Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.155
Filtrar
1.
J Gen Physiol ; 156(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836782

RESUMO

Cholinergic signaling in the retina is mediated by acetylcholine (ACh) released from starburst amacrine cells (SACs), which are key neurons for motion detection. SACs comprise ON and OFF subtypes, which morphologically show mirror symmetry to each other. Although many physiological studies on SACs have targeted ON cells only, the synaptic computation of ON and OFF SACs is assumed to be similar. Recent studies demonstrated that gene expression patterns and receptor types differed between ON and OFF SACs, suggesting differences in their functions. Here, we compared cholinergic signaling pathways between ON and OFF SACs in the mouse retina using the patch clamp technique. The application of ACh increased GABAergic feedback, observed as postsynaptic currents to SACs, in both ON and OFF SACs; however, the mode of GABAergic feedback differed. Nicotinic receptors mediated GABAergic feedback in both ON and OFF SACs, while muscarinic receptors mediated GABAergic feedback in ON SACs only in adults. Neither tetrodotoxin, which blocked action potentials, nor LY354740, which blocked neurotransmitter release from SACs, eliminated ACh-induced GABAergic feedback in SACs. These results suggest that ACh-induced GABAergic feedback in ON and OFF SACs is regulated by different feedback mechanisms in adults and mediated by non-spiking amacrine cells other than SACs.


Assuntos
Acetilcolina , Células Amácrinas , Animais , Células Amácrinas/metabolismo , Camundongos , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Camundongos Endogâmicos C57BL , Ácido gama-Aminobutírico/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Nicotínicos/metabolismo
2.
Exp Eye Res ; 245: 109985, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945518

RESUMO

Aging is a major risk factor for the development or the worsening of retinal degenerative conditions. The intricate network of the neural retina determined that the retinal aging is a complicated process. The aim of this study is to delineate the transcriptomic changes of major retinal neurons during aging in C57BL/6 mice at single-cell level. We analyzed the transcriptional profiles of the photoreceptor, bipolar, amacrine, and Müller glial cells of 1.5-2 and 24-30 months old mice using single-cell RNA sequencing technique. We selectively confirmed the differences in gene expression using immunofluorescence staining and RNA in situ hybridization analysis. We found that each retinal cell type had unique changes upon aging. However, they all showed signs of dysregulated glucose and energy metabolism, and perturbed proteostasis. In particular, old Müller glia exhibited the most profound changes, including the upregulation of cell metabolism, stress-responses, antigen-presentation and immune responses and metal ion homeostasis. The dysregulated gliogenesis and differentiation was confirmed by the presence of Müller glia expressing rod-specific genes in the inner nuclear layer and the outer plexiform layer of the old retina. We further pinpointed the specific loss of GABAergic amacrine cells in old retina. Our study emphasized changes of amacrine and Müller glia during retinal aging, provided resources for further research on the molecular and cellular regulatory mechanisms underlying aging-associated retinal deterioration.


Assuntos
Envelhecimento , Células Amácrinas , Metabolismo Energético , Camundongos Endogâmicos C57BL , Proteostase , Animais , Células Amácrinas/metabolismo , Camundongos , Envelhecimento/fisiologia , Metabolismo Energético/fisiologia , Células Ependimogliais/metabolismo , Retina/metabolismo , Neurônios GABAérgicos/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Hibridização In Situ , Homeostase/fisiologia
3.
Brain Struct Funct ; 229(5): 1279-1298, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703218

