtheria toxin, mesenchymal genes such as N-cadherin and Vimentin, and epithelial genes such as E-cadherin and ß-catenin were measured by real-time PCR. MTT assay was also performed to measure cytotoxicity. Finally, cell motility was assessed by the Scratch test. After induction of EMT in transfected cells, the expression of mesenchymal markers such as Vimentin and N-cadherin significantly decreased, and the expression of ß-catenin increased. In addition, the MTT assay showed promising toxicity results after induction of EMT with TGF-ß in transfected cells, but toxicity was less effective in hypoxia. The scratch test results also showed that cell movement was successfully prevented in EMT-transfected cells and thus confirmed EMT occlusion. Our findings indicate that by using structures containing diphtheria toxin downstream of a specific EMT promoter such as the N-cadherin promoter, the introduced toxin can kill specifically and block EMT in cancer cells.


Assuntos
Caderinas , Toxina Diftérica , Transição Epitelial-Mesenquimal , Regiões Promotoras Genéticas , Humanos , Células A549 , Antígenos CD/genética , Antígenos CD/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Movimento Celular/efeitos dos fármacos , Toxina Diftérica/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Genes Transgênicos Suicidas , Regiões Promotoras Genéticas/genética , Vimentina/genética , Vimentina/metabolismo
5.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 108-113, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836673

RESUMO

Oridonin belongs to a small molecule from the Chinese herb Rabdosia rubescens with potent anticancer activity. In spite of the lncRNA AFAP1-AS1 has been proven to exert promoting function in lung cancer, its relationship with oridonin in lung cancer is obscure. Therefore, our study planned to explore the potential of oridonin in lung cancer as well as unveil the regulatory mechanism of oridonin on AFAP1-AS1 in lung cancer cells. In the present study, oridonin inhibited lung cancer cell proliferation, migration, as well as invasion, as evidenced by MTT, wound healing, as well as transwell assays. Besides, we observed that oridonin could downregulate AFAP1-AS1 expression, and overexpressed AFAP1-AS1 could reverse the repressive effects of oridonin on lung cancer cell proliferation, migration, as well as invasion. More importantly, we found that AFAP1-AS1 could bind to IGF2BP1 through starBase prediction and RIP assay. The expression level of IGF2BP1 was also reduced by oridonin treatment but reversed after AFAP1-AS1 overexpression. Additionally, we proved that overexpressed IGF2BP1 could reverse the repressive impacts of oridonin on lung cancer cell proliferation, migration, as well as invasion. Further, in vivo experiments validated the repressive role of oridonin on tumor growth of lung cancer. Together, oridonin inhibits lung cancer cell proliferation as well as migration by modulating AFAP1-AS1/IGF2BP1, and AFAP1-AS1/IGF2BP1 possesses the potential to be a promising therapy targeting for lung cancer, especially in oridonin treatment.


Assuntos
Movimento Celular , Proliferação de Células , Diterpenos do Tipo Caurano , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , RNA Longo não Codificante , Proteínas de Ligação a RNA , Diterpenos do Tipo Caurano/farmacologia , Humanos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Camundongos Nus , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Células A549
6.
Sci Rep ; 14(1): 12935, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839973

RESUMO

The inhibition of tumor necrosis factor (TNF)-α trimer formation renders it inactive for binding to its receptors, thus mitigating the vicious cycle of inflammation. We designed a peptide (PIYLGGVFQ) that simulates a sequence strand of human TNFα monomer using a series of in silico methods, such as active site finding (Acsite), protein-protein interaction (PPI), docking studies (GOLD and Flex-X) followed by molecular dynamics (MD) simulation studies. The MD studies confirmed the intermolecular interaction of the peptide with the TNFα. Fluorescence-activated cell sorting and fluorescence microscopy revealed that the peptide effectively inhibited the binding of TNF to the cell surface receptors. The cell culture assays showed that the peptide significantly inhibited the TNFα-mediated cell death. In addition, the nuclear translocation of the nuclear factor kappa B (NFκB) was significantly suppressed in the peptide-treated A549 cells, as observed in immunofluorescence and gel mobility-shift assays. Furthermore, the peptide protected against joint damage in the collagen-induced arthritis (CIA) mouse model, as revealed in the micro focal-CT scans. In conclusion, this TNFα antagonist would be helpful for the prevention and repair of inflammatory bone destruction and subsequent loss in the mouse model of CIA as well as human rheumatoid arthritis (RA) patients. This calls upon further clinical investigation to utilize its potential effect as an antiarthritic drug.


