Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.383
Filtrar
1.
Cir Cir ; 92(3): 324-330, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38862104

RESUMO

OBJECTIVE: The objective of the study is to compare the optic coherence tomography (OCT) parameters of the healthy and affected sides of patients with idiopathic sudden sensorineural hearing loss (ISSNHL) and to investigate the relationships between these and the improvement in hearing levels. METHODS: A bilateral eye evaluation of patients diagnosed with ISSNHL was performed with OCT. The ganglion cell complex (GCC) and retina nerve fiber layer (RNFL) thickness values were recorded and the differences between the two eyes were examined. RESULTS: An evaluation was made of 39 patients with a mean age of 44.82 ± 14.90 years. The RNFL thickness of the eyes was determined to be mean 89.87 ± 3.65 µm on the affected side and 103.87 ± 3.98 µm on the healthy control side (p = 0.0001). The mean GCC was determined to be mean 90.46 ± 3.49 µm on the affected side and 103.77 ± 3.96 µm on the healthy control side (p = 0.0001). CONCLUSIONS: A statistically significant difference was observed between the healthy and affected eyes of patients with ISSNHL with respect to mean GCC and mean RNFL thickness. OCT could be a useful technique for measuring this neural degeneration.


OBJETIVO: Comparar e investigar los parámetros de la tomografía de coherencia óptica (OCT) de los lados sanos y afectados de pacientes con pérdida auditiva neurosensorial súbita idiopática (PANSI). MÉTODO: La evaluación ocular bilateral de los pacientes diagnosticados con PANSI se realizó con OCT. Se registraron los valores de espesor del complejo de células ganglionares (CCG) y de la capa de fibras nerviosas de la retina (CFNR), y se examinaron las diferencias entre los dos ojos. RESULTADOS: Se evaluaron 39 pacientes, con una edad media de 44.82 ± 14.90 años. Se determinó que el grosor de la CFNR de los ojos era una media de 89.87 ± 3.65 µm en el lado afectado y 103.87 ± 3.98 µm en el lado de control sano (p = 0.0001). Se determinó que el CCG medio era 90.46 ± 3.49 µm en el lado afectado y 103.77 ± 3.96 µm en el lado de control sano (p = 0.0001). CONCLUSIONES: Se encontró una diferencia estadísticamente significativa entre los ojos sanos y afectados de pacientes con PANSI con respecto al CCG medio y al espesor medio de la CFNR. La OCT podría ser una técnica útil para medir esta degeneración neuronal.


Assuntos
Axônios , Fibras Nervosas , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Adulto , Feminino , Masculino , Fibras Nervosas/patologia , Pessoa de Meia-Idade , Axônios/patologia , Células Ganglionares da Retina/patologia , Perda Auditiva Neurossensorial/diagnóstico por imagem , Perda Auditiva Súbita/diagnóstico por imagem , Adulto Jovem
2.
BMC Ophthalmol ; 24(1): 260, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880871

RESUMO

BACKGROUND: Quantitative analysis of retinal nerve fibers is important for the diagnosis and treatment of optic nerve diseases. Peripapillary retinal nerve fiber layer (RNFL) cross-sectional area may give a more accurate quantitative assessment of retinal nerve fibers than RNFL thickness but there have been no previous reports of the peripapillary RNFL cross-sectional area or other parameters. The purpose of the current study was to determine peripapillary RNFL cross-sectional area and its association with other factors in an adult Chinese population. METHODS: RNFL cross-sectional area was measured during peripapillary circular optical coherence tomography (OCT) scan with a diameter of 12° centered on the optic disc. Correlation between RNFL cross-sectional area and other parameters was evaluated by linear regression analysis in a cross-sectional study of an adult Chinese population. RESULTS: A total of 2404 eyes from 2404 subjects were examined. Multivariate linear regression analysis showed that larger RNFL cross-sectional area correlated with younger age (p < 0.001), female gender (p = 0.001), no history of diabetes (p = 0.012) and larger optic disc area (p < 0.001). CONCLUSIONS: Peripapillary RNFL cross-sectional area is correlated positively with optic disc area, suggesting that eyes with larger optic discs have thicker RNFL. Further studies are needed to confirm whether this correlation is due to differences in the numbers of retinal nerve fibers or other factors.


