Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.194
Filtrar
1.
Front Immunol ; 15: 1306490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873594

RESUMO

Recurrent exposures to a pathogenic antigen remodel the CD8+ T cell compartment and generate a functional memory repertoire that is polyclonal and complex. At the clonotype level, the response to the conserved influenza antigen, M158-66 has been well characterized in healthy individuals, but not in patients receiving immunosuppressive therapy or with aberrant immunity, such as those with juvenile idiopathic arthritis (JIA). Here we show that patients with JIA have a reduced number of M158-66 specific RS/RA clonotypes, indicating decreased clonal richness and, as a result, have lower repertoire diversity. By using a rank-frequency approach to analyze the distribution of the repertoire, we found several characteristics of the JIA T cell repertoire to be akin to repertoires seen in healthy adults, including an amplified RS/RA-specific antigen response, representing greater clonal unevenness. Unlike mature repertoires, however, there is more fluctuation in clonotype distribution, less clonotype stability, and more variable IFNy response of the M158-66 specific RS/RA clonotypes in JIA. This indicates that functional clonal expansion is altered in patients with JIA on immunosuppressive therapies. We propose that the response to the influenza M158-66 epitope described here is a general phenomenon for JIA patients receiving immunosuppressive therapy, and that the changes in clonal richness and unevenness indicate a retarded and uneven generation of a mature immune response.


Assuntos
Artrite Juvenil , Linfócitos T CD8-Positivos , Vacinas contra Influenza , Influenza Humana , Humanos , Artrite Juvenil/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Feminino , Criança , Masculino , Adolescente , Vacinação , Células Clonais/imunologia , Pré-Escolar , Memória Imunológica , Adulto Jovem
2.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716731

RESUMO

T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.


Assuntos
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/imunologia , Uganda , Adulto , Masculino , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/genética , Feminino , Tuberculose/imunologia , Tuberculose/microbiologia , Linfócitos T/imunologia , Tuberculose Latente/imunologia , Tuberculose Latente/microbiologia , Células Clonais/imunologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Adulto Jovem , Antígenos de Histocompatibilidade Classe I
3.
Br J Cancer ; 131(1): 196-204, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750113

RESUMO

BACKGROUND: Adoptive cell therapy using tumor-infiltrating lymphocytes (TILs) has shown promising results in cancer treatment, including breast cancer. However, clonal dynamics and clinical significance of TIL expansion ex vivo remain poorly understood. METHODS: We investigated T cell receptor (TCR) repertoire changes in expanded TILs from 19 patients with breast cancer. We compared TCR repertoire of TILs at different stages of expansion, including initial (2W TILs) and rapid expansion (REP TILs), and their overlap with formalin fixed paraffin embedded (FFPE) and peripheral blood. Additionally, we examined differences in TCR repertoire between CD4+ and CD8+ REP TILs. RESULTS: In descending order of proportion, average of 60% of the top 10% clonotypes of FFPE was retained in 2W TIL (60% in TRB, 64.7% in TRA). Among the overlapped clonotypes between 2W TILs and REP TILs, 69.9% was placed in top 30% of 2W TIL. The proportion of clonotypes in 2W TIL and REP TIL showed a significant positive correlation. CD4+ and CD8+ T cells show similar results in diversity and CDR3 length. CONCLUSIONS: Our study traces the changes in TILs repertoire from FFPE to 2W TIL and REP TIL and confirmed that clonotypes with high frequencies in TILs have a high likelihood of maintaining their priority throughout culture process.


Assuntos
Neoplasias da Mama , Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Humanos , Linfócitos do Interstício Tumoral/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Pessoa de Meia-Idade , Células Clonais/imunologia , Adulto , Idoso
4.
J Virol ; 98(3): e0199523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38323813

