Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.443
Filtrar
1.
Colloids Surf B Biointerfaces ; 240: 113988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810467

RESUMO

Confronted with the profound threat of cardiovascular diseases to health, vascular tissue engineering presents potential beyond the limitations of autologous and allogeneic grafts, offering a promising solution. This study undertakes an initial exploration into the impact of a natural active protein, elastin, on vascular cell behavior, by incorporating with polycaprolactone to prepare fibrous tissue engineering scaffold. The results reveal that elastin serves to foster endothelial cell adhesion and proliferation, suppress smooth muscle cell proliferation, and induce macrophage polarization. Furthermore, the incorporation of elastin contributes to heightened scaffold strength, compliance, and elongation, concomitantly lowering the elastic modulus. Subsequently, a bilayer oriented polycaprolactone (PCL) scaffold infused with elastin is proposed. This design draws inspiration from the cellular arrangement of native blood vessels, leveraging oriented fibers to guide cell orientation. The resulting fiber scaffold exhibits commendable mechanical properties and cell infiltration capacity, imparting valuable insights for the rapid endothelialization of vascular scaffolds.


Assuntos
Adesão Celular , Proliferação de Células , Nanofibras , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Nanofibras/química , Poliésteres/química , Poliésteres/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Adesão Celular/efeitos dos fármacos , Animais , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Elastina/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Camundongos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/citologia
2.
Tissue Eng Part C Methods ; 30(5): 229-237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38568845

RESUMO

Modeling organ-blood barriers through the inclusion of microvessel networks within in vitro tissue models could lead to more physiologically accurate results, especially since organ-blood barriers are crucial to the normal function, drug transport, and disease states of vascularized organs. Microvessel networks are difficult to form, since they push the practical limits of most fabrication methods, and it is difficult to coax vascular cells to self-assemble into structures larger than capillaries. Here, we present a method for rapidly forming networks of microvessel-like structures using sacrificial alginate structures. Specifically, we encapsulated endothelial cells within short alginate threads, and then embedded them in collagen gel. Following enzymatic degradation of the alginate, the collagen gel contained a network of hollow channels seeded with cells, all surrounding a perfusable central channel. This method uses a 3D-printed coaxial extruder and syringe pumps to generate short threads in a way that is repeatable and easily transferrable to other labs. The cell-laden, sacrificial alginate threads can be frozen after fabrication and thawed before embedding without significant loss of cell viability. The ability to freeze the threads enables future scale-up and ease of use. Within millifluidic devices that restrict access to media, the threads enhance cell survival under static conditions. These results indicate the potential for use of this method in a range of tissue engineering applications.


Assuntos
Alginatos , Microvasos , Engenharia Tecidual , Alginatos/química , Microvasos/citologia , Humanos , Engenharia Tecidual/métodos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Alicerces Teciduais/química , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Sobrevivência Celular , Animais , Colágeno/química
3.
Stem Cell Rev Rep ; 20(5): 1353-1356, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38492134

RESUMO

Addressing the challenges in managing ischemic tissue repair and remodelling remains a prominent clinical concern. Current research is heavily concentrated on identifying innovative cell-based therapies with the potential to enhance revascularization in patients affected by these diseases. We have previously developed and validated a manufacturing process for human umbilical cord mesenchymal stromal cells (UC-MSCs)-based cell therapy medicinal product, according to Good Manufacturing Practices. In this study, we demonstrate that these UC-MSCs enhance the proliferation and migration of endothelial cells and the formation of capillary structures. Moreover, UC-MSCs and endothelial cells interact, allowing UC-MSCs to acquire a perivascular cell phenotype and consequently provide direct support to the newly formed vascular network. This characterization of the proangiogenic properties of this UC-MSCs based-cell therapy medicinal product is an essential step for its therapeutic assessment in the clinical context of vascular regeneration.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Cordão Umbilical , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/citologia , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Cultivadas , Diferenciação Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo
4.
Macromol Biosci ; 24(5): e2300369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38134246