Assuntos
Fibras Nervosas , Disco Óptico , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , China/epidemiologia , Estudos Transversais , População do Leste Asiático , Fibras Nervosas/patologia , Disco Óptico/diagnóstico por imagem , Disco Óptico/anatomia & histologia , Disco Óptico/patologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica/métodos
3.
Acta Neuropathol Commun ; 12(1): 89, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845058

RESUMO

The microtubule-associated protein Tau is a key player in various neurodegenerative conditions, including Alzheimer's disease (AD) and Tauopathies, where its hyperphosphorylation disrupts neuronal microtubular lattice stability. Glaucoma, a neurodegenerative disorder affecting the retina, leads to irreversible vision loss by damaging retinal ganglion cells and the optic nerve, often associated with increased intraocular pressure. Prior studies have indicated Tau expression and phosphorylation alterations in the retina in both AD and glaucoma, yet the causative or downstream nature of Tau protein changes in these pathologies remains unclear. This study investigates the impact of Tau protein modulation on retinal neurons under normal and experimental glaucoma conditions. Employing AAV9-mediated gene therapy for Tau overexpression and knockdown, both manipulations were found to adversely affect retinal structural and functional measures as well as neuroprotective Akt/Erk survival signalling in healthy conditions. In the experimental glaucoma model, Tau overexpression intensified inner retinal degeneration, while Tau silencing provided significant protection against these degenerative changes. These findings underscore the critical role of endogenous Tau protein levels in preserving retinal integrity and emphasize the therapeutic potential of targeting Tau in glaucoma pathology.


Assuntos
Terapia Genética , Glaucoma , Proteínas tau , Proteínas tau/metabolismo , Animais , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/genética , Terapia Genética/métodos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Retina/metabolismo , Retina/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Transdução de Sinais/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Fenótipo
4.
Nat Commun ; 15(1): 5243, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38897994

RESUMO

Retinal optical coherence tomography has been identified as biomarker for disease progression in relapsing-remitting multiple sclerosis (RRMS), while the dynamics of retinal atrophy in progressive MS are less clear. We investigated retinal layer thickness changes in RRMS, primary and secondary progressive MS (PPMS, SPMS), and their prognostic value for disease activity. Here, we analyzed 2651 OCT measurements of 195 RRMS, 87 SPMS, 125 PPMS patients, and 98 controls from five German MS centers after quality control. Peripapillary and macular retinal nerve fiber layer (pRNFL, mRNFL) thickness predicted future relapses in all MS and RRMS patients while mRNFL and ganglion cell-inner plexiform layer (GCIPL) thickness predicted future MRI activity in RRMS (mRNFL, GCIPL) and PPMS (GCIPL). mRNFL thickness predicted future disability progression in PPMS. However, thickness change rates were subject to considerable amounts of measurement variability. In conclusion, retinal degeneration, most pronounced of pRNFL and GCIPL, occurs in all subtypes. Using the current state of technology, longitudinal assessments of retinal thickness may not be suitable on a single patient level.


Assuntos
Progressão da Doença , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Retina , Degeneração Retiniana , Tomografia de Coerência Óptica , Humanos , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Masculino , Feminino , Tomografia de Coerência Óptica/métodos , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/fisiopatologia , Retina/diagnóstico por imagem , Retina/patologia , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla Crônica Progressiva/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Prognóstico , Fibras Nervosas/patologia , Células Ganglionares da Retina/patologia
5.
Cells ; 13(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891043

RESUMO

BAX plays an essential role in retinal ganglion cell (RGC) death induced by optic nerve injury. Recently, we developed M109S, an orally bioactive and cytoprotective small compound (CPSC) that inhibits BAX-mediated cell death. We examined whether M109S can protect RGC from optic nerve crush (ONC)-induced apoptosis. M109S was administered starting 5 h after ONC for 7 days. M109S was orally administered in two groups (5 mg/kg twice a day or 7.5 mg/kg once a day). The retina was stained with anti-BRN3A and cleaved Caspase-3 (active Caspase-3) that are the markers of RGC and apoptotic cells, respectively. ONC decreased the number of BRN3A-positive RGC and increased the number of active Caspase-3-expressing apoptotic cells. In ONC-treated retina, there were cells that were double stained with anti-BRN3A and ant-cleaved Caspase-3, indicating that apoptosis in BRN3A-positive RGCs occurred. M109S inhibited the decrease of BRN3A-positive cells whereas it inhibited the increase of active Caspase-3-positive cells in the retina of ONC-treated mice, suggesting that M109S inhibited apoptosis in RGCs. M109S did not induce detectable histological damage to the lungs or kidneys in mice, suggesting that M109S did not show toxicities in the lung or kidneys when the therapeutic dose was used. The present study suggests that M109S is effective in rescuing damaged RGCs. Since M109S is an orally bioactive small compound, M109S may become the basis for a portable patient-friendly medicine that can be used to prevent blindness by rescuing damaged optic nerve cells from death.


