Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
J Math Biol ; 85(5): 58, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271960

RESUMO

Atherosclerosis, one of the leading causes of death in USA and worldwide, begins with a lesion in the intima of the arterial wall, allowing LDL to penetrate into the intima where they are oxidized. The immune system considers these oxidized LDL as a dangerous substance and tasks the macrophages to attack them; incapacitated macrophages become foam cells and leads to the formation of a plaque. As the plaque continues to grow, it progressively restricts the blood flow, possibly triggering heart attack or stroke. Because the blood vessels tend to be circular, two-space dimensional cross section model is a good approximation, and the two-space dimensional models are studied in Friedman et al. (J Differ Equ 259(4):1227-1255, 2015) and Zhao and Hu (J Differ Equ 288:250-287, 2021). It is interesting to see whether a true three-space dimensional stationary solution can be developed. We shall establish a three-space dimensional stationary solution for the mathematical model of the initiation and development of atherosclerosis which involves LDL and HDL cholesterols, macrophages and foam cells. The model is a highly nonlinear and coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We establish infinite branches of symmetry-breaking stationary solutions which bifurcate from the annular stationary solution in the longitude direction.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/patologia , Células Espumosas/patologia , Células Espumosas/fisiologia , Macrófagos/patologia , Artérias
2.
Indian J Pharmacol ; 53(4): 286-293, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414906

RESUMO

OBJECTIVE: High-density lipoprotein (HDL) cholesterol-mediated atherosclerotic plaque regression has gained wide therapeutic attention. The whole plant methanolic extract of the medicinal plant Desmodium gyrans Methanolic Extract (DGM) has shown to mitigate hyperlipidemia in high fat- and-cholesterol fed rats and rabbits with significant HDL enhancing property. The study aimed to assess the functionality and mechanistic basis of HDL promoting effect of DGM. MATERIALS AND METHODS: Macrophage cholesterol efflux and foam cell formation assays were performed in THP-1 macrophages. Male Wistar rats were given DGM extract over 1 month and assessed the serum HDL, Apolipoprotein A1 (Apo-A1), and paraoxonase activity. Quantitative Polymerase chain reaction was carried out to assess the expression level of Apo-A1, SR-B1 (Scavenger receptor B1), and Cholesteryl ester transfer protein (CETP) on cDNA of HepG2 cells exposed to DGM. RESULTS: Pretreatment of DGM inhibited uptake of oxidized lipids and enhanced the lipid efflux by THP-1-derived macrophages. Oral administration of DGM (100 and 250 mg/kg) progressively enhanced the serum HDL, Apo-A1 level, and associated paraoxonase activity in normal male Wistar rats. In support to this, DGM exposed HepG2 cells documented dose-dependent increase in the expression of SR-B1 and Apo-A1 mRNA, while reduced the CETP expression. CONCLUSION: Overall the results indicated that DGM modulates lipid trafficking and possesses functional HDL enhancing potential through increased Apo-A1 levels and paraoxonase activity. Further, reduced CETP expression and increased expression of SR-B1 suggest the reverse cholesterol transport promoting role of DGM.


Assuntos
Fabaceae , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipoproteínas HDL/fisiologia , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Animais , Apolipoproteína A-I/genética , Antígenos CD36/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Células Espumosas/fisiologia , Células Hep G2 , Humanos , Masculino , Ratos , Ratos Wistar , Células THP-1
3.
Photochem Photobiol Sci ; 20(4): 489-499, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33825180