RESUMO

Advances in the development of vascular substitutes for small-sized arteries are ongoing because the present grafts do not entirely meet the requirements of native equivalents and are suboptimal in clinical performance. This study aims to develop a tri-layered vascular construct mimicking natural tissue using polyester blends and to investigate its endothelization through in vitro studies as a potential small-caliber vascular graft. The innermost layer is obtained by dip coating as a tubular porous film with a lumen diameter of 3 mm and a pore size of ≤8 µm. Circumferentially aligned electrospun fiber (diameter 100-800 nm) with a deviation angle of 15° are deposited over the porous film forming the intermediate layer. The random electrospun fibers (diameter 100-1100 nm) deviating at different angles are wrapped as the outermost layer. The mechanical properties of the tri-layered vascular construct are determined to be 44.80 ± 14.80 MPa for Young's modulus and 4.25 ± 0.75 MPa for ultimate tensile strength. MTS and cell behavior studies show that the isolated human umbilical cord vein endothelial cells proliferate and line the lumen of the vascular substitute. The vascular construct developed, with its biomimetic architecture, mechanical features, size, and endothelization, can be tested with in vivo studies.


Assuntos
Prótese Vascular , Células Endoteliais da Veia Umbilical Humana , Poliésteres , Humanos , Células Endoteliais da Veia Umbilical Humana/citologia , Poliésteres/química , Poliésteres/farmacologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Teste de Materiais , Resistência à Tração , Proliferação de Células/efeitos dos fármacos , Porosidade
5.
Biophys J ; 122(17): 3413-3424, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37496269

RESUMO

Mechanical stresses generated at the cell-cell level and cell-substrate level have been suggested to be important in a host of physiological and pathological processes. However, the influence various chemical compounds have on the mechanical stresses mentioned above is poorly understood, hindering the discovery of novel therapeutics, and representing a barrier in the field. To overcome this barrier, we implemented two approaches: 1) monolayer boundary predictor and 2) discretized window predictor utilizing either stepwise linear regression or quadratic support vector machine machine learning model to predict the dose-dependent response of tractions and intercellular stresses to chemical perturbation. We used experimental traction and intercellular stress data gathered from samples subject to 0.2 or 2 µg/mL drug concentrations along with cell morphological properties extracted from the bright-field images as predictors to train our model. To demonstrate the predictive capability of our machine learning models, we predicted tractions and intercellular stresses in response to 0 and 1 µg/mL drug concentrations which were not utilized in the training sets. Results revealed the discretized window predictor trained just with four samples (292 images) to best predict both intercellular stresses and tractions using the quadratic support vector machine and stepwise linear regression models, respectively, for the unseen sample images.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Aprendizado de Máquina , Estresse Mecânico , Máquina de Vetores de Suporte , Modelos Lineares , Mecanotransdução Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células Cultivadas , Colágeno Tipo I/farmacologia , Chalcona/farmacologia , Imagem com Lapso de Tempo
6.
Genes Genomics ; 45(4): 413-427, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36445571