RESUMO

ß-synuclein, a member of the synuclein family, is frequently co-expressed with α-synuclein in the neural system, where it serves to inhibit abnormal aggregation of α-synuclein in neurodegenerative diseases. Beyond its role in pathological conditions, ß-synuclein plays various functions independently of α-synuclein. In our investigation, we discovered a broader expression of ß-synuclein in the mouse retina compared to α-synuclein. This widespread pattern implies its potential significance in the retina. Through detailed examination via light- and electron-microscopic immunocytochemistry, we identified ß-synuclein expression from the inner segment (IS) and outer segment (OS) of photoreceptor cells to the ganglion cell layer (GCL). Our findings unveiled unique features, including ß-synuclein immunoreactive IS and OS of cones, higher expression in cone pedicles than in rod spherules, absence in horizontal cells, limited expression in cone bipolar dendrites and somas, higher expression in cone bipolar terminals, presence in most amacrine cells, and expression in almost majority of somas in GCL with an absence in intrinsically photosensitive retinal ganglion cell (ipRGCs) processes. Notably, all cholinergic amacrine cells express high ß- but not α-synuclein, while dopaminergic amacrine cells express α-synuclein exclusively. These distinctive expression patterns offer valuable insights for further exploration into the functions of ß-synuclein and its potential role in synuclein pathology within the retina.


Assuntos
Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina , alfa-Sinucleína , beta-Sinucleína , Animais , Masculino , Camundongos , alfa-Sinucleína/metabolismo , Células Amácrinas/metabolismo , beta-Sinucleína/metabolismo , Retina/metabolismo , Células Bipolares da Retina/metabolismo , Células Ganglionares da Retina/metabolismo
4.
eNeuro ; 11(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719453

RESUMO

Retinal prosthetics are one of the leading therapeutic strategies to restore lost vision in patients with retinitis pigmentosa and age-related macular degeneration. Much work has described patterns of spiking in retinal ganglion cells (RGCs) in response to electrical stimulation, but less work has examined the underlying retinal circuitry that is activated by electrical stimulation to drive these responses. Surprisingly, little is known about the role of inhibition in generating electrical responses or how inhibition might be altered during degeneration. Using whole-cell voltage-clamp recordings during subretinal electrical stimulation in the rd10 and wild-type (wt) retina, we found electrically evoked synaptic inputs differed between ON and OFF RGC populations, with ON cells receiving mostly excitation and OFF cells receiving mostly inhibition and very little excitation. We found that the inhibition of OFF bipolar cells limits excitation in OFF RGCs, and a majority of both pre- and postsynaptic inhibition in the OFF pathway arises from glycinergic amacrine cells, and the stimulation of the ON pathway contributes to inhibitory inputs to the RGC. We also show that this presynaptic inhibition in the OFF pathway is greater in the rd10 retina, compared with that in the wt retina.


Assuntos
Estimulação Elétrica , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/fisiologia , Degeneração Retiniana/fisiopatologia , Camundongos Endogâmicos C57BL , Células Bipolares da Retina/fisiologia , Técnicas de Patch-Clamp , Vias Visuais/fisiologia , Vias Visuais/fisiopatologia , Inibição Neural/fisiologia , Feminino , Masculino , Retina/fisiologia , Células Amácrinas/fisiologia
5.
Nat Commun ; 15(1): 2965, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580652

RESUMO

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Células Amácrinas/fisiologia , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Sinapses/metabolismo , Microscopia Eletrônica , Dendritos/fisiologia
6.
Neural Comput ; 36(6): 1041-1083, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38669693

RESUMO

We consider a model of basic inner retinal connectivity where bipolar and amacrine cells interconnect and both cell types project onto ganglion cells, modulating their response output to the brain visual areas. We derive an analytical formula for the spatiotemporal response of retinal ganglion cells to stimuli, taking into account the effects of amacrine cells inhibition. This analysis reveals two important functional parameters of the network: (1) the intensity of the interactions between bipolar and amacrine cells and (2) the characteristic timescale of these responses. Both parameters have a profound combined impact on the spatiotemporal features of retinal ganglion cells' responses to light. The validity of the model is confirmed by faithfully reproducing pharmacogenetic experimental results obtained by stimulating excitatory DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) expressed on ganglion cells and amacrine cells' subclasses, thereby modifying the inner retinal network activity to visual stimuli in a complex, entangled manner. Our mathematical model allows us to explore and decipher these complex effects in a manner that would not be feasible experimentally and provides novel insights in retinal dynamics.