Assuntos
Peptídeos , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Camundongos , Peptídeos/farmacologia , Peptídeos/química , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Simulação de Acoplamento Molecular , Células A549 , Simulação de Dinâmica Molecular , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Masculino , Antirreumáticos/farmacologia , Antirreumáticos/química , Antirreumáticos/uso terapêutico , Ligação Proteica , Modelos Animais de Doenças
7.
BMC Complement Med Ther ; 24(1): 214, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840248

RESUMO

BACKGROUND: Traditional Chinese medicine (TCM) has been found widespread application in neoplasm treatment, yielding promising therapeutic candidates. Previous studies have revealed the anti-cancer properties of Brevilin A, a naturally occurring sesquiterpene lactone derived from Centipeda minima (L.) A.Br. (C. minima), a TCM herb, specifically against lung cancer. However, the underlying mechanisms of its effects remain elusive. This study employs network pharmacology and experimental analyses to unravel the molecular mechanisms of Brevilin A in lung cancer. METHODS: The Batman-TCM, Swiss Target Prediction, Pharmmapper, SuperPred, and BindingDB databases were screened to identify Brevilin A targets. Lung cancer-related targets were sourced from GEO, Genecards, OMIM, TTD, and Drugbank databases. Utilizing Cytoscape software, a protein-protein interaction (PPI) network was established. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene set enrichment analysis (GSEA), and gene-pathway correlation analysis were conducted using R software. To validate network pharmacology results, molecular docking, molecular dynamics simulations, and in vitro experiments were performed. RESULTS: We identified 599 Brevilin A-associated targets and 3864 lung cancer-related targets, with 155 overlapping genes considered as candidate targets for Brevilin A against lung cancer. The PPI network highlighted STAT3, TNF, HIF1A, PTEN, ESR1, and MTOR as potential therapeutic targets. GO and KEGG analyses revealed 2893 enriched GO terms and 157 enriched KEGG pathways, including the PI3K-Akt signaling pathway, FoxO signaling pathway, and HIF-1 signaling pathway. GSEA demonstrated a close association between hub genes and lung cancer. Gene-pathway correlation analysis indicated significant associations between hub genes and the cellular response to hypoxia pathway. Molecular docking and dynamics simulations confirmed Brevilin A's interaction with PTEN and HIF1A, respectively. In vitro experiments demonstrated Brevilin A-induced dose- and time-dependent cell death in A549 cells. Notably, Brevilin A treatment significantly reduced HIF-1α mRNA expression while increasing PTEN mRNA levels. CONCLUSIONS: This study demonstrates that Brevilin A exerts anti-cancer effects in treating lung cancer through a multi-target and multi-pathway manner, with the HIF pathway potentially being involved. These results lay a theoretical foundation for the prospective clinical application of Brevilin A.


Assuntos
Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Sesquiterpenos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Lactonas/farmacologia , Lactonas/química , Células A549 , Mapas de Interação de Proteínas , Farmacologia em Rede , Crotonatos
8.
Drug Res (Stuttg) ; 74(5): 227-240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830371

RESUMO

PURPOSE: Cancer is the second leading cause of death globally and is responsible for an estimated 9.6 million deaths in 2018. Globally, about 1 in 6 deaths is due to cancer and the chemotherapeutic drugs available have high toxicity and have reported side effects hence, there is a need for the synthesis of novel drugs in the treatment of cancer. METHODS: The current research work dealt with the synthesis of a series of 3-(3-acetyl-2-oxoquinolin-1-(2H)-yl-2-(substitutedphenyl)thiazolidin-4-one (Va-j) derivatives and evaluation of their in-vitro anticancer activity. All the synthesized compounds were satisfactorily characterized by IR and NMR data. Compounds were further evaluated for their in-vitro anticancer activity against A-549 (lung cancer) cell lines. The in-vitro anticancer activity was based upon the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay method. RESULTS: The synthesized compounds exhibited satisfactory anticancer properties against the A-549 cell line. The compound (VH): showed the highest potency amongst the tested derivatives against the A-549 cell line with IC50 values of 100 µg/ml respectively and was also found to be more potent than Imatinib (150 µg/ml) which was used as a standard drug. Molecular docking studies of the titled compounds (Va-j) were carried out using AutoDock Vina/PyRx software. The synthesized compounds exhibited well-conserved hydrogen bonds with one or more amino acid residues in the active pocket of the EGFRK tyrosine kinase domain (PDB 1m17). CONCLUSION: Among all the synthesized analogues, the binding affinity of the compound (Vh) was found to be higher than other synthesized derivatives and a molecular dynamics simulation study explored the stability of the docked complex system.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias Pulmonares , Simulação de Acoplamento Molecular , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Células A549 , Tiazolidinas/farmacologia , Tiazolidinas/química , Tiazolidinas/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos
9.
Med Oncol ; 41(7): 170, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847902