RESUMO

BACKGROUND: The retention rate in autologous fat grafting is an increasing concern for surgeons and patients. Our previous research verified that thymosin beta 4 (Tß4) positively affected fat survival, while the mechanism was unknown. The endothelial cells (ECs) and exosomes derived from adipose-derived stem cells (ADSCs) were regarded to play a critical role in fat transplantation. OBJECTIVE: This study aimed to evaluate the effect of exosomes derived from Tß4-treated ADSCs on EC proliferation and to identify the exosomal microRNA (miRNA) profile compared with the Tß4-untreated group. Additionally, this research intended to recognize the related molecules and signaling pathways in the Tß4-treated group with potential roles in fat transplants. METHODS: ADSCs were collected from patients who underwent liposuction surgery. Depending on whether the medium was supplemented with exogenous Tß4 or not, exosomes derived from cultured ADSCs were divided into the Tß4-Exos group and Con-Exos group. Exosome uptake and cell counting kit-8 (CCK-8) assays assessed the influence of Tß4-Exos on EC proliferation. The exosomal miRNAs of the two groups were analyzed by next-generation sequencing. With the criteria at the |log2 (fold change)| ≥ 1 and p-value < 0.05, up-regulated and down-regulated differentially expressed miRNAs (DEMs) were obtained. Prediction databases were used to predict the downstream mRNAs for DEMs. And then, overlapping genes for the up-regulated DEMs and the down-regulated were screened out, followed by enrichment analysis, protein-protein interaction network construction, and the gene cluster and hub gene identification. RESULTS: ADSCs were obtained from four female patients. The exosome uptake and CCK-8 assays showed that the Tß4-Exos could increase cell growth rate compared with the control group (DMEM-H + PBS). In Tß4-Exos and Con-Exos groups, 2651 exosomal miRNAs were recognized, with 80 up-regulated and 99 down-regulated DEMs according to the criteria. After the prediction, 621 overlapping genes for the up-regulated and 572 for the down-regulated DEMs were screened. The subsequent bioinformatics analysis found specific molecules and pathways related to the positive effect on fat survival. CONCLUSIONS: The exosomes derived from Tß4-treated ADSCs probably positively affect EC proliferation. Compared with the Con-Exos group, several exosomal DEMs, genes, and pathways were distinguished. These findings of this exploratory study provide the potential direction for future in-depth research on fat grafting.


Assuntos
Tecido Adiposo , Exossomos , Células-Tronco , Timosina , Transplante Autólogo , Adulto , Feminino , Humanos , Adulto Jovem , Tecido Adiposo/citologia , Tecido Adiposo/transplante , Proliferação de Células , Análise por Conglomerados , Exossomos/química , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , MicroRNAs/análise , MicroRNAs/genética , Ligação Proteica , Mapas de Interação de Proteínas , Análise de Sequência de RNA , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Timosina/farmacologia
7.
Stem Cell Res Ther ; 13(1): 327, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851415

RESUMO

BACKGROUND: Angiogenesis is required in many physiological conditions, including bone regeneration, wound healing, and tissue regeneration. Mesenchymal stem cells-derived extracellular matrix (MSCs-ECM) could guide intricate cellular and tissue processes such as homeostasis, healing and regeneration. METHODS: The purpose of this study is to explore the effect and mechanism of ECM derived from decellularized Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) on endothelial cell viability and angiogenesis. The human umbilical vein endothelial cells (HUVECs) were pretreated with WJ-MSCs ECM for 2d/7d/14d, respectively. After pretreatment, the angiogenesis ability of HUVECs was detected. RESULTS: In this study, we found for the first time that WJ-MSCs ECM could improve the angiogenesis ability of HUVECs with a time-dependent manner in vitro. Mechanically, WJ-MSCs ECM activated the focal adhesion kinase (FAK)/P38 signaling pathway via integrin αVß3, which further promoted the expression of the cellular (c)-Myc. Further, c-Myc increased histone acetylation levels of the vascular endothelial growth factor (VEGF) promoter by recruiting P300, which ultimately promoting VEGF expression. CONCLUSIONS: ECM derived from Wharton's Jelly-derived mesenchymal stem cells promotes angiogenesis via integrin αVß3/c-Myc/P300/VEGF. This study is expected to provide a new approach to promote angiogenesis in bone and tissue regeneration.


Assuntos
Proteína p300 Associada a E1A , Integrina alfaVbeta3 , Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Geleia de Wharton , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Matriz Extracelular/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/citologia , Geleia de Wharton/metabolismo
8.
Biomed Res Int ; 2022: 1585840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757476