RESUMO

Photodynamic therapy (PDT) is an effective procedure for the treatment of lesions diseases based on the selectivity of a photosensitising compound with the ability to accumulate in the target cell. Atherosclerotic plaque is a suitable target for PDT because of the preferential accumulation of photosensitisers in atherosclerotic plaques. Dendrimers are hyperbranched polymers conjugated to drugs. The dendrimers of ALA hold ester bonds that inside the cells are cleaved and release ALA, yielding PpIX production. The dendrimer 6m-ALA was chosen to perform this study since in previous studies it induced the highest porphyrin macrophage: endothelial cell ratio (Rodriguez et al. in Photochem Photobiol Sci 14:1617-1627, 2015). We transformed Raw 264.7 macrophages to foam cells by exposure to oxidised LDLs, and we employed a co-culture model of HMEC-1 endothelial cells and foam cells to study the affinity of ALA dendrimers for the foam cells. In this work it was proposed an in vitro model of atheromatous plaque, the aim was to study the selectivity of an ALA dendrimer for the foam cells as compared to the endothelial cells in a co-culture system and the type of cell death triggered by the photodynamic treatment. The ALA dendrimer 6m-ALA showed selectivity PDT response for foam cells against endothelial cells. A light dose of 1 J/cm2 eliminate foam cells, whereas less than 50% of HMEC-1 is killed, and apoptosis cell death is involved in this process, and no necrosis is present. We propose the use of ALA dendrimers as pro-photosensitisers to be employed in photoangioplasty to aid in the treatment of obstructive cardiovascular diseases, and these molecules can also be employed as a theranostic agent.


Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Células Espumosas/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Ácido Aminolevulínico/química , Animais , Linhagem Celular , Técnicas de Cocultura , Células Espumosas/fisiologia , Humanos , Macrófagos/fisiologia , Camundongos , Fármacos Fotossensibilizantes/química
4.
Front Immunol ; 12: 775326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975863

RESUMO

Mycobacterium tuberculosis infects primarily macrophages in the lungs. Infected macrophages are surrounded by other immune cells in well organised structures called granulomata. As part of the response to TB, a type of macrophage loaded with lipid droplets arises which we call Foam cell macrophages. They are macrophages filled with lipid laden droplets, which are synthesised in response to increased uptake of extracellular lipids, metabolic changes and infection itself. They share the appearance with atherosclerosis foam cells, but their lipid contents and roles are different. In fact, lipid droplets are immune and metabolic organelles with emerging roles in Tuberculosis. Here we discuss lipid droplet and foam cell formation, evidence regarding the inflammatory and immune properties of foam cells in TB, and address gaps in our knowledge to guide further research.


Assuntos
Células Espumosas/fisiologia , Gotículas Lipídicas/fisiologia , Tuberculose/imunologia , Células Espumosas/imunologia , Humanos , Triglicerídeos/biossíntese
5.
Food Chem Toxicol ; 146: 111842, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33152471

RESUMO

Early stages of atherosclerosis are characterizated for the uptake of oxidate low-density lipoprotein (oxLDL) by inflammatory macrophages in the arteries, promoting the foam cell formation. Drimys winteri is a native tree of Chile that produce drimane sesquiterpenoids, here it was evaluated the inhibitory foam cell formation by the total extract of barks of Drimys winteri and isodrimeninol, a sesquiterpenoid isolated from the tree. The results showed that Dw and isodrimeninol inhibited the foam cell formation on macrophage M1, by Oil Red O staining. Moreover, Dw reduced the gene expression of pro-inflammatory cytokine TNF-α, in contrast to isodrimeninol that showed not effect on the gene expression of this cytokine, also Dw enhanced the expression of the anti-inflammatory cytokine IL-10, in more significant manner than isodrimeninol at 20 µg/mL. While, Dw and isodrimeninol significantly reduced the expression of IL1-ß at concentrations of 20 µg/mL, but not affecting the MMP-9 levels, assessed by RT-qPCR. In conclusion, Drimys winteri and isodrimeninol induce anti-atherosclerotic effects, inhibiting foam cell formation, as well as promoting anti-inflammatory responses. This study confirm the relevance of this tree as a medicinal source for the Mapuche people, and suggesting that Drimys winteri could be used in early stages of atherosclerosis.


Assuntos
Drimys/química , Células Espumosas/efeitos dos fármacos , Células Espumosas/fisiologia , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Monócitos/efeitos dos fármacos , Casca de Planta/química , Células THP-1
6.
J Immunol Res ; 2020: 1906204, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190703