RESUMO

Historically, antibody reactivity to pathogens and vaccine antigens has been evaluated using serological measurements of antigen-specific antibodies. However, it is difficult to evaluate all antibodies that contribute to various functions in a single assay, such as the measurement of the neutralizing antibody titer. Bulk antibody repertoire analysis using next-generation sequencing is a comprehensive method for analyzing the overall antibody response; however, it is unreliable for estimating antigen-specific antibodies due to individual variation. To address this issue, we propose a method to subtract the background signal from the repertoire of data of interest. In this study, we analyzed changes in antibody diversity and inferred the heavy-chain complementarity-determining region 3 (CDRH3) sequences of antibody clones that were selected upon influenza virus infection in a mouse model using bulk repertoire analysis. A decrease in the diversity of the antibody repertoire was observed upon viral infection, along with an increase in neutralizing antibody titers. Using kernel density estimation of sequences in a high-dimensional sequence space with background signal subtraction, we identified several clusters of CDRH3 sequences induced upon influenza virus infection. Most of these repertoires were detected more frequently in infected mice than in uninfected control mice, suggesting that infection-specific antibody sequences can be extracted using this method. Such an accurate extraction of antigen- or infection-specific repertoire information will be a useful tool for vaccine evaluation in the future. IMPORTANCE: As specific interactions between antigens and cell-surface antibodies trigger the proliferation of B-cell clones, the frequency of each antibody sequence in the samples reflects the size of each clonal population. Nevertheless, it is extremely difficult to extract antigen-specific antibody sequences from the comprehensive bulk antibody sequences obtained from blood samples due to repertoire bias influenced by exposure to dietary antigens and other infectious agents. This issue can be addressed by subtracting the background noise from the post-immunization or post-infection repertoire data. In the present study, we propose a method to quantify repertoire data from comprehensive repertoire data. This method allowed subtraction of the background repertoire, resulting in more accurate extraction of expanded antibody repertoires upon influenza virus infection. This accurate extraction of antigen- or infection-specific repertoire information is a useful tool for vaccine evaluation.


Assuntos
Anticorpos Antivirais , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Camundongos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Vacinas contra Influenza/imunologia , Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
5.
Nature ; 615(7953): 668-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890231

RESUMO

Extracellular deposition of amyloid-ß as neuritic plaques and intracellular accumulation of hyperphosphorylated, aggregated tau as neurofibrillary tangles are two of the characteristic hallmarks of Alzheimer's disease1,2. The regional progression of brain atrophy in Alzheimer's disease highly correlates with tau accumulation but not amyloid deposition3-5, and the mechanisms of tau-mediated neurodegeneration remain elusive. Innate immune responses represent a common pathway for the initiation and progression of some neurodegenerative diseases. So far, little is known about the extent or role of the adaptive immune response and its interaction with the innate immune response in the presence of amyloid-ß or tau pathology6. Here we systematically compared the immunological milieux in the brain of mice with amyloid deposition or tau aggregation and neurodegeneration. We found that mice with tauopathy but not those with amyloid deposition developed a unique innate and adaptive immune response and that depletion of microglia or T cells blocked tau-mediated neurodegeneration. Numbers of T cells, especially those of cytotoxic T cells, were markedly increased in areas with tau pathology in mice with tauopathy and in the Alzheimer's disease brain. T cell numbers correlated with the extent of neuronal loss, and the cells dynamically transformed their cellular characteristics from activated to exhausted states along with unique TCR clonal expansion. Inhibition of interferon-γ and PDCD1 signalling both significantly ameliorated brain atrophy. Our results thus reveal a tauopathy- and neurodegeneration-related immune hub involving activated microglia and T cell responses, which could serve as therapeutic targets for preventing neurodegeneration in Alzheimer's disease and primary tauopathies.


Assuntos
Encéfalo , Microglia , Emaranhados Neurofibrilares , Linfócitos T , Tauopatias , Animais , Camundongos , Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Microglia/imunologia , Microglia/metabolismo , Emaranhados Neurofibrilares/imunologia , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Proteínas tau/imunologia , Proteínas tau/metabolismo , Tauopatias/imunologia , Tauopatias/metabolismo , Tauopatias/patologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Placa Amiloide/imunologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/patologia , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Imunidade Inata
6.
Nature ; 609(7929): 998-1004, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36131022