RESUMO

Background: The coupled vascularization and bone remodeling are key steps during bone healing, during which the cross-talk between mesenchymal stem cells (MSCs) and endothelial cells plays vital roles. Evidence indicates the well-characterized neuropeptide Calcitonin Gene-Related Peptide-α (CGRP) is proven to play an important role during bone regeneration. However, the regulatory effects of αCGRP on angiogenesis and osteogenesis, as well as underlying cellular and molecular mechanisms, remain unclear. Aim: The present study was performed to verify the availability of the CGRP for osteogenic capacity in MSCs and explore its potential underlying molecular mechanism. After that, the promoted angiogenic effect of CGRP as well as its underlying mechanisms was studied. Methods and Results: The results showed that CGRP could significantly increase the cyclic adenosine monophosphate (cAMP) level and promote the osteogenesis ability of MSCs via cAMP/PKA signaling pathway. Direct exposure to CGRP increased nitric oxide synthase expression, the release of NO, tube formation, and wound healing of human umbilical vein endothelial cells (HUVEC). The CGRP-treated MSCs were observed with high expression levels of angiogenic factors, such as bFGF and VEGF-α; the conditioned medium derived from CGRP-treated MSCs was also able to promote tube formation and transmembrane migration of HUVECs. Conclusion: These findings demonstrate the coregulated angiogenesis and osteogenesis effects of CGRP, especially for its regulation effects on the cross-talk between mesenchymal stem cells and endothelial cells.


Assuntos
Comunicação Celular , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Osteogênese , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica
9.
Biochem Pharmacol ; 201: 115069, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525325

RESUMO

We could previously show that thromboxane A2 receptor (TP) activation inhibits the angiogenic capacity of human endothelial cells, but the underlying mechanisms remained unclear. Therefore, the aim of this study was to elucidate TP signal transduction pathways relevant to angiogenic sprouting of human endothelial cells. To clarify this matter, we used RNAi-mediated gene silencing as well as pharmacological inhibition of potential TP downstream targets in human umbilical vein endothelial cells (HUVEC) and VEGF-induced angiogenic sprouting of HUVEC spheroids in vitro as a functional read-out. In this experimental set-up, the TP agonist U-46619 completely blocked VEGF-induced angiogenic sprouting of HUVEC spheroids. Moreover, in live-cell analyses TP activation induced endothelial cell contraction, sprout retraction as well as endothelial cell tension and focal adhesion dysregulation of HUVEC. These effects were reversed by pharmacological TP inhibition or TP knockdown. Moreover, we identified a TP-Gα13-RhoA/C-ROCK-LIMK2-dependent signal transduction pathway to be relevant for U-46619-induced inhibition of VEGF-mediated HUVEC sprouting. In line with these results, U-46619-mediated TP activation potently induced RhoA and RhoC activity in live HUVEC as measured by FRET biosensors. Interestingly, pharmacological inhibition of ROCK and LIMK2 also normalized U-46619-induced endothelial cell tension and focal adhesion dysregulation of HUVEC. In summary, our work reveals mechanisms by which the TP may disturb angiogenic endothelial function in disease states associated with sustained endothelial TP activation.


Assuntos
Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Células Endoteliais da Veia Umbilical Humana , Quinases Lim , Receptores de Tromboxano A2 e Prostaglandina H2 , Proteína rhoA de Ligação ao GTP , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinases Lim/metabolismo , Neovascularização Fisiológica , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína de Ligação a GTP rhoC
10.
J Mol Cell Biol ; 14(3)2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35311970