RESUMO

BACKGROUND: Macrophage-derived foam cells play a central role in atherosclerosis, and their ultimate fate includes apoptosis, promotion of vascular inflammation, or migration to other tissues. Nε-Carboxymethyl-lysine (CML), the key active component of advanced glycation end products, induced foam cell formation and apoptosis. Previous studies have shown that the Vav1/Rac1 pathway affects the macrophage cytoskeleton and cell migration, but its role in the pathogenesis of diabetic atherosclerosis is unknown. METHODS AND RESULTS: In this study, we used anterior tibiofibular vascular samples from diabetic foot amputation patients and accident amputation patients, and histological and cytological tests were performed using a diabetic ApoE-/- mouse model and primary peritoneal macrophages, respectively. The results showed that the atherosclerotic plaques of diabetic foot amputation patients and diabetic ApoE-/- mice were larger than those of the control group. Inhibition of the Vav1/Rac1 pathway reduced vascular plaques and promoted the migration of macrophages to lymph nodes. Transwell and wound healing assays showed that the migratory ability of macrophage-derived foam cells was inhibited by CML. Cytoskeletal staining showed that advanced glycation end products inhibited the formation of lamellipodia in foam cells, and inhibition of the Vav1/Rac1 pathway restored the formation of lamellipodia. CONCLUSION: CML inhibits the migration of foam cells from blood vessels via the Vav1/Rac1 pathway, and this process affects the formation of lamellipodia.


Assuntos
Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Pé Diabético/metabolismo , Células Espumosas/fisiologia , Lisina/análogos & derivados , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Amputação Cirúrgica , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Movimento Celular , Células Cultivadas , Pé Diabético/patologia , Humanos , Lisina/metabolismo , Camundongos , Camundongos Knockout , Transdução de Sinais
7.
Trends Immunol ; 40(12): 1163-1179, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732284

RESUMO

Chronic inflammation in many infectious and metabolic diseases, and some cancers, is accompanied by the presence of foam cells. These cells form when the intracellular lipid content of macrophages exceeds their capacity to maintain lipid homeostasis. Concurrently, critical macrophage immune functions are diminished. Current paradigms of foam cell formation derive from studies of atherosclerosis. However, recent studies indicate that the mechanisms of foam cell biogenesis during tuberculosis differ from those operating during atherogenesis. Here, we review how foam cell formation and function vary with disease context. Since foam cells are therapeutic targets in atherosclerosis, further research on the disease-specific mechanisms of foam cell biogenesis and function is needed to explore the therapeutic consequences of targeting these cells in other diseases.


Assuntos
Aterosclerose/imunologia , Células Espumosas/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Mycobacterium tuberculosis/fisiologia , Tuberculose/imunologia , Animais , Diferenciação Celular , Homeostase , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos
8.
J Tissue Viability ; 28(4): 223-226, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500929

RESUMO

AIM OF THE STUDY: Negative pressure wound therapy (NPWT) has become an established treatment modality when dealing with chronic and infected wounds. The underlying mechanism of action is still under discussion and remains controversial. Evidence exists showing rather hypoxic conditions as the main reason for the positive results and bacterial clearance. In an attempt to further explain the mechanism of action, we investigated oxygen levels within the foam interface of a NPWT device. MATERIALS AND METHODS: We used an optical sensor based on the principle of dynamic fluorescence quenching and tested five different commonly available NPWT systems used during our daily clinical routine. All measurements were done in an in vitro experimental design for at least 24 h and multiple vacuum intensities were investigated. RESULTS: Oxygen levels decreased as much as 22.8% and the amount of vacuum applied inversely correlated with the oxygen reduction. A stepwise increase in vacuum of 25 mmHg showed a linear mean drop of 2.75% per setting. All devices were able to maintain a constant level of negative pressure, and no significant difference between the various dressings was found (p > 0.05). CONCLUSION: Therefore, oxygen levels are decreased within the foam of NPWT dressings, likely leading to oxygen deprivation effects in the underlying wound tissue.


Assuntos
Células Espumosas/metabolismo , Tratamento de Ferimentos com Pressão Negativa/instrumentação , Oxigênio/análise , Cicatrização/fisiologia , Células Espumosas/química , Células Espumosas/fisiologia , Humanos , Tratamento de Ferimentos com Pressão Negativa/normas , Tratamento de Ferimentos com Pressão Negativa/estatística & dados numéricos , Oxigênio/metabolismo
9.
Proc Biol Sci ; 286(1904): 20190730, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161905