Assuntos
Retina , Células Ganglionares da Retina , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Animais , Modelos Neurológicos , Células Amácrinas/fisiologia , Simulação por Computador , Humanos , Vias Visuais/fisiologia , Estimulação Luminosa/métodos , Rede Nervosa/fisiologia , Campos Visuais/fisiologia , Células Bipolares da Retina/fisiologia
7.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474095

RESUMO

We recently identified PKN1 as a developmentally active gatekeeper of the transcription factor neuronal differentiation-2 (NeuroD2) in several brain areas. Since NeuroD2 plays an important role in amacrine cell (AC) and retinal ganglion cell (RGC) type formation, we aimed to study the expression of NeuroD2 in the postnatal retina of WT and Pkn1-/- animals, with a particular focus on these two cell types. We show that PKN1 is broadly expressed in the retina and that the gross retinal structure is not different between both genotypes. Postnatal retinal NeuroD2 levels were elevated upon Pkn1 knockout, with Pkn1-/- retinae showing more NeuroD2+ cells in the lower portion of the inner nuclear layer. Accordingly, immunohistochemical analysis revealed an increased amount of AC in postnatal and adult Pkn1-/- retinae. There were no differences in horizontal cell, bipolar cell, glial cell and RGC numbers, nor defective axon guidance to the optic chiasm or tract upon Pkn1 knockout. Interestingly, we did, however, see a specific reduction in SMI-32+ α-RGC in Pkn1-/- retinae. These results suggest that PKN1 is important for retinal cell type formation and validate PKN1 for future studies focusing on AC and α-RGC specification and development.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Células Amácrinas/metabolismo , Quiasma Óptico/metabolismo , Fatores de Transcrição/metabolismo
8.
J Neurosci ; 44(18)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38514178

RESUMO

An organizational feature of neural circuits is the specificity of synaptic connections. A striking example is the direction-selective (DS) circuit of the retina. There are multiple subtypes of DS retinal ganglion cells (DSGCs) that prefer motion along one of four preferred directions. This computation is mediated by selective wiring of a single inhibitory interneuron, the starburst amacrine cell (SAC), with each DSGC subtype preferentially receiving input from a subset of SAC processes. We hypothesize that the molecular basis of this wiring is mediated in part by unique expression profiles of DSGC subtypes. To test this, we first performed paired recordings from isolated mouse retinas of both sexes to determine that postnatal day 10 (P10) represents the age at which asymmetric synapses form. Second, we performed RNA sequencing and differential expression analysis on isolated P10 ON-OFF DSGCs tuned for either nasal or ventral motion and identified candidates which may promote direction-specific wiring. We then used a conditional knock-out strategy to test the role of one candidate, the secreted synaptic organizer cerebellin-4 (Cbln4), in the development of DS tuning. Using two-photon calcium imaging, we observed a small deficit in directional tuning among ventral-preferring DSGCs lacking Cbln4, though whole-cell voltage-clamp recordings did not identify a significant change in inhibitory inputs. This suggests that Cbln4 does not function primarily via a cell-autonomous mechanism to instruct wiring of DS circuits. Nevertheless, our transcriptomic analysis identified unique candidate factors for gaining insights into the molecular mechanisms that instruct wiring specificity in the DS circuit.


Assuntos
Camundongos Endogâmicos C57BL , Retina , Células Ganglionares da Retina , Sinapses , Animais , Camundongos , Retina/metabolismo , Retina/fisiologia , Masculino , Sinapses/fisiologia , Sinapses/metabolismo , Feminino , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/fisiologia , Células Amácrinas/fisiologia , Células Amácrinas/metabolismo , Percepção de Movimento/fisiologia , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Vias Visuais/fisiologia , Vias Visuais/metabolismo
9.
Cell Rep ; 43(4): 114005, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38551961

RESUMO

The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics. Mechanistically, Pten loss accelerates the endocytic trafficking of DSCAM, FAT3, and MEGF10 off the cell membrane and into endocytic vesicles in amacrine cells. Accordingly, the vesicular proteome, a molecular signature of the cell of origin, is enriched in exocytosis, vesicle-mediated transport, and receptor internalization proteins in Pten conditional knockout (PtencKO) retinas. Wnt signaling molecules are also enriched in PtencKO retinal vesicles, and the genetic or pharmacological disruption of Wnt signaling phenocopies amacrine cell patterning defects. Pten thus controls vesicular trafficking of cell adhesion and signaling molecules to establish retinal amacrine cell mosaics.