Assuntos
Apoptose , Compressão Nervosa , Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos , Traumatismos do Nervo Óptico/tratamento farmacológico , Traumatismos do Nervo Óptico/patologia , Apoptose/efeitos dos fármacos , Masculino , Caspase 3/metabolismo , Camundongos Endogâmicos C57BL , Citoproteção/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/patologia
6.
Aging (Albany NY) ; 16(11): 9813-9823, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848144

RESUMO

BACKGROUND: Glaucoma is an optic neurodegenerative disease. Retinal ganglion cells (RGCs) are the fundamental neurons in the trabecular meshwork, and their loss is the main pathological reason for glaucoma. The present study was to investigate mechanisms that regulate RGCs survival. METHODS: A mouse model of glaucoma was established by injecting hypertonic saline into the limbal veins. RGCs apoptosis was detected by using flow cytometry. Protein expressions in RGCs in response to DNA damage inducer cisplatin treatment were detected by immunofluorescence and western blot. The expressions of inflammatory cytokines were determined using ELISA and real-time PCR. RESULTS: In the hypertonic saline-injected mice, we found visual function was impaired followed by the increased expression of γH2AX and activation of cGAS-STING signaling. We found that DNA damage inducer cisplatin treatment incurred significant DNA damage, cell apoptosis, and inflammatory response. Mechanistically, cisplatin treatment triggered activation of the cGAS-STING signaling by disrupting mitochondrial function. Suppression of cGAS-STING ameliorated inflammation and protected visual function in glaucoma mice. CONCLUSIONS: The data demonstrated that cGAS-STING signaling is activated in the damaged retinal ganglion cells, which is associated with increased inflammatory responses, DNA damage, and mitochondrial dysfunction. Targeting the cGAS-STING signaling pathway represents a potential way to alleviate glaucoma-related visual function.


Assuntos
Dano ao DNA , Glaucoma , Proteínas de Membrana , Nucleotidiltransferases , Células Ganglionares da Retina , Transdução de Sinais , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Glaucoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
7.
Int Ophthalmol ; 44(1): 241, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904796

RESUMO

PURPOSE: This review aims to elucidate the role of T cell-induced autoimmune responses in the pathogenesis of glaucoma, focusing on the immunological changes contributing to retinal ganglion cell (RGC) damage. METHODS: A comprehensive review of recent studies examining immunological mechanisms in glaucoma was conducted. This included analyses of T cell interactions, heat shock proteins (HSPs), and resultant autoimmune responses. Key findings from experimental models and clinical observations were synthesized to present a coherent understanding of immune dynamics in glaucoma. RESULTS: Glaucoma is a neurodegenerative disease marked by optic nerve atrophy and irreversible vision loss due to RGC damage. The disease is etiologically heterogeneous, with multiple risk factors and pathogenic mechanisms. Recent research highlights the dual immunomodulatory role of T cells in immune protection and injury. T cells, pre-sensitized by bacterial HSPs, can cross-react with endogenous HSPs in RGCs under stress, leading to autoimmune damage. Elevated levels of HSP autoantibodies and abnormal T cell activity have been observed in glaucoma patients, indicating a significant autoimmune component in disease progression. CONCLUSIONS: T cell-induced autoimmune responses are crucial in the pathogenesis of glaucoma, contributing to RGC degeneration beyond the effects of elevated intraocular pressure. Understanding these immunological mechanisms is vital for developing targeted neuroprotective therapies for glaucoma.


Assuntos
Autoimunidade , Glaucoma , Células Ganglionares da Retina , Linfócitos T , Humanos , Glaucoma/imunologia , Glaucoma/etiologia , Glaucoma/fisiopatologia , Linfócitos T/imunologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/imunologia , Autoimunidade/imunologia , Pressão Intraocular/fisiologia , Animais , Proteínas de Choque Térmico/imunologia
8.
Transl Vis Sci Technol ; 13(6): 10, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38884547