RESUMO

In both cells and animals, cannibalism can transfer harmful substances from the consumed to the consumer. Macrophages are immune cells that consume their own dead via a process called cannibalistic efferocytosis. Macrophages that contain harmful substances are found at sites of chronic inflammation, yet the role of cannibalism in this context remains unexplored. Here we take mathematical and experimental approaches to study the relationship between cannibalistic efferocytosis and substance accumulation in macrophages. Through mathematical modelling, we deduce that substances which transfer between individuals through cannibalism will concentrate inside the population via a coalescence process. This prediction was confirmed for macrophage populations inside a closed system. We used image analysis of whole slide photomicrographs to measure both latex microbead and neutral lipid accumulation inside murine bone marrow-derived macrophages (104-[Formula: see text]) following their stimulation into an inflammatory state ex vivo. While the total number of phagocytosed beads remained constant, cell death reduced cell numbers and efferocytosis concentrated the beads among the surviving macrophages. As lipids are also conserved during efferocytosis, these cells accumulated lipid derived from the membranes of dead and consumed macrophages (becoming macrophage foam cells). Consequently, enhanced macrophage cell death increased the rate and extent of foam cell formation. Our results demonstrate that cannibalistic efferocytosis perpetuates exogenous (e.g. beads) and endogenous (e.g. lipids) substance accumulation inside macrophage populations. As such, cannibalism has similar detrimental consequences in both cells and animals.


Assuntos
Macrófagos/fisiologia , Fagocitose , Animais , Morte Celular , Células Cultivadas , Células Espumosas/citologia , Células Espumosas/metabolismo , Células Espumosas/fisiologia , Metabolismo dos Lipídeos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
10.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30209193

RESUMO

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Células Espumosas/fisiologia , Macrófagos/fisiologia , Animais , Aterosclerose/patologia , Células Cultivadas , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Janus Quinases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese , Fatores de Transcrição STAT , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais
11.
Sci Rep ; 8(1): 11954, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097618

RESUMO

Enzyme modified non-oxidative LDL (ELDL) is effectively taken up by vascular smooth muscle cells (SMC) and mediates transition into foam cells and produces phenotypic changes in SMC function. Our data show that incubation of human coronary artery SMC (HCASMC) with low concentration of ELDL (10 µg/ml) results in significantly enhanced foam cell formation compared to oxidized LDL (200 µg/ml; p < 0.01) or native LDL (200 µg/ml; p < 0.01). Bioinformatic network analysis identified activation of p38 MAPK, NFkB, ERK as top canonical pathways relevant for biological processes linked to cell migration and osteoblastic differentiation in ELDL-treated cells. Functional studies confirmed increased migration of HCASMC upon stimulation with ELDL (10 µg/ml) or Angiopoietin like protein 4, (ANGPTL4, 5 µg/ml), and gain in osteoblastic gene profile with significant increase in mRNA levels for DMP-1, ALPL, RUNX2, OPN/SPP1, osterix/SP7, BMP and reduction in mRNA for MGP and ENPP1. Enhanced calcification of HCASMC by ELDL was demonstrated by Alizarin Red staining. In summary, ELDL is highly potent in inducing foam cells in HCASMC and mediates a phenotypic switch with enhanced migration and osteoblastic gene profile. These results point to the potential of ELDL to induce migratory and osteoblastic effects in human smooth muscle cells with potential implications for migration and calcification of SMCs in human atherosclerosis.


Assuntos
Vasos Coronários/patologia , Células Espumosas/fisiologia , Lipoproteínas LDL/metabolismo , Miócitos de Músculo Liso/fisiologia , Osteoblastos/fisiologia , Calcificação Fisiológica , Diferenciação Celular , Movimento Celular , Células Cultivadas , Biologia Computacional , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Lipoproteínas LDL/química , Fosfoproteínas/genética , Mapas de Interação de Proteínas , Proteólise , Transdução de Sinais , Esterol Esterase/química , Tripsina/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Dev Comp Immunol ; 88: 169-172, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30040967

RESUMO

Host lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model recapitulates many aspects of human-M. tuberculosis infection and is used as a model to investigate the structural components of the mycobacterial granuloma. Here, we demonstrate that the zebrafish-M. marinum granuloma contains foam cells and that the transdifferentiation of macrophages into foam cells is driven by the mycobacterial ESX1 pathogenicity locus. This report demonstrates conservation of an important aspect of mycobacterial infection across species.