Assuntos
Células Amácrinas , Adesão Celular , Endocitose , PTEN Fosfo-Hidrolase , Retina , Via de Sinalização Wnt , Animais , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Retina/metabolismo , Camundongos , Células Amácrinas/metabolismo , Camundongos Knockout , Transporte Proteico , Proteínas Wnt/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética
10.
Cell Mol Neurobiol ; 44(1): 19, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315298

RESUMO

Retinal vasoactive intestinal peptide amacrine cells (VIP-ACs) play an important role in various retinal light-mediated pathological processes related to different developmental ocular diseases and even mental disorders. It is important to characterize the developmental changes in VIP-ACs to further elucidate their mechanisms of circuit function. We bred VIP-Cre mice with Ai14 and Ai32 to specifically label retinal VIP-ACs. The VIP-AC soma and spine density generally increased, from postnatal day (P)0 to P35, reaching adult levels at P14 and P28, respectively. The VIP-AC soma density curve was different with the VIP-AC spine density curve. The total retinal VIP content reached a high level plateau at P14 but was decreased in adults. From P14 to P16, the resting membrane potential (RMP) became more negative, and the input resistance decreased. Cell membrane capacitance (MC) showed three peaks at P7, P12 and P16. The RMP and MC reached a stable level similar to the adult level at P18, whereas input resistance reached a stable level at P21. The percentage of sustained voltage-dependent potassium currents peaked at P16 and remained stable thereafter. The spontaneous excitatory postsynaptic current and spontaneous inhibitory postsynaptic current frequencies and amplitudes, as well as charge transfer, peaked at P12 to P16; however, there were also secondary peaks at different time points. In conclusion, we found that the second, third and fourth weeks after birth were important periods of VIP-AC development. Many developmental changes occurred around eye opening. The development of soma, dendrite and electrophysiological properties showed uneven dynamics of progression. Cell differentiation may contribute to soma development whereas the changes of different ion channels may play important role for spine development.


Assuntos
Células Amácrinas , Peptídeo Intestinal Vasoativo , Animais , Camundongos , Diferenciação Celular , Potenciais da Membrana/fisiologia , Retina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
11.
PLoS Biol ; 22(2): e3002506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363811

RESUMO

In mammals, retinal direction selectivity originates from GABAergic/cholinergic amacrine cells (ACs) specifically expressing the sox2 gene. However, the cellular diversity of GABAergic/cholinergic ACs of other vertebrate species remains largely unexplored. Here, we identified 2 morphologically and genetically distinct GABAergic/cholinergic AC types in zebrafish, a previously undescribed bhlhe22+ type and a mammalian counterpart sox2+ type. Notably, while sole sox2 disruption removed sox2+ type, the codisruption of bhlhe22 and bhlhe23 was required to remove bhlhe22+ type. Also, both types significantly differed in dendritic arbors, lamination, and soma position. Furthermore, in vivo two-photon calcium imaging and the behavior assay suggested the direction selectivity of both AC types. Nevertheless, the 2 types showed preferential responses to moving bars of different sizes. Thus, our findings provide new cellular diversity and functional characteristics of GABAergic/cholinergic ACs in the vertebrate retina.


Assuntos
Células Amácrinas , Peixe-Zebra , Animais , Células Amácrinas/metabolismo , Retina/metabolismo , Colinérgicos/metabolismo , Fatores de Transcrição/metabolismo , Mamíferos
12.
Nat Commun ; 15(1): 1819, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418467

RESUMO

Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.


Assuntos
Células Amácrinas , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Células Amácrinas/fisiologia , Cálcio , Transdução de Sinais , Dendritos/fisiologia
13.
PLoS Biol ; 22(2): e3002538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422167

RESUMO

In mammals, starburst amacrine cells are centrally involved in motion vision and a new study in PLOS Biology, by Yan and colleagues finds that zebrafish have them, too. They coexist with a second pair of starburst-like neurons, but neither appears to be strongly motion selective.