RESUMO

The nuclear envelope comprises the outer nuclear membrane, inner nuclear membrane (INM), and nucleopore. Although ∼60 INM proteins have been identified, only a few of them have been well characterized, revealing their crucial roles. Our group focused on the INM protein transmembrane protein 201 (TMEM201), whose role in cellular function remains to be defined. In this study, we investigated the role of TMEM201 in endothelial cell migration and angiogenesis. Depletion of TMEM201 expression by short hairpin RNA-mediated interference impeded human umbilical vein endothelial cell (HUVEC) angiogenic behavior in tube formation and fibrin gel bead sprouting assays. Meanwhile, TMEM201-deficient HUVECs exhibited impaired migration ability. We next explored the underlying mechanism and found that the N-terminal of TMEM201 interacted with the linker of nucleoskeleton and cytoskeleton complex and was required for regulating endothelial cell migration and angiogenesis. These in vitro findings were further confirmed by using in vivo models. In Tmem201-knockout mice, retinal vessel development was arrested and aortic ring sprouting was defective. In addition, loss of tmem201 impaired zebrafish intersegmental vessel development. In summary, TMEM201 was shown to regulate endothelial cell migration and control the process of angiogenesis. This study is the first to reveal the role of INM proteins in the vascular system and angiogenesis.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Proteínas de Membrana , Neovascularização Fisiológica , Membrana Nuclear , Proteínas Nucleares , Animais , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas de Membrana/genética , Camundongos , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Peixe-Zebra/metabolismo
11.
BMC Res Notes ; 15(1): 31, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35144666

RESUMO

OBJECTIVE: The endothelial cells overexpress the adhesion molecules in the leukocyte diapedesis pathway, developing vessel subendothelial molecular events. In this study, miR-194 and miR-27a were predicted and investigated on the expression of adhesion molecules in HUVEC cells. The SELE, SELP, and JAM-B adhesion molecules involved in the leukocyte tethering were predicted on the GO-enriched gene network. Following transfection of PEI-miRNA particles into HUVEC cells, the SELE, SELP, and JAM-B gene expression levels were evaluated by real-time qPCR. Furthermore, the monocyte-endothelial adhesion was performed using adhesion assay kit. RESULTS: In agreement with the prediction results, the cellular data showed that miR-27a and miR-194 decrease significantly the SELP and JAM-B expression levels in HUVECs (P < 0.05). Moreover, both the miRNAs suppressed the monocyte adhesion to endothelial cells. Since the miR-27a inhibited significantly the monocyte-endothelial adhesion (P = 0.0001) through the suppression of SELP and JAM-B thus it might relate to the leukocyte diapedesis pathway.


Assuntos
Adesão Celular , Células Endoteliais da Veia Umbilical Humana/citologia , MicroRNAs , Monócitos , Moléculas de Adesão Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , Monócitos/citologia , Selectina-P
12.
Biochem Biophys Res Commun ; 590: 89-96, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34973535

RESUMO

Cholinergic anti-inflammatory pathway (CAP) describes a neuronal-inflammatory reflex centered on systemic cytokine regulation by α7 nicotinic acetylcholine receptor (α7nAChR) activation of spleen-residue macrophage. However, the CAP mechanism attenuating distal tissue inflammation, inducing a low level of systemic inflammation, is lesser known. In this study, we hypothesized that CAP regulates monocyte accessibility by influencing their adhesion to endothelial cells. Using RNA-seq analysis, we identified that α1,3-Fucosyltransferase 7 (FucT-VII), the enzyme required for processing selectin ligands, was significantly downregulated by α7nAChR agonist among other cell-cell adhesion genes. The α7nAChR agonist inhibited monocytic cell line U-937 binding to P-selectin and adhesion to endothelial cells. Furthermore, α7nAChR agonist selectivity was confirmed by α7nAChR knockdown assays, showing that FUT7 inhibition and adhesion attenuation by the agonist was abolished by siRNA targeting α7nAChR encoding gene. Consistently, FUT7 knockdown inhibited the adhesive properties of U-937 and prevented them to adhere to endothelial cells. Overexpression of FUT7 also abrogated the adhesion attenuation induced by GTS-21 indicating that FUT7 inhibition was sufficient for inhibiting adhesion by α7nAChR activation. Our work demonstrated that α7nAChR activation regulates monocyte adhesion to endothelial cells through FUT7 inhibition, providing a novel insight into the CAP mechanism.