Assuntos
Células Espumosas/fisiologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/imunologia , Tuberculose/imunologia , Peixe-Zebra/fisiologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Transdiferenciação Celular/imunologia , Modelos Animais de Doenças , Granuloma/imunologia , Granuloma/microbiologia , Humanos , Metabolismo dos Lipídeos/imunologia , Macrófagos/fisiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Mycobacterium marinum/patogenicidade , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Tuberculose/microbiologia
13.
Front Immunol ; 9: 878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29760701

RESUMO

Atherosclerosis is the major cause of cardiovascular diseases. Current evidences indicate that inflammation is involved in the pathogenesis of atherosclerosis. Human gingiva-derived mesenchymal stem cells (GMSC) have shown anti-inflammatory and immunomodulatory effects on autoimmune and inflammatory diseases. However, the function of GMSC in controlling atherosclerosis is far from clear. The present study is aimed to elucidate the role of GMSC in atherosclerosis, examining the inhibition of GMSC on macrophage foam cell formation, and further determining whether GMSC could affect the polarization and activation of macrophages under different conditions. The results show that infusion of GMSC to AopE-/- mice significantly reduced the frequency of inflammatory monocytes/macrophages and decreased the plaque size and lipid deposition. Additionally, GMSC treatment markedly inhibited macrophage foam cell formation and reduced inflammatory macrophage activation, converting inflammatory macrophages to anti-inflammatory macrophages in vitro. Thus, our study has revealed a significant role of GMSC on modulating inflammatory monocytes/macrophages and alleviating atherosclerosis.


Assuntos
Aterosclerose , Gengiva/citologia , Macrófagos/fisiologia , Células-Tronco Mesenquimais , Animais , Diferenciação Celular/fisiologia , Células Espumosas/fisiologia , Xenoenxertos , Humanos , Ativação de Macrófagos/fisiologia , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Knockout , Monócitos
14.
Biomed Pharmacother ; 104: 645-651, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803178

RESUMO

MiR-155 can inhibit the formation of atherosclerosis by interfering with the transformation of macrophages into foam cells that plays a critical role in the pathogenesis of atherosclerosis, but the precise mechanisms of miR-155 are still unknown. Herein, we observed that mRNA and protein expression levels of CEH were significantly upregulated in a dose- and time-dependent manner by transfected with miR-155 mimics in THP-1 macrophages. Further studies showed that overexpression of miR-155 can significantly inhibit foam cells formation, reduce intracellular CE accumulation and enhance the efflux of FC and cholesterol, result in a decrease of intracellular lipid accumulation; while this effect was significantly reversed by siCEH. Meanwhile, we found that Tim-3 is associated with miR-155-mediated CEH expression in THP-1 macrophage-derived foam cells. Overexpression of Tim-3 can attenuate miR-155-mediated CEH induction. Taken together, our findings demonstrated that miR-155 can inhibit the transformation of macrophages into foam cells by enhancing CEH signaling pathway in macrophages, this effect is likely to be achieved by inhibiting the expression of Tim-3.


Assuntos
Células Espumosas/fisiologia , Macrófagos/fisiologia , MicroRNAs/genética , Transformação Genética/genética , Aterosclerose/genética , Linhagem Celular , Colesterol/genética , Humanos , Metabolismo dos Lipídeos/genética , RNA Mensageiro/genética , Transdução de Sinais/genética , Esterol Esterase/genética , Células THP-1/fisiologia , Regulação para Cima/genética
15.
Sci Rep ; 8(1): 4729, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549300

RESUMO

Insects have evolved multiple mechanisms to adapt to variations in environmental temperatures, including postural control of solar input, variations in diurnal activity, external morphological structures and selecting/generating microhabitats. Foam produced by Mahanarva fimbriolata nymphs (also known as root spittlebugs) was found to aid in creating a constant thermal microhabitat despite environmental temperature fluctuations. The temperature within the foam was found to be similar to that of soil during the day and remained constant despite fluctuating external temperatures. In chemically analysing the composition of the foam, palmitic and stearic acids, carbohydrates and proteins were detected. These substances have previously been shown to act as a surfactant to stabilize and modulate foams. Since the immature ancestor of the spittlebug developed below ground, it is speculated that the foam may function as an 'extension' of the soil and, thus, may have enabled the spittlebug to emerge from the soil and adopt an epigean lifestyle.