RESUMO

Purpose: To explore the structural-functional loss relationship from optic-nerve-head- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods. Methods: A cohort comprising 5238 unique eyes classified as suspects or diagnosed with glaucoma was considered. All patients underwent ophthalmologic examination consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT on the same day. Deep learning models were trained to estimate G-pattern visual field (VF) mean deviation (MD) and cluster MD using retinal thickness maps from seven layers: retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer and outer plexiform layer (INL + OPL), outer nuclear layer (ONL), photoreceptors and retinal pigmented epithelium (PR + RPE), choriocapillaris and choroidal stroma (CC + CS), total retinal thickness (RT). Results: The best performance on MD prediction is achieved by RNFL, GCL + IPL and RT layers, with R2 scores of 0.37, 0.33, and 0.31, respectively. Combining macular and peri-papillary scans outperforms single modality prediction, achieving an R2 value of 0.48. Cluster MD predictions show promising results, notably in central clusters, reaching an R2 of 0.56. Conclusions: The combination of multiple modalities, such as optic-nerve-head circular B-scans and retinal thickness maps from macular SD-OCT images, improves the performance of MD and cluster MD prediction. Our proposed model demonstrates the highest level of accuracy in predicting MD in the early-to-mid stages of glaucoma. Translational Relevance: Objective measures recorded with SD-OCT can optimize the number of visual field tests and improve individualized glaucoma care by adjusting VF testing frequency based on deep-learning estimates of functional damage.


Assuntos
Aprendizado Profundo , Macula Lutea , Tomografia de Coerência Óptica , Campos Visuais , Tomografia de Coerência Óptica/métodos , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Campos Visuais/fisiologia , Macula Lutea/diagnóstico por imagem , Macula Lutea/patologia , Prognóstico , Idoso , Células Ganglionares da Retina/patologia , Glaucoma/diagnóstico por imagem , Glaucoma/patologia , Fibras Nervosas/patologia , Testes de Campo Visual/métodos , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia
9.
Int Ophthalmol ; 44(1): 250, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907173

RESUMO

PURPOSE: To characterize glaucoma progression in early-stage patients with retinal nerve fiber layer (RNFL) using the change analysis software (CAS), which was utilized to track RNFL thinning. METHODS: We retrospectively analyzed 92 eyes of 92 patients with early-stage glaucoma. Patients were divided into two subgroups based on their diagnosis of pseudoexfoliation glaucoma (PEG) and primary open-angle glaucoma (POAG). A complete ophthalmologic examination was performed on all patients. Additionally, automated perimetry was conducted on each patient. Furthermore, Fourier-domain optical coherence tomography (OCT) was employed to measure RNFL and central corneal thickness. Using the OCT device's CAS, we computed the annual rate of total and glaucomatous RNFL thinning for each patient. RESULTS: A total of 44 PEG and 48 POAG patients were included in the study. The right eye measurements of these patients were analyzed and compared. The two groups were not significantly different in age, gender, and the number of visits per year (p > 0.05, for each). However, the difference between the mean RNFL thickness at baseline (91.39 ± 10.71 and 96.9 ± 8.6 µm) and at the last visit (85.2 ± 15.76 µm and 91.56 ± 9.58 µm) was statistically significant between the two groups (p = 0.043, p = 0.039, respectively). Additionally, the difference in annual RNFL thinning rates (1.43 ± 0.81 µm and 1.07 ± 0.32 µm) between the two groups was statistically significant (p = 0.009). CONCLUSION: The annual rate of glaucomatous RNFL loss in early-stage PEG patients (1.23 µm) was higher than in POAG patients (0.87 µm). However, despite these loss rates, scotoma was not detected in the visual field tests of these patients. Therefore, using CAS in the follow-up of early-stage glaucoma patients is a useful alternative for monitoring glaucomatous progression. Furthermore, this method can be utilized in future research for the diagnosis and follow-up of glaucoma in special populations (e.g., those with pathological myopia or high hyperopia) that are not included in normative databases.


Assuntos
Síndrome de Exfoliação , Glaucoma de Ângulo Aberto , Pressão Intraocular , Fibras Nervosas , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Campos Visuais , Humanos , Tomografia de Coerência Óptica/métodos , Glaucoma de Ângulo Aberto/diagnóstico , Glaucoma de Ângulo Aberto/fisiopatologia , Masculino , Feminino , Estudos Retrospectivos , Fibras Nervosas/patologia , Células Ganglionares da Retina/patologia , Idoso , Síndrome de Exfoliação/diagnóstico , Pessoa de Meia-Idade , Campos Visuais/fisiologia , Pressão Intraocular/fisiologia , Progressão da Doença , Testes de Campo Visual , Seguimentos , Disco Óptico/patologia , Disco Óptico/diagnóstico por imagem
10.
Invest Ophthalmol Vis Sci ; 65(5): 15, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38717426

RESUMO

Purpose: Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFß) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFß signaling ameliorated ASD, supporting a role for the TGFß pathway in disease pathogenesis. Here, we tested whether altered TGFß signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods: To test the role of TGFß signaling in glaucoma-relevant phenotypes, we genetically reduced TGFß signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFß ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results: Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFß receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions: Our results suggest that elevated TGFß signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.