RESUMO

Salvianolic acid B (Sal B) has demonstrated anticancer activity against various types of cancer. However, the underlying mechanism of Sal B-mediated anticancer effects remains incompletely understood. This study aims to investigate the impact of Sal B on the growth and metastasis of human A549 lung cells, as well as elucidate its potential mechanisms. In this study, different concentrations of Sal B were administered to A549 cells. The effects on migration and invasion abilities were assessed using MTT, wound healing, and transwell assays. Flow cytometry analysis was employed to evaluate Sal B-induced apoptosis in A549 cells. Western blotting and immunohistochemistry were conducted to measure the expression levels of cleaved caspase-3, cleaved PARP, and E-cadherin. Commercial kits were utilized for detecting intracellular reactive oxygen species (ROS) and NAD+. Additionally, a xenograft model with transplanted A549 tumors was employed to assess the anti-tumor effect of Sal B in vivo. The expression levels of NDRG2, p-PTEN, and p-AKT were determined through western blotting. Our findings demonstrate that Sal B effectively inhibits proliferation, migration, and invasion in A549 cells while inducing dose-dependent apoptosis. These apoptotic responses and inhibition of tumor cell metastasis are accompanied by alterations in intracellular ROS levels and NAD+/NADH ratio. Furthermore, our in vivo experiment reveals that Sal B significantly suppresses A549 tumor growth compared to an untreated control group while promoting increased cleavage of caspase-3 and PARP. Importantly, we observe that Sal B upregulates NDRG2 expression while downregulating p-PTEN and p-AKT expressions. Collectively, our results provide compelling evidence supporting the ability of Sal B to inhibit both growth and metastasis in A549 lung cancer cells through oxidative stress modulation as well as involvement of the NDRG2/PTEN/AKT pathway.


Assuntos
Benzofuranos , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Estresse Oxidativo , PTEN Fosfo-Hidrolase , Transdução de Sinais , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Benzofuranos/farmacologia , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Espécies Reativas de Oxigênio/metabolismo , Depsídeos
10.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724488

RESUMO

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Assuntos
Adenocarcinoma de Pulmão , Proteínas Relacionadas à Autofagia , Autofagia , Progressão da Doença , Neoplasias Pulmonares , MicroRNAs , Material Particulado , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Material Particulado/efeitos adversos , Autofagia/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proliferação de Células/genética , Células A549 , Linhagem Celular Tumoral , Proteínas Adaptadoras de Transporte Vesicular
11.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727308

RESUMO

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Assuntos
Apoptose , Proliferação de Células , Simulação de Acoplamento Molecular , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células A549 , Caspases/metabolismo , Linhagem Celular Tumoral , Simulação de Dinâmica Molecular , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química
12.
Int J Nanomedicine ; 19: 3861-3890, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708178

RESUMO

Introduction: Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods: To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results: SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion: The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Lipossomos , Nanopartículas , Infecções por Pseudomonas , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Nanopartículas/química , Quitosana/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , Portadores de Fármacos/química , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Lipídeos/química , Lipídeos/farmacologia , Percepção de Quorum/efeitos dos fármacos , Células A549 , Alginatos/química
13.
Int J Nanomedicine ; 19: 3847-3859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708182