Assuntos
Células Amácrinas , Peixe-Zebra , Animais , Células Amácrinas/fisiologia , Retina/fisiologia , Mamíferos , Colinérgicos
14.
J Vis Exp ; (203)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38314798

RESUMO

Bipolar cells and horizontal cells of the vertebrate retina are the first neurons to process visual information after photons are detected by photoreceptors. They perform fundamental operations such as light adaptation, contrast sensitivity, and spatial and color opponency. A complete understanding of the precise circuitry and biochemical mechanisms that govern their behavior will advance visual neuroscience research and ophthalmological medicine. However, current preparations for examining bipolar and horizontal cells (retinal whole mounts and vertical slices) are limited in their capacity to capture the anatomy and physiology of these cells. In this work, we present a method for removing photoreceptor cell bodies from live, flatmount mouse retinas, providing enhanced access to bipolar and horizontal cells for efficient patch clamping and rapid immunolabeling. Split retinas are prepared by sandwiching an isolated mouse retina between two pieces of nitrocellulose, then gently peeling them apart. The separation splits the retina just above the outer plexiform layer to yield two pieces of nitrocellulose, one containing the photoreceptor cell bodies and another containing the remaining inner retina. Unlike vertical retina slices, the split retina preparation does not sever the dendritic processes of inner retinal neurons, allowing for recordings from bipolar and horizontal cells that integrate the contributions of gap junction-coupled networks and wide-field amacrine cells. This work demonstrates the versatility of this preparation for the study of horizontal and bipolar cells in electrophysiology, immunohistochemistry, and in situ hybridization experiments.


Assuntos
Células Amácrinas , Retina , Camundongos , Animais , Colódio , Retina/fisiologia , Células Fotorreceptoras , Vertebrados
15.
Am J Pathol ; 194(5): 796-809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395146

RESUMO

α-Synuclein (α-Syn) is a key determinator of Parkinson disease (PD) pathology, but synapse and microcircuit pathologies in the retina underlying visual dysfunction are poorly understood. Herein, histochemical and ultrastructural analyses and ophthalmologic measurements in old transgenic M83 PD model (mice aged 16 to 18 months) indicated that abnormal α-Syn aggregation in the outer plexiform layer (OPL) was associated with degeneration in the C-terminal binding protein 2 (CtBP2)+ ribbon synapses of photoreceptor terminals and protein kinase C alpha (PKCα)+ rod bipolar cell terminals, whereas α-Syn aggregates in the inner retina correlated with the reduction and degeneration of tyrosine hydroxylase- and parvalbumin-positive amacrine cells. Phosphorylated Ser129 α-synuclein expression was strikingly restricted in the OPL, with the most severe degenerations in the entire retina, including mitochondrial degeneration and loss of ribbon synapses in 16- to 18-month-old mice. These synapse- and microcircuit-specific deficits of the rod pathway at the CtBP2+ rod terminals and PKCα+ rod bipolar and amacrine cells were associated with attenuated a- and b-wave amplitudes and oscillatory potentials on the electroretinogram. They were also associated with the impairment of visual functions, including reduced contrast sensitivity and impairment of the middle range of spatial frequencies. Collectively, these findings demonstrate that α-Syn aggregates cause the synapse- and microcircuit-specific deficits of the rod pathway and the most severe damage to the OPL, providing the retinal synaptic and microcircuit basis for visual dysfunctions in PD.


