Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Pulm Med ; 17(1): 163, 2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29197377

RESUMO

BACKGROUND: Aging is a known risk factor of idiopathic pulmonary fibrosis (IPF). However, the pathogenic mechanisms underlying the effects of advanced aging remain largely unknown. Telomeric repeat-containing RNA (TERRA) represents a type of long noncoding RNA. In this study, the regulatory roles of TERRA on human telomeres and mitochondria and IPF epithelial injury model were identified. METHODS: Blood samples were collected from patients with IPF (n = 24) and matched control individuals (n = 24). The significance of clinical research on the TERRA expression correlated with pulmonary fibrosis was assessed. The expression levels of TERRA in vivo and in vitro were determined through quantitative real-time polymerase chain reaction analysis. Telomerase activity was observed using a fluorescent quantitative TRAP assay kit. The functions of telomeres, mitochondria, and associated genes were analyzed through RNA interference on TERRA. RESULTS: TERRA expression levels significantly increased in the peripheral blood mononuclear cells of IPF patients. The expression levels also exhibited a direct and significantly inverse correlation with the percentage of predicted force vital capacity, which is a physiological indicator of fibrogenesis during IPF progression. This finding was confirmed in the epithelial injury model of IPF in vitro. RNA interference on TERRA expression can ameliorate the functions of telomeres; mitochondria; associated genes; components associated with telomeres, such as telomerase reverse transcriptase, telomerase, and cell nuclear antigen, cyclin D1; and mitochondria-associated cyclin E genes, including the MMP and Bcl-2 family. The RNA interference on TERRA expression can also improve the functions of oxidative-stress-associated genes, such as reactive oxygen species, superoxide dismutase, and catalase, and apoptosis-related genes, such as cytochrome c, caspase-9, and caspase-3. CONCLUSIONS: In this study, the regulation of TERRA expression on telomeres and mitochondria during IPF pathogenesis was identified for the first time. The results may provide valuable insights for the discovery of a novel biomarker or therapeutic approach for IPF treatment.


Assuntos
Envelhecimento/genética , Fibrose Pulmonar Idiopática/genética , Mitocôndrias/enzimologia , RNA Longo não Codificante/genética , Telomerase/metabolismo , Telômero/enzimologia , Telômero/genética , Células A549/fisiologia , Células A549/ultraestrutura , Idoso , Animais , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Catalase/metabolismo , Proliferação de Células , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Interferência de RNA , RNA Longo não Codificante/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Homeostase do Telômero , Proteína Supressora de Tumor p53/genética , Capacidade Vital/genética
2.
Zhonghua Zhong Liu Za Zhi ; 38(10): 725-730, 2016 Oct 23.
Artigo em Chinês | MEDLINE | ID: mdl-27784453

RESUMO

Objective: To investigate the killing effect of low-temperature plasma (LTP) on HepG2, A549 and HeLa cell lines and explore its possible mechanism. Methods: The inhibitory effect of LTP on the proliferation of HepG2, A549 and HeLa cells was determined by MTT assay. Transmission electron microscopy was used to observe the ultrastructural changes of HepG2, A549 and HeLa cells treated with LTP. Cell apoptosis was detected by Muse cytometry. Western blot was used to detect the expression of apoptosis-related proteins. Results: The survival rates of LTP-irradiated HepG2 cells (irradiated for 107 s), HeLa cells (irradiated for 121 s) and A549 cells (irradiated for 127 s) were 50%. LTP destroyed the ultrastructure of HepG2, A549 and HeLa cells to different degrees, showing nuclear fragmentation and organelle damages. The apoptosis rates of the three cell lines were increased at 24 h after exposure to LTP for 1/6 IC50 irradiation time. Furthermore, LTP irradiation also suppressed the protein expression of Bcl-2 and XRCC1 and increased that of Bax. Conclusions: LTP has an obvious killing effect on HepG2, A549 and HeLa cancer cell lines. This effect may be related to the induction of cell apoptosis and inhibition of DNA repair.


Assuntos
Células A549/fisiologia , Apoptose , Proliferação de Células , Crioterapia/métodos , Células HeLa/fisiologia , Células Hep G2/fisiologia , Células A549/efeitos da radiação , Células A549/ultraestrutura , Proteínas Reguladoras de Apoptose/metabolismo , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Células HeLa/efeitos da radiação , Células HeLa/ultraestrutura , Células Hep G2/efeitos da radiação , Células Hep G2/ultraestrutura , Humanos
3.
PLoS One ; 11(10): e0164438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27792742

RESUMO

Pulmonary research requires models that represent the physiology of alveolar epithelium but concerns with reproducibility, consistency and the technical and ethical challenges of using primary or stem cells has resulted in widespread use of continuous cancer or other immortalized cell lines. The A549 'alveolar' cell line has been available for over four decades but there is an inconsistent view as to its suitability as an appropriate model for primary alveolar type II (ATII) cells. Since most work with A549 cells involves short term culture of proliferating cells, we postulated that culture conditions that reduced proliferation of the cancer cells would promote a more differentiated ATII cell phenotype. We examined A549 cell growth in different media over long term culture and then used microarray analysis to investigate temporal regulation of pathways involved in cell cycle and ATII differentiation; we also made comparisons with gene expression in freshly isolated human ATII cells. Analyses indicated that long term culture in Ham's F12 resulted in substantial modulation of cell cycle genes to result in a quiescent population of cells with significant up-regulation of autophagic, differentiation and lipidogenic pathways. There were also increased numbers of up- and down-regulated genes shared with primary cells suggesting adoption of ATII characteristics and multilamellar body (MLB) development. Subsequent Oil Red-O staining and Transmission Electron Microscopy confirmed MLB expression in the differentiated A549 cells. This work defines a set of conditions for promoting ATII differentiation characteristics in A549 cells that may be advantageous for studies with this cell line.


Assuntos
Células A549/fisiologia , Células Epiteliais Alveolares/fisiologia , Diferenciação Celular/fisiologia , Células A549/ultraestrutura , Células Epiteliais Alveolares/ultraestrutura , Técnicas de Cultura de Células , Ciclo Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase
4.
J Pak Med Assoc ; 66(4): 368-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27122258

RESUMO

OBJECTIVE: To investigate in vitro effects of nicotine on the non-small-cell lung cancer line A549. METHODS: The case-control study was conducted at the First Affiliated Hospital of Nanchang University from 1st January to 30th June, 2014 and comprised A549 cells which were treated with a series of concentrations of nicotine (0.01 µM, 0.1 µM, 1 µM and 10 µM) for 24 hours. Control cells were incubated under the same conditions without the addition of nicotine. Cell growth was detected by monotetrazolium salt [3-(4, 5-dimethyl-2-thiazolyl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay. Cell apoptosis was detected by Haematoxylin and Eosin staining, immunofluorescence analysis of Filamentous actin and electron microscope observation. RESULTS: Nicotine had no significant effect on A549 cell growth at the dose of 0.01µM (p>0.05), but had significant growth inhibitory effects at the doses of 0.1µM, 1µM and 10µM (p< 0.05 each). A significant decrease in cell numbers was observed on staining (p< 0.05). Significant changes in the size and shape of cells and concomitant changes in cytoskeletons and organelles were observed by immunofluorescence and electron microscope observation (p< 0.05). CONCLUSIONS: The growth inhibitory effects of nicotine on A549 cells were found to be dose-dependent.


Assuntos
Células A549/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Células A549/citologia , Células A549/ultraestrutura , Estudos de Casos e Controles , Humanos , Técnicas In Vitro , Microscopia Eletrônica , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...