Assuntos
Colágeno Tipo IV , Glaucoma , Receptor do Fator de Crescimento Transformador beta Tipo II , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Camundongos , Segmento Anterior do Olho/metabolismo , Segmento Anterior do Olho/patologia , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Glaucoma/metabolismo , Glaucoma/genética , Glaucoma/patologia , Pressão Intraocular/fisiologia , Camundongos Endogâmicos C57BL , Mutação , Nervo Óptico/patologia , Nervo Óptico/metabolismo , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/genética , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Transdução de Sinais/fisiologia , Microscopia com Lâmpada de Fenda , Tomografia de Coerência Óptica , Tonometria Ocular , Fator de Crescimento Transformador beta/metabolismo
11.
Cell Rep Med ; 5(5): 101554, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38729157

RESUMO

The axons of retinal ganglion cells (RGCs) form the optic nerve, transmitting visual information from the eye to the brain. Damage or loss of RGCs and their axons is the leading cause of visual functional defects in traumatic injury and degenerative diseases such as glaucoma. However, there are no effective clinical treatments for nerve damage in these neurodegenerative diseases. Here, we report that LIM homeodomain transcription factor Lhx2 promotes RGC survival and axon regeneration in multiple animal models mimicking glaucoma disease. Furthermore, following N-methyl-D-aspartate (NMDA)-induced excitotoxicity damage of RGCs, Lhx2 mitigates the loss of visual signal transduction. Mechanistic analysis revealed that overexpression of Lhx2 supports axon regeneration by systematically regulating the transcription of regeneration-related genes and inhibiting transcription of Semaphorin 3C (Sema3C). Collectively, our studies identify a critical role of Lhx2 in promoting RGC survival and axon regeneration, providing a promising neural repair strategy for glaucomatous neurodegeneration.


Assuntos
Axônios , Modelos Animais de Doenças , Glaucoma , Proteínas com Homeodomínio LIM , Regeneração Nervosa , Células Ganglionares da Retina , Fatores de Transcrição , Animais , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Glaucoma/genética , Glaucoma/patologia , Glaucoma/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Axônios/metabolismo , Axônios/patologia , Camundongos , Regeneração Nervosa/genética , Regeneração Nervosa/fisiologia , Camundongos Endogâmicos C57BL , Sobrevivência Celular/genética , Semaforinas/metabolismo , Semaforinas/genética , N-Metilaspartato/metabolismo
12.
Exp Eye Res ; 244: 109931, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763353

RESUMO

Gene therapy is one of the strategies that may reduce or reverse progressive neurodegeneration in retinal neurodegenerative diseases. However, efficiently delivering transgenes to retinal ganglion cells (RGCs) remains hard to achieve. In this study, we innovatively investigated transduction efficiency of adeno-associated virus (AAV)-PHP.eB in murine RGCs by retro-orbital venous sinus injection. Five doses of AAV-PHP.eB-EGFP were retro-orbitally injected in venous sinus in adult C57/BL6J mice. Two weeks after administration, RGCs transduction efficiency was quantified by retinal flat-mounts and frozen section co-labeling with RGCs marker Rbpms. In addition, safety of this method was evaluated by RGCs survival rate and retinal morphology. To conform efficacy of this new method, AAV-PHP.eB-CNTF was administrated into mature mice through single retro-orbital venous injection after optic nerve crush injury to evaluate axonal elongation. Results indicated that AAV- PHP.eB readily crossed the blood-retina barrier and was able to transduce more than 90% of RGCs when total dose of virus reached 5 × 1010 vector genomes (vg). Moreover, this technique did not affect RGCs survival rate and retinal morphology. Furthermore, retro-orbital venous delivery of AAV-PHP.eB-CNTF effectively transduced RGCs, robustly promoted axonal regeneration after optic nerve crush injury. Thus, novel AAV-PHP.eB retro-orbital injection provides a minimally invasive and efficient route for transgene delivery in treatment of retinal neurodegenerative diseases.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina , Transdução Genética , Animais , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Camundongos , Dependovirus/genética , Terapia Genética/métodos , Traumatismos do Nervo Óptico/terapia , Traumatismos do Nervo Óptico/metabolismo , Modelos Animais de Doenças , Sobrevivência Celular , Órbita/irrigação sanguínea
13.
Exp Eye Res ; 244: 109938, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38789020

RESUMO

Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.