Assuntos
Fucosiltransferases/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/citologia , Monócitos/citologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Compostos de Benzilideno/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fucosiltransferases/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Piridinas/farmacologia , Células U937 , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
13.
Bioengineered ; 13(1): 1436-1446, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34983301

RESUMO

Atherosclerosis is a chronic inflammatory disease implicated in oxidative stress and endothelial dysfunction. Protein disulfide-isomerase A3 (PDIA3) has been reported to regulate oxidative stress and suppress inflammation. This study aimed to explore the function of PDIA3 in atherosclerosis and the underlying mechanisms. PDIA3 expression in oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) was detected using RT-qPCR and Western blotting. Following PDIA3 knockdown through transfection with small interfering RNA targeting PDIA3, cell viability, oxidative stress and inflammation in ox-LDL-induced HUVECs was examined using a Cell Counting Kit-8, corresponding kits and ELISA, respectively. The levels of CD31, α-smooth muscle, iNOS, p-eNOS, eNOS and NO were assessed using RT-qPCR, Western blotting and an NO kit to reflect endothelial dysfunction in ox-LDL-induced HUVECs. The relationship between PDIA3 and the activating transcription factor 2 (ATF2) was confirmed using co-immunoprecipitation. In addition, ATF2 expression was examined following PDIA3 silencing. The results indicated that PDIA3 was highly expressed in ox-LDL-induced HUVECs. PDIA3 silencing increased cell viability, and reduced oxidative stress and inflammation, as evidenced by the decreased levels of reactive oxygen species, malondialdehyde, TNF-α, IL-1ß and IL-6, and increased superoxide dismutase and glutathione peroxidase activity. In addition, PDIA3 deletion improved endothelial dysfunction. PDIA3 interacted with ATF2, and PDIA3 deletion downregulated ATF2 expression. Furthermore, ATF2 overexpression reversed the effects of PDIA3 knockdown on ox-LDL-induced damage of HUVECs. Collectively, PDIA3 knockdown was found to attenuate ox-LDL-induced oxidative stress, inflammation and endothelial dysfunction in HUVECs by downregulating ATF2 expression, showing promise for the future treatment of atherosclerosis.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Lipoproteínas LDL/farmacologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Malondialdeído/metabolismo , Modelos Biológicos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
14.
J Nanobiotechnology ; 20(1): 7, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983556

RESUMO

BACKGROUND: Inhibition of tumor angiogenesis through simultaneous targeting of vascular endothelial growth factor receptor (VEGFR)-1 and -2 is highly efficacious. An antagonist peptide of VEGFA/VEGFB, referred to as VGB3, can recognize and neutralize both VEGFR1 and VEGFR2 on the endothelial and tumoral cells, thereby inhibits angiogenesis and tumor growth. However, improved efficacy and extending injection intervals is required for its clinical translation. Given that gold nanoparticles (GNPs) can enhance the efficacy of biotherapeutics, we conjugated VGB3 to GNPs to enhance its efficacy and extends the intervals between treatments without adverse effects. RESULTS: GNP-VGB3 bound to VEGFR1 and VEGFR2 in human umbilical vein endothelial (HUVE) and 4T1 mammary carcinoma cells. GNP-VGB3 induced cell cycle arrest, ROS overproduction and apoptosis and inhibited proliferation and migration of endothelial and tumor cells more effectively than unconjugated VGB3 or GNP. In a murine 4T1 mammary carcinoma tumor model, GNP-VGB3 more strongly than VGB3 and GNP inhibited tumor growth and metastasis, and increased animal survival without causing weight loss. The superior antitumor effects were associated with durable targeting of VEGFR1 and VEGFR2, thereby inhibiting signaling pathways of proliferation, migration, differentiation, epithelial-to-mesenchymal transition, and survival in tumor tissues. MicroCT imaging and inductively coupled plasma mass spectrometry showed that GNP-VGB3 specifically target tumors and exhibit greater accumulation within tumors than the free GNPs. CONCLUSION: Conjugation to GNPs not only improved the efficacy of VGB3 peptide but also extended the intervals between treatments without adverse effects. These results suggest that GNP-VGB3 is a promising candidate for clinical translation.