Assuntos
Proteína Quinase C-alfa , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/metabolismo , Células Amácrinas/metabolismo , Proteína Quinase C-alfa/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Sinapses/metabolismo , Fatores de Transcrição/metabolismo
16.
J Fish Biol ; 104(5): 1299-1307, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308449

RESUMO

We studied the topography of retinal ganglion cells (GCs) and estimated spatial resolving power (SRP) in the pajama cardinalfish Sphaeramia nematoptera (Bleeker, 1856), a relatively small brightly colored fish inhabiting coral reefs and lagoons in the Western Pacific. S. nematoptera is an active night predator feeding on near-bottom animal plankton and benthos. DAPI staining was used to label nuclei of GCs and non-GCs in the inner plexiform and ganglion cell layers. Non-GCs were distinguished from GCs in Nissl-stained retinal wholemounts based on cell size, shape, and staining intensity. The proportion of displaced amacrine cells (DACs) varied from 15.46 ± 1.12 (visual streak [VS]) to 17.99 ± 1.06% (dorsal periphery) (mean ± S.E.M., N = 5); the respective proportions of glial cells were 6.61 ± 0.84 and 5.89 ± 0.76%. Thus, 76%-78% of cells in the ganglion cell layer and inner plexiform layer were GCs. The minimum spatial coverage of GCs (3600-4600 cells/mm2) was detected in the dorsal and ventral periphery. It gradually increased toward the central retina to form a moderate VS. The maximum GC density (11,400-12,400 cells/mm2) was registered in the central portion of the VS. No pronounced concentric retinal specializations were found. The total number of GCs ranged within 595.2-635.9 × 103. The anatomical spatial resolving power was minimum in the ventral periphery (4.91-5.53 cpd) and maximum in the central portion of the VS (8.47-9.07 cpd). The respective minimum separable angles were 0.18-0.20° and 0.11-0.12°. The relatively high spatial resolving power and presence of the VS in the pajama cardinalfish are in line with its highly visual behavior.


Assuntos
Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/fisiologia , Células Amácrinas/fisiologia , Células Amácrinas/citologia
17.
Nat Commun ; 15(1): 599, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238324

RESUMO

In early sensory systems, cell-type diversity generally increases from the periphery into the brain, resulting in a greater heterogeneity of responses to the same stimuli. Surround suppression is a canonical visual computation that begins within the retina and is found at varying levels across retinal ganglion cell types. Our results show that heterogeneity in the level of surround suppression occurs subcellularly at bipolar cell synapses. Using single-cell electrophysiology and serial block-face scanning electron microscopy, we show that two retinal ganglion cell types exhibit very different levels of surround suppression even though they receive input from the same bipolar cell types. This divergence of the bipolar cell signal occurs through synapse-specific regulation by amacrine cells at the scale of tens of microns. These findings indicate that each synapse of a single bipolar cell can carry a unique visual signal, expanding the number of possible functional channels at the earliest stages of visual processing.


Assuntos
Retina , Células Ganglionares da Retina , Animais , Camundongos , Células Ganglionares da Retina/fisiologia , Células Amácrinas/fisiologia , Sinapses/fisiologia
18.
Eye (Lond) ; 38(6): 1065-1076, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38066110

RESUMO

Amacrine cells (ACs) are the most structurally and functionally diverse neuron type in the retina. Different ACs have distinct functions, such as neuropeptide secretion and inhibitory connection. Vasoactive intestinal peptide (VIP) -ergic -ACs are retina gamma-aminobutyric acid (GABA) -ergic -ACs that were discovered long ago. They secrete VIP and form connections with bipolar cells (BCs), other ACs, and retinal ganglion cells (RGCs). They have a specific structure, density, distribution, and function. They play an important role in myopia, light stimulated responses, retinal vascular disease and other ocular diseases. Their significance in the study of refractive development and disease is increasing daily. However, a systematic review of the structure and function of retinal VIP-ACs is lacking. We discussed the detailed characteristics of VIP-ACs from every aspect across species and providing systematic knowledge base for future studies. Our review led to the main conclusion that retinal VIP-ACs develop early, and although their morphology and distribution across species are not the same, they have similar functions in a wide range of ocular diseases based on their function of secreting neuropeptides and forming inhibitory connections with other cells.