Assuntos
Adaptação Fisiológica , Regulação da Temperatura Corporal , Ecossistema , Células Espumosas/fisiologia , Hemípteros/fisiologia , Ninfa/fisiologia , Animais , Temperatura
16.
Br Med Bull ; 126(1): 101-112, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534172

RESUMO

Background: CD36 is a multi-functional class B scavenger receptor, which acts as an important modulator of lipid homeostasis and immune responses. Sources of data: This review uses academic articles. Areas of agreement: CD36 is closely related to the development and progression of atherosclerosis. Areas of controversy: Both persistent up-regulation of CD36 and deficiency of CD36 increase the risk for atherosclerosis. Abnormally up-regulated CD36 promotes inflammation, foam cell formation, endothelial apoptosis, macrophage trapping and thrombosis. However, CD36 deficiency also causes dyslipidemia, subclinical inflammation and metabolic disorders, which are established risk factors for atherosclerosis. Growing points: There may be an 'optimal protective window' of CD36 expression. Areas timely for developing research: In addition to traditionally modulating protein functions using gene overexpression or deficiency, the modulation of CD36 function at post-translational levels has recently been suggested to be a potential therapeutic strategy.


Assuntos
Aterosclerose/metabolismo , Antígenos CD36/metabolismo , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Receptores Depuradores/metabolismo , Aterosclerose/imunologia , Células Espumosas/fisiologia , Regulação da Expressão Gênica/imunologia , Humanos , Inflamação/imunologia , Regulação para Cima
17.
In Vitro Cell Dev Biol Anim ; 54(2): 99-110, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29322359

RESUMO

Macrophage-derived foam cells were one of the hallmarks of atherosclerosis, and microRNAs played an important role in the formation of foam cells. In order to explore the roles of miRNA in the formation of foam cells, we investigated miRNA expression profiles in foam cells through high-throughput sequencing technology. A total of 84 miRNAs were differentially expressed between RAW 264.7 macrophages and foam cells induced by ox-LDL. Thirty miRNAs were upregulated and 54 miRNAs were downregulated. GO terms and KEGG pathways analysis revealed that the target genes of most of DE miRNAs were mainly enriched in "cell differentiation," "endocytosis," "MAPK signaling pathway," and "FoxO signaling pathway." The target genes of some DE miRNAs were enriched in "Insulin signaling pathway," "Hippo signaling pathway," "TNF signaling pathway," "NF-kappa B signaling pathway," and "cell death." Using bioinformatics analyses and dual-luciferase reporter assays, we found that miR-28a-5p and miR-30c-1-3p directly inhibited LRAD3 and LOX-1 mRNA expression through targeting the 3'UTR of LRAD3 and LOX-1 mRNA, respectively. Our study indicates that miRNAs are extensively involved in the formation of foam cells, and provides a valuable resource for further study the role of miRNAs in atherosclerosis.


Assuntos
Células Espumosas/fisiologia , Lipoproteínas LDL/metabolismo , MicroRNAs/genética , Transcriptoma , Regiões 3' não Traduzidas , Animais , Aterosclerose/genética , Diferenciação Celular/efeitos dos fármacos , Células Espumosas/patologia , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Insulina/genética , Insulina/metabolismo , Lipoproteínas LDL/farmacologia , Camundongos , MicroRNAs/efeitos dos fármacos , Células RAW 264.7 , Receptores de LDL/genética , Receptores de LDL/metabolismo , Reprodutibilidade dos Testes , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/metabolismo , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos
18.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 882-890, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29287777