Assuntos
Inibidores da Angiogênese , Ouro/química , Nanopartículas Metálicas/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Inibidores da Angiogênese/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Food Funct ; 13(4): 1890-1905, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35084418

RESUMO

Vascular endothelial cell injury induced by high glucose (HG) plays an important role in the occurrence and development of diabetic vascular complications. Yellow tea has a protective effect on vascular endothelial cells. However, the molecular mechanisms underlying this effect are unclear. In this study, the effects of the n-butanol fraction of Huoshan large-leaf yellow tea extract (HLYTBE) on vascular endothelial injury were investigated using human umbilical vein endothelial cells (HUVECs) and diabetic mice. In HUVECs, HLYTBE significantly reduced the production of reactive oxygen species, increased the activity of anti-oxidases (superoxide dismutase and glutathione peroxidase), enhanced the production of reduced glutathione, and decreased the level of oxidized glutathione, thereby improving cell viability. HLYTBE also promoted autophagosome formation, increased the LC3-II/LC3-I ratio, increased the expressions of Beclin1 and Atg 5, and decreased the expression of p62. HLYTBE up-regulated p-AMPK and down regulated p-mTOR, and these effects were reversed by compound C, an AMPK inhibitor. HLYTBE reduced apoptosis and cytochrome C expression, and these effects were attenuated by the autophagy inhibitor 3-methyladenine. In vivo studies showed that HLYTBE improved the impaired pyruvate tolerance, glucose tolerance, and insulin resistance; reduced the concentrations of blood glucose, glycated serum protein, lipids, and 8-isomeric prostaglandin 2α; increased the anti-oxidase activity in serum; and alleviated pathological damage in the thoracic aorta of diabetic mice induced by high sucrose-high fat diet along with streptozotocin. The results suggest that HLYTBE protects the vascular endothelium by up-regulating autophagy via the AMPK/mTOR pathway and inhibiting oxidative stress.


Assuntos
Autofagia/efeitos dos fármacos , Endotélio Vascular , Glucose/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Chá , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Camundongos , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Regulação para Cima/efeitos dos fármacos
16.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619163

RESUMO

Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFß1, integrin ß3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFß1, integrin ß3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neovascularização Fisiológica , Transdução de Sinais , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Metaloproteinase 14 da Matriz/metabolismo , Receptores Notch/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
J Nutr Biochem ; 99: 108862, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34530111

RESUMO

Lycopene (Ly) is a kind of hydrocarbon, which belongs to the family of tetraterpene carotene and exists in red fruits and vegetables. The decrease of capillary density and blood flow with age is a significant reason for the increase of mortality and morbidity. Herein, our study aims to explore the effects of Ly (a bioactive food compound) on vascular aging in vitro and in vivo and its potential mechanisms. The cytological results showed that Ly could promote the proliferation of human umbilical vein endothelial cell (HUVECs) and enhance the ability of HUVECs to form capillary-like structures. Furthermore, the expression of SIRT1 in aged HUVECs was up-regulated. In vivo, aging rats showed signs of insulin resistance and blood vessel damage. Additionally, the capillary density and blood flow were reduced during the vascular aging process in both D-gal-induced and naturally aging muscle. However, when Ly was given, these conditions could be reversed. Simultaneously, the contents of ATP, lactic acid and pyruvic acid were determined, and it was found that Ly could promote angiogenesis by increasing the utilization rate of glucose and promoting energy metabolism. Finally, in the insulin resistance cell model, we knocked down the SIRT1 and administrated with Ly, and found that it couldn't restore insulin transdution. In conclusion, all the data in this study demonstrate that Ly could reactivate SIRT1 and improve insulin resistance, which was a reversible cause of vascular aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Resistência à Insulina , Licopeno/administração & dosagem , Músculo Esquelético/irrigação sanguínea , Sirtuína 1/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Circulação Sanguínea , Proliferação de Células/efeitos dos fármacos , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Densidade Microvascular , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética
18.
J Nutr Biochem ; 100: 108899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748924