RESUMO

Background: Dihydroartemisinin (DHA) has emerged as a promising candidate for anticancer therapy. However, the application of DHA in clinics has been hampered by several limitations including poor bioavailability, short circulation life, and low solubility, significantly restricting its therapeutic efficacy and leading to notable side effects during the treatment. Purpose: We present DHA-loaded zeolitic imidazolate framework-8 (D-ZIF) with controllable and targeted DHA release properties, leading to enhanced antitumor effects while reducing potential side effects. Methods: D-ZIF was prepared by one-pot synthesis method using methylimidazole (MIM), Zn(NO3)2•6H2O and DHA. We characterized the physical and chemical properties of D-ZIF by TEM, DLS, XRD, FT-IR, and TG. We measured the drug loading efficiency and the cumulative release of DHA in different pH conditions. We evaluated the cytotoxicity of D-ZIF on renal cell carcinoma (RCC786-O), glioma cells (U251), TAX-resistant human lung adenocarcinoma (A549-TAX) cells by CCK8 in vitro. We explored the possible antitumor mechanism of D-ZIF by Western blot. We evaluated the biocompatibility and hemolysis of D-ZIF and explored the in vivo antitumor efficiency in mice model by TUNEL testing and blood biomarker evaluations. Results: D-ZIF showed rhombic dodecahedral morphology with size of 129±7.2 nm and possessed a noticeable DHA encapsulation efficiency (72.9%). After 48 hours, D-ZIF released a cumulative 70.0% of the loaded DHA at pH 6.5, and only 42.1% at pH 7.4. The pH-triggered programmed release behavior of D-ZIF could enhance anticancer effect of DHA while minimizing side effects under normal physiological conditions. Compared with the free DHA group with 31.75% of A549-TAX cell apoptosis, the percentage of apoptotic cells was approximately 76.67% in the D-ZIF group. D-ZIF inhibited tumor growth by inducing tumor cell apoptosis through the mechanism of ROS production and regulation of Nrf2/HO-1 and P38 MAPK signaling pathways. D-ZIF showed potent effects in treating tumors with high safety in vivo. Conclusion: This pH-responsive release mechanism enhanced the targeting efficiency of DHA towards tumor cells, thereby increasing drug concentration in tumor sites with negligible side effects. Herein, D-ZIF holds great promise for curing cancers with minimal adverse effects.


Assuntos
Antineoplásicos , Artemisininas , Resistencia a Medicamentos Antineoplásicos , Imidazóis , Neoplasias Pulmonares , Estruturas Metalorgânicas , Espécies Reativas de Oxigênio , Artemisininas/química , Artemisininas/farmacologia , Artemisininas/farmacocinética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacocinética , Estruturas Metalorgânicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Concentração de Íons de Hidrogênio , Células A549 , Liberação Controlada de Fármacos , Camundongos Nus , Apoptose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Hemólise/efeitos dos fármacos
14.
Cell Biochem Funct ; 42(4): e4027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715184

RESUMO

Bioactive phytocompounds are crucial components in all plants. Since the time of traditional medicine, the utilization of plants has been grounded in the potential of these bioactive compounds to treat or manage specific illnesses. These natural bioactive compounds have sparked growing interest in employing medicinal plants for addressing various conditions, such as inflammatory diseases, diabetes, and cancer. This study focuses on assessing the qualitative phytochemical composition, antioxidant potential, and cytotoxic effects of blueberry (Vaccinium sect. Cyanococcus) extract using three different solvents, namely water, ethanol, and methanol. The extract exhibited notable antioxidant activities, as evidenced by DPPH and H2O2 free radical scavenging assays. The cell viability assay also demonstrated cell growth inhibition in A549 cells. Furthermore, nine specific phytocompounds sourced from existing literature were selected for molecular docking studies against CDK6 and, AMPK key protein kinases which enhance the cancer progression. The molecular docking results also revealed favorable binding scores, with a high score of -9.5 kcal/mol in CDK6 protein and a maximum score of AMPK with targets of -8.8 kcal/mol. The selected phytocompounds' pharmacodynamic properties such as ADMET also supported the study. Furthermore, rutin stated that pre-dominantly present in blueberry plants shows a potent cytotoxicity effect in A549 cells. Functional annotations by bioinformatic analysis for rutin also revealed the strong enrichment in the involvement of PI3K/AKT1/STAT, and p53 signaling pathways. Based on this analysis, the identified rutin and other compounds hold a promising anticancer activity. Overall, the comprehensive evaluation of both in vitro and in silico data suggests that the Vaccinium sect. Cyanococcus extract could serve as a valuable source of pharmaceutical agents and may prove effective in future therapeutic applications.