RESUMO

Germinal centres are the engines of antibody evolution. Here, using human immunodeficiency virus (HIV) Env protein immunogen priming in rhesus monkeys followed by a long period without further immunization, we demonstrate germinal centre B (BGC) cells that last for at least 6 months. A 186-fold increase in BGC cells was present by week 10 compared with conventional immunization. Single-cell transcriptional profiling showed that both light- and dark-zone germinal centre states were sustained. Antibody somatic hypermutation of BGC cells continued to accumulate throughout the 29-week priming period, with evidence of selective pressure. Env-binding BGC cells were still 49-fold above baseline at 29 weeks, which suggests that they could remain active for even longer periods of time. High titres of HIV-neutralizing antibodies were generated after a single booster immunization. Fully glycosylated HIV trimer protein is a complex antigen, posing considerable immunodominance challenges for B cells1,2. Memory B cells generated under these long priming conditions had higher levels of antibody somatic hypermutation, and both memory B cells and antibodies were more likely to recognize non-immunodominant epitopes. Numerous BGC cell lineage phylogenies spanning more than the 6-month germinal centre period were identified, demonstrating continuous germinal centre activity and selection for at least 191 days with no further antigen exposure. A long-prime, slow-delivery (12 days) immunization approach holds promise for difficult vaccine targets and suggests that patience can have great value for tuning of germinal centres to maximize antibody responses.


Assuntos
Afinidade de Anticorpos , Linfócitos B , Movimento Celular , Células Clonais , Centro Germinativo , Anticorpos Anti-HIV , Imunização , Animais , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/genética , Afinidade de Anticorpos/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Clonais/citologia , Células Clonais/imunologia , Epitopos de Linfócito B/imunologia , Perfilação da Expressão Gênica , Centro Germinativo/citologia , Centro Germinativo/imunologia , Anticorpos Anti-HIV/genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Humanos , Imunização Secundária , Macaca mulatta/imunologia , Macaca mulatta/virologia , Células B de Memória/citologia , Células B de Memória/imunologia , Análise de Célula Única , Hipermutação Somática de Imunoglobulina/genética , Hipermutação Somática de Imunoglobulina/imunologia , Fatores de Tempo , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
7.
Methods Mol Biol ; 2453: 7-42, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622318

RESUMO

Immunoglobulin (IG) clonality assessment is a widely used supplementary test for the diagnosis of suspected lymphoid malignancies. The specific rearrangements of the immunoglobulin (IG) heavy and light chain genes act as a unique hallmark of a B-cell lymphoma, a feature that is used in clonality assessment. The widely used BIOMED-2/EuroClonality IG clonality assay, visualized by GeneScanning or heteroduplex analysis, has an unprecedented high detection rate because of the complementarity of this approach. However, the BIOMED-2/EuroClonality clonality assays have been developed for the assessment of specimens with optimal DNA quality. Further improvements for the assessment of samples with suboptimal DNA quality, such as from formalin-fixed paraffin-embedded (FFPE) specimens or specimens with a limited tumor burden, are required. The EuroClonality-NGS Working Group recently developed a next-generation sequencing (NGS)-based clonality assay for the detection of the IG heavy and kappa light chain rearrangements, using the same complementary approach as in the conventional assay. By employing next-generation sequencing, both the sensitivity and specificity of the clonality assay have increased, which not only is very useful for diagnostic clonality testing but also allows robust comparison of clonality patterns in a patient with multiple lymphoma's that have suboptimal DNA quality. Here, we describe the protocols for IG-NGS clonality assessment that are compatible for Ion Torrent and Illumina sequencing platforms including pre-analytical DNA isolation, the analytical phase, and the post-analytical data analysis.


Assuntos
Rearranjo Gênico , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala , Linfoma de Células B , Análise de Sequência de DNA , Células Clonais/imunologia , DNA/genética , DNA/isolamento & purificação , Rearranjo Gênico/genética , Rearranjo Gênico/imunologia , Genes de Imunoglobulinas/genética , Genes de Imunoglobulinas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Linfoma de Células B/diagnóstico , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Análise de Sequência de DNA/métodos
8.
Circ Res ; 130(10): 1510-1530, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35430876

RESUMO

BACKGROUND: Coronary artery disease is an incurable, life-threatening disease that was once considered primarily a disorder of lipid deposition. Coronary artery disease is now also characterized by chronic inflammation' notable for the buildup of atherosclerotic plaques containing immune cells in various states of activation and differentiation. Understanding how these immune cells contribute to disease progression may lead to the development of novel therapeutic strategies. METHODS: We used single-cell technology and in vitro assays to interrogate the immune microenvironment of human coronary atherosclerotic plaque at different stages of maturity. RESULTS: In addition to macrophages, we found a high proportion of αß T cells in the coronary plaques. Most of these T cells lack high expression of CCR7 and L-selectin, indicating that they are primarily antigen-experienced memory cells. Notably, nearly one-third of these cells express the HLA-DRA surface marker, signifying activation through their TCRs (T-cell receptors). Consistent with this, TCR repertoire analysis confirmed the presence of activated αß T cells (CD4

Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Linfócitos T , Antígenos , Células Clonais/imunologia , Doença da Artéria Coronariana/imunologia , Células Endoteliais , Epitopos , Cadeias alfa de HLA-DR , Humanos , Ativação Linfocitária , Placa Aterosclerótica/imunologia , Linfócitos T/imunologia
9.
Nature ; 602(7895): 156-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847567

RESUMO

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/imunologia , Células-Tronco/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Autorrenovação Celular , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Feminino , Glucose-6-Fosfatase/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/patologia , Linfonodos/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Transplante de Células-Tronco , Células-Tronco/imunologia , Células-Tronco/metabolismo , Transcriptoma
11.
Lab Invest ; 102(2): 172-184, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782726

RESUMO

The phenotype of glioma-initiating cells (GIC) is modulated by cell-intrinsic and cell-extrinsic factors. Phenotypic heterogeneity and plasticity of GIC is an important limitation to therapeutic approaches targeting cancer stem cells. Plasticity also presents a challenge to the identification, isolation, and propagation of purified cancer stem cells. Here we use a barcode labelling approach of GIC to generate clonal populations over a number of passages, in combination with phenotyping using the established stem cell markers CD133, CD15, CD44, and A2B5. Using two cell lines derived from isocitrate dehydrogenase (IDH)-wildtype glioblastoma, we identify a remarkable heterogeneity of the phenotypes between the cell lines. During passaging, clonal expansion manifests as the emergence of a limited number of barcoded clones and a decrease in the overall number of clones. Dual-labelled GIC are capable of forming traceable clonal populations which emerge after as few as two passages from mixed cultures and through analyses of similarity of relative proportions of 16 surface markers we were able to pinpoint the fate of such populations. By generating tumour organoids we observed a remarkable persistence of dominant clones but also a significant plasticity of stemness marker expression. Our study presents an experimental approach to simultaneously barcode and phenotype glioma-initiating cells to assess their functional properties, for example to screen newly established GIC for tumour-specific therapeutic vulnerabilities.


Assuntos
Antígenos CD/imunologia , Neoplasias Encefálicas/imunologia , Glioma/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Antígeno AC133/imunologia , Antígeno AC133/metabolismo , Antígenos CD/metabolismo , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Citometria de Fluxo , Glioma/metabolismo , Glioma/patologia , Humanos , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Imunofenotipagem , Antígenos CD15/imunologia , Antígenos CD15/metabolismo , Microscopia Confocal , Células-Tronco Neoplásicas/classificação , Células-Tronco Neoplásicas/metabolismo
12.
Nature ; 602(7895): 148-155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34875673

RESUMO

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen1,2. Since the outbreak of the ongoing COVID-19 pandemic, a key question has focused on which SARS-CoV-2-specific T cells stimulated during acute infection give rise to long-lived memory T cells3. Here, using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor sequencing, we longitudinally characterized individual SARS-CoV-2-specific CD8+ T cells of patients with COVID-19 from acute infection to 1 year into recovery and found a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting 1 year after acute infection express CD45RA, IL-7 receptor-α and T cell factor 1, but they maintain low expression of CCR7, thus resembling CD45RA+ effector memory T cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones that give rise to long-lived cells, whereas prolonged proliferation and mechanistic target of rapamycin signalling are associated with clonal disappearance from the blood. Collectively, we describe a transcriptional signature that marks long-lived, circulating human memory CD8+ T cells following an acute viral infection.