RESUMO

NF-E2-related factor 2 (Nrf2) has been shown to be protective in atherosclerosis. The loss of Nrf2 in macrophages enhances foam cell formation and promotes early atherogenesis. Tanshindiol C (Tan C) is isolated from the root of Salvia miltiorrhiza Bge., a traditional Chinese medicine that has been used for the treatment of several cardiovascular diseases for many years. This study was aimed to test the potential role of Tan C against macrophage foam cell formation and to explore the underlying mechanism. Firstly, we observed that Tan C markedly suppressed oxidized low-density lipoprotein (oxLDL) induced macrophage foam cell formation. Then, we found that Tan C was an activator of both Nrf2 and Sirtuin 1 (Sirt1) in macrophages. Nrf2 and Sirt1 synergistically activated the transcription of anti-oxidant peroxiredoxin 1 (Prdx1) after Tan C treatment. More important, we demonstrated that silencing of Prdx1 promoted oxLDL-induced macrophage foam cell formation. Prdx1 upregulated adenosine triphosphate-binding cassette (ABC) transporter A1 (ABCA1) expression and decreased intracellular lipid accumulation. Furthermore, Tan C ameliorated oxLDL induced macrophage foam cell formation in a Prdx1-dependent manner. These observations suggest that Tan C protects macrophages from oxLDL induced foam cell formation via activation of Prdx1/ABCA1 signaling and that Prdx1 may be a novel target for therapeutic intervention of atherosclerosis.


Assuntos
Diterpenos/farmacologia , Células Espumosas/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Peroxirredoxinas/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Células Espumosas/fisiologia , Células HEK293 , Humanos , Macrófagos Peritoneais/patologia , Macrófagos Peritoneais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Salvia miltiorrhiza/química , Transdução de Sinais/efeitos dos fármacos
19.
Lipids Health Dis ; 16(1): 170, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899395

RESUMO

BACKGROUND: Foam cells play a key role in the occurrence and pathogenesis of atherosclerosis. Its formation starts with the ingestion of oxidized low-density lipoprotein (oxLDL). The process is associated with Ras related protein in brain 5 (Rab5) which plays a critical role in regulating endocytosis and early endosomal trafficking. Base on this, we presumed that Rab5 might participate in the maturation of foam cell. The aim of this study is to investigate the effect of Rab5 on macrophage cholesterol during the evolvement of macrophage when induced by oxLDL to the formation of foam cell. METHODS: Immunohistochemistry was performed to analyze the distribution of macrophages and Rab5 in atherosclerotic plaque. RNA inteference study and transfection of inactive mutant (GFP-Rab5-S34N) and active mutant (GFP-Rab5-Q79L) in U937-derived macrophage were utilized to investigate the impact of Rab5 on the process of macrophage cholesterol, which could be detected by oil red O staining, determination of intracellular lipid content, filipin staining, nile red staining and the costaining of early endosome antigen-1 (EEA-1) and 1,1'-dioctadecyl-3,3,3',3'-tetramethylin dicarbocyanine (Dil)-labelled oxLDL (Dil-oxLDL). RESULTS: Rab5 was found abundantly localized in macrophage rich areas of human atherosclerotic lesions. On the foam cell study, the expression of Rab5 was increased after the incubation of oxLDL. The inteference study indicated the depletion of Rab5 led to the decreases of oil red O staining areas, total cholesterol and cholesterol esters in U937-derived marophages. Moreover, the fluorescence intensity of filipin and nile red staining were lower in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. The confocal study demonstrated less Dil-oxLDL was internalized in GFP-Rab5-S34N as compared with GFP-Rab5-Q79L; the result showed also the decrease in colocalization of internalized Dil-oxLDL and EEA-1 for GFP-Rab5-S34N as compared with GFP-Rab5-Q79L. CONCLUSIONS: Rab5 plays an important role in modulating the intracellular cholesterol of macrophages and consequently mediating the formation of foam cells.


Assuntos
Células Espumosas/fisiologia , Macrófagos/citologia , Placa Aterosclerótica/patologia , Proteínas rab5 de Ligação ao GTP/metabolismo , Linhagem Celular , Colesterol/metabolismo , Células Espumosas/citologia , Regulação da Expressão Gênica , Guanosina Difosfato/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Macrófagos/patologia , Mutação , Placa Aterosclerótica/metabolismo , Proteínas rab5 de Ligação ao GTP/genética
20.
Biochem Biophys Res Commun ; 491(3): 587-594, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28765047

RESUMO

The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 µM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA1/3 -AKT activation and subsequent SRBI expression.


Assuntos
Células Espumosas/citologia , Células Espumosas/fisiologia , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Depuradores Classe B/metabolismo , Animais , Diferenciação Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...