Assuntos
Mirtilos Azuis (Planta) , Proliferação de Células , Receptores ErbB , Estresse Oxidativo , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína Supressora de Tumor p53 , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Mirtilos Azuis (Planta)/química , Estresse Oxidativo/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/metabolismo , Interleucina-6/metabolismo , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Sobrevivência Celular/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais
15.
J Vis Exp ; (207)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801268

RESUMO

Non-small cell lung cancer (NSCLC) is a highly lethal disease with a complex and heterogeneous tumor microenvironment. Currently, common animal models based on subcutaneous inoculation of cancer cell suspensions do not recapitulate the tumor microenvironment in NSCLC. Herein we describe a murine orthotopic lung cancer xenograft model that employs the intrapulmonary inoculation of three-dimensional multicellular spheroids (MCS). Specifically, fluorescent human NSCLC cells (A549-iRFP) were cultured in low-attachment 96-well microplates with collagen for 3 weeks to form MCS, which were then inoculated intercostally into the left lung of athymic nude mice to establish the orthotopic lung cancer model. Compared with the original A549 cell line, MCS of the A549-iRFP cell line responded similarly to anticancer drugs. The long-wavelength fluorescent signal of the A549-iRFP cells correlated strongly with common markers of cancer cell growth, including spheroid volume, cell viability, and cellular protein level, thus allowing dynamic monitoring of the cancer growth in vivo by fluorescent imaging. After inoculation into mice, the A549-iRFP MCS xenograft reliably progressed through phases closely resembling the clinical stages of NSCLC, including the expansion of the primary tumor, the emergence of neighboring secondary tumors, and the metastases of cancer cells to the contralateral right lung and remote organs. Moreover, the model responded to the benchmark antilung cancer drug, cisplatin with the anticipated toxicity and slower cancer progression. Therefore, this murine orthotopic xenograft model of NSCLC would serve as a platform to recapitulate the disease's progression and facilitate the development of potential anticancer drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos Nus , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Progressão da Doença , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia , Modelos Animais de Doenças , Células A549 , Transplante de Neoplasias
16.
Molecules ; 29(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38731532

RESUMO

A series of flavanols were synthesized to assess their biological activity against human non-small cell lung cancer cells (A549). Among the sixteen synthesized compounds, it was observed that compounds 6k (3.14 ± 0.29 µM) and 6l (0.46 ± 0.02 µM) exhibited higher potency compared to 5-fluorouracil (5-Fu, 4.98 ± 0.41 µM), a clinical anticancer drug which was used as a positive control. Moreover, compound 6l (4'-bromoflavonol) markedly induced apoptosis of A549 cells through the mitochondrial- and caspase-3-dependent pathways. Consequently, compound 6l might be developed as a candidate for treating or preventing lung cancer.


Assuntos
Antineoplásicos , Apoptose , Flavonóis , Humanos , Flavonóis/farmacologia , Flavonóis/síntese química , Flavonóis/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células A549 , Caspase 3/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Fluoruracila/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral
17.
Molecules ; 29(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731568

RESUMO

Cancer is one of the major causes of death, and its negative impact continues to rise globally. Chemotherapy, which is the most common therapy, has several limitations due to its tremendous side effects. Therefore, developing an alternate therapeutic agent with high biocompatibility is indeed needed. The anti-oxidative effects and bioactivities of several different crude extracts of marine algae have been evaluated both in vitro and in vivo. In the present study, we synthesized the aqueous extract (HA) from the marine algae Amphiroa anceps, and then, a liposome was formulated for that extract (NHA). The extracts were characterized using different photophysical tools like dynamic light scattering, UV-visible spectroscopy, FTIR, scanning electron microscopy, and GC-MS analysis. The SEM image revealed a size range of 112-185 nm for NHA and the GC-MS results showed the presence of octadecanoic acid and n-Hexadecanoic acid in the majority. The anticancer activity was studied using A549 cells, and the NHA inhibited the cancer cells dose-dependently, with the highest killing of 92% at 100 µg/mL. The in vivo studies in the zebrafish model showed that neither the HA nor NHA of Amphiroa anceps showed any teratogenic effect. The outcome of our study showed that NHA can be a potential drug candidate for inhibiting cancer with good biocompatibility up to a dose of 100 µg/mL.