Assuntos
Antígenos Virais/imunologia , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , Células T de Memória/imunologia , Células T de Memória/metabolismo , SARS-CoV-2/imunologia , Doença Aguda , COVID-19/virologia , Proliferação de Células , Células Clonais/citologia , Células Clonais/imunologia , Humanos , Interferons/imunologia , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Antígenos Comuns de Leucócito/metabolismo , Estudos Longitudinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR7/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fatores de Tempo , Transcriptoma
13.
Nat Commun ; 12(1): 6687, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795279

RESUMO

Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune disease. Follicular T cells are central regulators of germinal centers, although their contribution to autoantibody-mediated disease remains unclear. Here we perform single cell RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased TCRαß repertoires at single cell resolution. A minority of clonotypes are preferentially shared amongst autoimmune follicular T cells and clonotypic expansion is associated with differential gene signatures in autoimmune disease. Antigen prediction using algorithmic and machine learning approaches indicates convergence towards shared specificities between non-autoimmune and autoimmune follicular T cells. However, differential autoimmune transcriptional signatures are preserved even amongst follicular T cells with shared predicted specificities. These results demonstrate that follicular T cells are phenotypically distinct in B cell-driven autoimmune disease, providing potential therapeutic targets to modulate autoantibody development.


Assuntos
Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Perfilação da Expressão Gênica/métodos , Centro Germinativo/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/metabolismo , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Confocal , RNA-Seq/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Célula Única/métodos , Linfócitos T Auxiliares-Indutores/metabolismo
14.
J Immunol ; 207(4): 1180-1193, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34341170

RESUMO

Hepatitis C virus (HCV) infection resolves spontaneously in ∼25% of acutely infected humans where viral clearance is mediated primarily by virus-specific CD8+ T cells. Previous cross-sectional analysis of the CD8+ TCR repertoire targeting two immunodominant HCV epitopes reported widespread use of public TCRs shared by different subjects, irrespective of infection outcome. However, little is known about the evolution of the public TCR repertoire during acute HCV and whether cross-reactivity to other Ags can influence infectious outcome. In this article, we analyzed the CD8+ TCR repertoire specific to the immunodominant and cross-reactive HLA-A2-restricted nonstructural 3-1073 epitope during acute HCV in humans progressing to either spontaneous resolution or chronic infection and at ∼1 y after viral clearance. TCR repertoire diversity was comparable among all groups with preferential usage of the TCR-ß V04 and V06 gene families. We identified a set of 13 public clonotypes in HCV-infected humans independent of infection outcome. Six public clonotypes used the V04 gene family. Several public clonotypes were long-lived in resolvers and expanded on reinfection. By mining publicly available data, we identified several low-frequency CDR3 sequences in the HCV-specific repertoire matching human TCRs specific for other HLA-A2-restricted epitopes from melanoma, CMV, influenza A, EBV, and yellow fever viruses, but they were of low frequency and limited cross-reactivity. In conclusion, we identified 13 new public human CD8+ TCR clonotypes unique to HCV that expanded during acute infection and reinfection. The low frequency of cross-reactive TCRs suggests that they are not major determinants of infectious outcome.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Reinfecção/imunologia , Células Clonais/imunologia , Estudos Transversais , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Humanos , Epitopos Imunodominantes/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia
15.
JCI Insight ; 6(13)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34236054

RESUMO

TCR repertoire diversification constitutes a foundation for successful immune reconstitution after allogeneic hematopoietic cell transplantation (allo-HCT). Deep TCR Vß sequencing of 135 serial specimens from a cohort of 35 allo-HCT recipients/donors was performed to dissect posttransplant TCR architecture and dynamics. Paired analysis of clonotypic repertoires showed a minimal overlap with donor expansions. Rarefied and hyperexpanded clonotypic patterns were hallmarks of T cell reconstitution and influenced clinical outcomes. Donor and pretransplant TCR diversity as well as divergence of class I human leukocyte antigen genotypes were major predictors of recipient TCR repertoire recovery. Complementary determining region 3-based specificity spectrum analysis indicated a predominant expansion of pathogen- and tumor-associated clonotypes in the late post-allo-HCT phase, while autoreactive clones were more expanded in the case of graft-versus-host disease occurrence. These findings shed light on post-allo-HCT adaptive immune reconstitution processes and possibly help in tracking alloreactive responses.