RESUMO

A. membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.


Assuntos
Antígeno B7-H1/metabolismo , Carcinogênese/efeitos dos fármacos , Isoflavonas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/fisiopatologia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Técnicas de Cocultura , Regulação para Baixo , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Lisossomos/metabolismo , Biogênese de Organelas , Proteínas Proto-Oncogênicas c-myc/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , Linfócitos T/imunologia , Neoplasias do Colo do Útero/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Aging (Albany NY) ; 13(22): 24829-24849, 2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34837694

RESUMO

BACKGROUND: Neovascularization plays an essential part in bone fracture and defect healing, constructing tissue engineered bone that targets bone regeneration. Bone morphogenetic protein 9 (BMP9) is a regular indicator that potentiates osteogenic and angiogenic differentiation of MSCs. OBJECTIVES: To investigate the effects of BMP9 on osteogenesis and angiogenesis of human amniotic mesenchymal stem cells (hAMSCs) cocultured with human umbilical vein endothelial cells (HUVECs) and determine the possible underlying molecular mechanism. RESULTS: The isolated hAMSCs expressed surface markers of MSCs. hAMSCs cocultured with HUVECs enhance osteogenic differentiation and upregulate the expression of angiogenic factors. BMP9 not only potentiates angiogenic signaling of hAMSCs cocultured with HUVECs also increases ectopic bone formation and subcutaneous vessel invasion. Mechanically, the coupling effect between osteogenesis and angiogenesis induced by BMP9 was activated by the BMP/Smad and PI3K/AKT/m-TOR signaling pathways. CONCLUSIONS: BMP9-enhanced osteoblastic and angiogenic differentiation in cocultivation with hAMSCs and HUVECs in vitro and in vivo also provide a chance to harness the BMP9-regulated coordinated effect between osteogenic and angiogenic pathways through BMP/Smad and PI3K/AKT/m-TOR signalings. MATERIALS AND METHODS: The ALP and Alizarin Red S staining assay to determine the effects of osteoblastic differentiation. RT-qPCR and western blot was measured the expression of angiogenesis-related factors. Ectopic bone formation was established and retrieved bony masses were subjected to histochemical staining. The angiogenesis ability and vessel invasion were subsequently determined by immunofluorescence staining. Molecular mechanisms such as the BMP/Smad and PI3K/AKT/m-TOR signaling pathways were detected by ELISA and western blot analysis.


Assuntos
Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais , Osteogênese/efeitos dos fármacos , Âmnio/citologia , Células Cultivadas , Técnicas de Cocultura , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
20.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830063

RESUMO

This study describes a method for the modification of polyurethane small-diameter (5 mm) vascular prostheses obtained with the phase inversion method. The modification process involves two steps: the introduction of a linker (acrylic acid) and a peptide (REDV and YIGSR). FTIR and XPS analysis confirmed the process of chemical modification. The obtained prostheses had a porosity of approx. 60%, Young's Modulus in the range of 9-11 MPa, and a water contact angle around 40°. Endothelial (EC) and smooth muscle (SMC) cell co-culture showed that the surfaces modified with peptides increase the adhesion of ECs. At the same time, SMCs adhesion was low both on unmodified and peptide-modified surfaces. Analysis of blood-materials interaction showed high hemocompatibility of obtained materials. The whole blood clotting time assay showed differences in the amount of free hemoglobin present in blood contacted with different materials. It can be concluded that the peptide coating increased the hemocompatibility of the surface by increasing ECs adhesion and, at the same time, decreasing platelet adhesion. When comparing both types of peptide coatings, more promising results were obtained for the surfaces coated with the YISGR than REDV-coated prostheses.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Prótese Vascular , Poliuretanos/química , Poliuretanos/farmacologia , Animais , Materiais Biocompatíveis/síntese química , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Teste de Materiais , Fenômenos Mecânicos , Camundongos , Microscopia Eletrônica de Varredura , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Adesividade Plaquetária/efeitos dos fármacos , Poliuretanos/síntese química , Porosidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...