Assuntos
Antineoplásicos , Rodófitas , Peixe-Zebra , Rodófitas/química , Humanos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Células A549 , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lipossomos/química , Cromatografia Gasosa-Espectrometria de Massas , Nanopartículas/química , Linhagem Celular Tumoral
18.
Virol J ; 21(1): 109, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734674

RESUMO

BACKGROUND: Syndrome coronavirus-2 (SARS-CoV-2) has developed various strategies to evade the antiviral impact of type I IFN. Non-structural proteins and auxiliary proteins have been extensively researched on their role in immune escape. Nevertheless, the detailed mechanisms of structural protein-induced immune evasion have not been well elucidated. METHODS: Human alveolar basal epithelial carcinoma cell line (A549) was stimulated with polyinosinic-polycytidylic acid (PIC) and independently transfected with four structural proteins expression plasmids, including nucleocapsid (N), spike (S), membrane (M) and envelope (E) proteins. By RT-qPCR and ELISA, the structural protein with the most pronounced inhibitory effects on IFN-ß induction was screened. RNA-sequencing (RNA-Seq) and two differential analysis strategies were used to obtain differentially expressed genes associated with N protein inhibition of IFN-ß induction. Based on DIANA-LncBase and StarBase databases, the interactive competitive endogenous RNA (ceRNA) network for N protein-associated genes was constructed. By combining single-cell sequencing data (GSE158055), lncRNA-miRNA-mRNA axis was further determined. Finally, RT-qPCR was utilized to illustrate the regulatory functions among components of the ceRNA axis. RESULTS: SARS-CoV-2 N protein inhibited IFN-ß induction in human alveolar epithelial cells most significantly compared with other structural proteins. RNA-Seq data analysis revealed genes related to N protein inhibiting IFNs induction. The obtained 858 differentially expressed genes formed the reliable ceRNA network. The function of LINC01002-miR-4324-FRMD8 axis in the IFN-dominated immune evasion was further demonstrated through integrating single-cell sequencing data. Moreover, we validated that N protein could reverse the effect of PIC on LINC01002, FRMD8 and miR-4324 expression, and subsequently on IFN-ß expression level. And LINC01002 could regulate the production of FRMD8 by inhibiting miR-4324. CONCLUSION: SARS-CoV-2 N protein suppressed the induction of IFN-ß by regulating LINC01002 which was as a ceRNA, sponging miR-4324 and participating in the regulation of FRMD8 mRNA. Our discovery provides new insights into early intervention therapy and drug development on SARS-CoV-2 infection.


Assuntos
COVID-19 , MicroRNAs , RNA Longo não Codificante , SARS-CoV-2 , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , COVID-19/virologia , COVID-19/imunologia , SARS-CoV-2/genética , Células A549 , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Evasão da Resposta Imune , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , RNA Endógeno Competitivo , Fosfoproteínas
19.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737331

RESUMO

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Regulação para Baixo , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pirazinas/farmacologia , Pirazinas/química , Proliferação de Células/efeitos dos fármacos , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Camundongos Nus , Camundongos Endogâmicos BALB C , Células A549 , Movimento Celular/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Células Tumorais Cultivadas
20.
Artif Cells Nanomed Biotechnol ; 52(1): 300-308, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38753524

RESUMO

Lung cancer is a dangerous disease that is lacking in an ideal therapy. Here, we evaluated the anti-lung cancer effect in nude mice of a fully human single-chain antibody (scFv) against the associated antigen 7 transmembrane receptor (Ts7TMR), which is also called G protein-coupled receptor, between A549 cells and Trichinella spiralis (T. spiralis). Our data showed that anti-Ts7TMR scFv could inhibit lung cancer growth in a dose-dependent manner, with a tumour inhibition rate of 59.1%. HE staining did not reveal any obvious tissue damage. Mechanistically, immunohistochemical staining revealed that the scFv down-regulated the expression of PCNA and VEGF in tumour tissues. Overall, this study found that anti-Ts7TMR scFv could inhibit A549 lung cancer growth by suppressing cell proliferation and angiogenesis, which may provide a new strategy for treating lung cancer.


Assuntos
Proliferação de Células , Neoplasias Pulmonares , Camundongos Nus , Anticorpos de Cadeia Única , Trichinella spiralis , Animais , Humanos , Trichinella spiralis/imunologia , Camundongos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Antígeno Nuclear de Célula em Proliferação/imunologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Patológica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...