Assuntos
Imunidade Adaptativa , Regiões Determinantes de Complementaridade/imunologia , Doença Enxerto-Hospedeiro/imunologia , Antígenos HLA/imunologia , Transplante de Células-Tronco Hematopoéticas , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Células Clonais/imunologia , Epitopos , Perfil Genético , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Reconstituição Imune , Receptores de Antígenos de Linfócitos T/imunologia , Análise de Sequência de Proteína , Transplante Homólogo/efeitos adversos , Transplante Homólogo/métodos
16.
J Immunol ; 207(2): 371-375, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233911

RESUMO

The repertoire of Abs is generated by genomic rearrangements during B cell differentiation. Although V(D)J rearrangements lead to repertoires mostly different between individuals, recent studies have shown that they contain a substantial fraction of overrepresented and shared "public" clones. We previously reported a strong public IgHµ clonotypic response against the rhabdovirus viral hemorrhagic septicemia virus in a teleost fish. In this study, we identified an IgL chain associated with this public response that allowed us to characterize its functionality. We show that this public Ab response has a potent neutralizing capacity that is typically associated with host protection during rhabdovirus infections. We also demonstrate that the public response is not restricted to a particular trout isogenic line but expressed in multiple genetic backgrounds and may be used as a marker of successful vaccination. Our work reveals that public B cell responses producing generic Abs constitute a mechanism of protection against infection conserved across vertebrates.


Assuntos
Formação de Anticorpos/imunologia , Peixes/imunologia , Mamíferos/imunologia , Animais , Linfócitos B/imunologia , Células Clonais/imunologia , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/imunologia , Recombinação V(D)J/imunologia , Vacinação/métodos
17.
Nature ; 596(7870): 109-113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34182569

RESUMO

SARS-CoV-2 mRNA-based vaccines are about 95% effective in preventing COVID-191-5. The dynamics of antibody-secreting plasmablasts and germinal centre B cells induced by these vaccines in humans remain unclear. Here we examined antigen-specific B cell responses in peripheral blood (n = 41) and draining lymph nodes in 14 individuals who had received 2 doses of BNT162b2, an mRNA-based vaccine that encodes the full-length SARS-CoV-2 spike (S) gene1. Circulating IgG- and IgA-secreting plasmablasts that target the S protein peaked one week after the second immunization and then declined, becoming undetectable three weeks later. These plasmablast responses preceded maximal levels of serum anti-S binding and neutralizing antibodies to an early circulating SARS-CoV-2 strain as well as emerging variants, especially in individuals who had previously been infected with SARS-CoV-2 (who produced the most robust serological responses). By examining fine needle aspirates of draining axillary lymph nodes, we identified germinal centre B cells that bound S protein in all participants who were sampled after primary immunization. High frequencies of S-binding germinal centre B cells and plasmablasts were sustained in these draining lymph nodes for at least 12 weeks after the booster immunization. S-binding monoclonal antibodies derived from germinal centre B cells predominantly targeted the receptor-binding domain of the S protein, and fewer clones bound to the N-terminal domain or to epitopes shared with the S proteins of the human betacoronaviruses OC43 and HKU1. These latter cross-reactive B cell clones had higher levels of somatic hypermutation as compared to those that recognized only the SARS-CoV-2 S protein, which suggests a memory B cell origin. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a persistent germinal centre B cell response, which enables the generation of robust humoral immunity.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , Plasmócitos/imunologia , Vacinas Sintéticas/imunologia , Adulto , Idoso , Animais , Anticorpos Antivirais/imunologia , Vacina BNT162 , COVID-19/prevenção & controle , Chlorocebus aethiops , Células Clonais/citologia , Células Clonais/imunologia , Centro Germinativo/citologia , Voluntários Saudáveis , Humanos , Pessoa de Meia-Idade , Plasmócitos/citologia , SARS-CoV-2/imunologia , Fatores de Tempo , Células Vero , Vacinas de mRNA
18.
Clin Exp Immunol ; 205(3): 363-378, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34061349