Assuntos
Células Amácrinas , Peptídeo Intestinal Vasoativo , Humanos , Retina/fisiologia , Células Ganglionares da Retina , Ácido gama-Aminobutírico
19.
J Neurosci ; 44(10)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37957014

RESUMO

Classic ON-OFF direction-selective ganglion cells (DSGCs) that encode the four cardinal directions were recently shown to also be orientation-selective. To clarify the mechanisms underlying orientation selectivity, we employed a variety of electrophysiological, optogenetic, and gene knock-out strategies to test the relative contributions of glutamate, GABA, and acetylcholine (ACh) input that are known to drive DSGCs, in male and female mouse retinas. Extracellular spike recordings revealed that DSGCs respond preferentially to either vertical or horizontal bars, those that are perpendicular to their preferred-null motion axes. By contrast, the glutamate input to all four DSGC types measured using whole-cell patch-clamp techniques was found to be tuned along the vertical axis. Tuned glutamatergic excitation was heavily reliant on type 5A bipolar cells, which appear to be electrically coupled via connexin 36 containing gap junctions to the vertically oriented processes of wide-field amacrine cells. Vertically tuned inputs are transformed by the GABAergic/cholinergic "starburst" amacrine cells (SACs), which are critical components of the direction-selective circuit, into distinct patterns of inhibition and excitation. Feed-forward SAC inhibition appears to "veto" preferred orientation glutamate excitation in dorsal/ventral (but not nasal/temporal) coding DSGCs "flipping" their orientation tuning by 90° and accounts for the apparent mismatch between glutamate input tuning and the DSGC's spiking response. Together, these results reveal how two distinct synaptic motifs interact to generate complex feature selectivity, shedding light on the intricate circuitry that underlies visual processing in the retina.


Assuntos
Retina , Células Ganglionares da Retina , Camundongos , Animais , Masculino , Feminino , Células Ganglionares da Retina/fisiologia , Retina/fisiologia , Células Amácrinas/fisiologia , Percepção Visual , Ácido Glutâmico , Estimulação Luminosa/métodos , Inibição Neural/fisiologia
20.
Nature ; 624(7991): 415-424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38092908

RESUMO

The basic plan of the retina is conserved across vertebrates, yet species differ profoundly in their visual needs1. Retinal cell types may have evolved to accommodate these varied needs, but this has not been systematically studied. Here we generated and integrated single-cell transcriptomic atlases of the retina from 17 species: humans, two non-human primates, four rodents, three ungulates, opossum, ferret, tree shrew, a bird, a reptile, a teleost fish and a lamprey. We found high molecular conservation of the six retinal cell classes (photoreceptors, horizontal cells, bipolar cells, amacrine cells, retinal ganglion cells (RGCs) and Müller glia), with transcriptomic variation across species related to evolutionary distance. Major subclasses were also conserved, whereas variation among cell types within classes or subclasses was more pronounced. However, an integrative analysis revealed that numerous cell types are shared across species, based on conserved gene expression programmes that are likely to trace back to an early ancestral vertebrate. The degree of variation among cell types increased from the outer retina (photoreceptors) to the inner retina (RGCs), suggesting that evolution acts preferentially to shape the retinal output. Finally, we identified rodent orthologues of midget RGCs, which comprise more than 80% of RGCs in the human retina, subserve high-acuity vision, and were previously believed to be restricted to primates2. By contrast, the mouse orthologues have large receptive fields and comprise around 2% of mouse RGCs. Projections of both primate and mouse orthologous types are overrepresented in the thalamus, which supplies the primary visual cortex. We suggest that midget RGCs are not primate innovations, but are descendants of evolutionarily ancient types that decreased in size and increased in number as primates evolved, thereby facilitating high visual acuity and increased cortical processing of visual information.


Assuntos
Evolução Biológica , Neurônios , Retina , Vertebrados , Visão Ocular , Animais , Humanos , Neurônios/classificação , Neurônios/citologia , Neurônios/fisiologia , Retina/citologia , Retina/fisiologia , Células Ganglionares da Retina/classificação , Análise da Expressão Gênica de Célula Única , Vertebrados/fisiologia , Visão Ocular/fisiologia , Especificidade da Espécie , Células Amácrinas/classificação , Células Fotorreceptoras/classificação , Células Ependimogliais/classificação , Células Bipolares da Retina/classificação , Percepção Visual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...