RESUMO

Since December 2019, Coronavirus disease-19 (COVID-19) has spread rapidly throughout the world, leading to a global effort to develop vaccines and treatments. Despite extensive progress, there remains a need for treatments to bolster the immune responses in infected immunocompromised individuals, such as cancer patients who recently underwent a haematopoietic stem cell transplantation. Immunological protection against COVID-19 is mediated by both short-lived neutralizing antibodies and long-lasting virus-reactive T cells. Therefore, we propose that T cell therapy may augment efficacy of current treatments. For the greatest efficacy with minimal adverse effects, it is important that any cellular therapy is designed to be as specific and directed as possible. Here, we identify T cells from COVID-19 patients with a potentially protective response to two major antigens of the SARS-CoV-2 virus, Spike and Nucleocapsid protein. By generating clones of highly virus-reactive CD4+ T cells, we were able to confirm a set of nine immunodominant epitopes and characterize T cell responses against these. Accordingly, the sensitivity of T cell clones for their specific epitope, as well as the extent and focus of their cytokine response was examined. Moreover, using an advanced T cell receptor (TCR) sequencing approach, we determined the paired TCR-αß sequences of clones of interest. While these data on a limited population require further expansion for universal application, the results presented here form a crucial first step towards TCR-transgenic CD4+ T cell therapy of COVID-19.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , COVID-19/imunologia , COVID-19/terapia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , COVID-19/virologia , Células Clonais/imunologia , Células Clonais/virologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/genética , Citocinas/biossíntese , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Imunização Passiva , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
19.
J Mol Diagn ; 23(9): 1105-1115, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34186174

RESUMO

Ig gene (IG) clonality analysis has an important role in the distinction of benign and malignant B-cell lymphoid proliferations and is mostly performed with the conventional EuroClonality/BIOMED-2 multiplex PCR protocol and GeneScan fragment size analysis. Recently, the EuroClonality-NGS Working Group developed a method for next-generation sequencing (NGS)-based IG clonality analysis. Herein, we report the results of an international multicenter biological validation of this novel method compared with the gold standard EuroClonality/BIOMED-2 protocol, based on 209 specimens of reactive and neoplastic lymphoproliferations. NGS-based IG clonality analysis showed a high interlaboratory concordance (99%) and high concordance with conventional clonality analysis (98%) for the molecular conclusion. Detailed analysis of the individual IG heavy chain and kappa light chain targets showed that NGS-based clonality analysis was more often able to detect a clonal rearrangement or yield an interpretable result. NGS-based and conventional clonality analysis detected a clone in 96% and 95% of B-cell neoplasms, respectively, and all but one of the reactive cases were scored polyclonal. We conclude that NGS-based IG clonality analysis performs comparable to conventional clonality analysis. We provide critical parameters for interpretation and discuss a first step toward a quantitative scoring approach for NGS clonality results. Considering the advantages of NGS-based clonality analysis, including its high sensitivity and possibilities for accurate clonal comparison, this supports implementation in diagnostic practice.


Assuntos
Linfócitos B/imunologia , Células Clonais/imunologia , Rearranjo Gênico , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias kappa de Imunoglobulina/genética , Linfoma de Células B/genética , Linfoma Folicular/genética , Confiabilidade dos Dados , Humanos , Reação em Cadeia da Polimerase Multiplex/métodos , Fenótipo , Sensibilidade e Especificidade
20.
J Mol Diagn ; 23(9): 1097-1104, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34020040

RESUMO

Clonality assessment of the Ig heavy- and light-chain genes (IGH and IGK) using GeneScan analysis is an important supplemental assay in diagnostic testing for lymphoma. Occasionally cases with an IGK rearrangement pattern that cannot readily be assigned to a monoclonal lymphoma are encountered, whereas the occurrence of biclonal lymphomas is rare, and the result of the IGH locus of these cases is in line with monoclonality. Three such ambiguous cases were assessed for clonality using next-generation sequencing. Information on the sequences of the rearrangements, combined with knowledge of the complex organization of the IGK locus, pointed to two explanations that can attribute seemingly biclonal IGK rearrangements to a single clone. In two cases, this explanation involved inversion rearrangements on the IGK locus, whereas in the third case, the cross-reactivity of primers generated an additional clonal product. In conclusion, next-generation sequencing-based clonality assessment allows for the detection of both inversion rearrangements and the cross-reactivity of primers, and can therefore facilitate the interpretation of cases of lymphoma with complex IGK rearrangement patterns.


Assuntos
Linfócitos B/imunologia , Células Clonais/imunologia , Rearranjo Gênico , Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cadeias kappa de Imunoglobulina/genética , Linfoma de Células B/genética , Linfoma Folicular/genética , Loci Gênicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Íntrons , Fenótipo , Inversão de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...