Assuntos
Sobrevivência Celular , Cimenos , Modelos Animais de Doenças , Degeneração Retiniana , Células Ganglionares da Retina , Animais , Coelhos , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Cimenos/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Injeções Intravítreas , Citometria de Fluxo , Reflexo Pupilar/efeitos dos fármacos , Reflexo Pupilar/fisiologia
14.
Biomed Pharmacother ; 175: 116711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735082

RESUMO

Glaucoma, the leading cause of irreversible blindness worldwide, is characterized by neurodegeneration and neuroinflammation with retinal NAD/NADP and GSH decline. Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADP) and glutathione (GSH) are two redox reducers in neuronal and glial metabolism. However, therapeutic strategies targeting NAD/NADP or GSH do not exert ideal effects, and the underlying mechanisms are still poorly understood. We assessed morphological changes in retinal ganglion cells (RGCs), the affected neurons in glaucoma, and Müller cells, the major glial cells in the retina, as well as the levels of phosphorylated p38 (p-p38) and Caspase-3 in glaucoma patients. We constructed a modified chronic ocular hypertensive rat model and an oxygen-glucose deprivation (OGD) cell model. After applying NADPH and N-acetylcysteine (NAC), a precursor to cysteine, the rate-limiting substrate in GSH biosynthesis, to cells, apoptosis, axonal damage and peroxidation were reduced in the RGCs of the NAC group and p-p38 levels were decreased in the RGCs of the NADPH group, while in stimulated Müller cells cultured individually or cocultured with RGCs, gliosis and p38/MAPK, rather than JNK/MAPK, activation were inhibited. The results were more synergistic in the rat model, where either NADPH or NAC showed crossover effects on inhibiting peroxidation and p38/MAPK pathway activation. Moreover, the combination of NADPH and NAC ameliorated RGC electrophysiological function and prevented Müller cell gliosis to the greatest extent. These data illustrated conjoined mechanisms in glaucomatous RGC injury and Müller cell gliosis and suggested that NADPH and NAC collaborate as a neuroprotective and anti-inflammatory combination treatment for glaucoma and other underlying human neurodegenerative diseases.


Assuntos
Acetilcisteína , NADP , Hipertensão Ocular , Ratos Sprague-Dawley , Células Ganglionares da Retina , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , NADP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Hipertensão Ocular/metabolismo , Hipertensão Ocular/tratamento farmacológico , Hipertensão Ocular/patologia , Acetilcisteína/farmacologia , Ratos , Masculino , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/tratamento farmacológico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Humanos , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Modelos Animais de Doenças , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Doença Crônica , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Peroxidação de Lipídeos/efeitos dos fármacos
15.
JAMA Ophthalmol ; 142(6): 530-537, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696186

RESUMO

Importance: Rapid initial optic nerve head capillary density loss may be used to assess the risk of glaucoma visual field progression. Objective: To investigate the association between the rate of initial optic nerve head capillary density loss from optical coherence tomography angiography (OCTA) and visual field progression. Design, Setting, Participants: This was a retrospective study of a longitudinal cohort at a glaucoma referral center. A total of 167 eyes (96 with primary open-angle glaucoma and 71 with glaucoma suspect) of 109 patients were monitored for a mean (SD) of 5.7 (1.4) years from January 2015 to December 2022. Data analysis was undertaken in April 2023. Main Outcomes and Measures: The rates of initial capillary density and average retinal nerve fiber layer loss were calculated from the first 3 optic nerve head OCTA and OCT scans, respectively, during the initial follow-up (mean [SD], 2.0 [1.0] years). Based on the median rate, eyes were categorized into fast and slow progressor groups. The association between initial capillary density change or retinal nerve fiber layer thinning and visual field progression was evaluated using linear-mixed and time-varying Cox models. Results: A total of 167 eyes of 109 patients (mean [SD] age, 69.0 [11.1] years; 56 [51.4%] female and 53 [48.6%] male) were assessed. Eighty-three eyes were slow OCTA progressors, while 84 eyes were fast with mean capillary density loss of -0.45% per year and -1.17% per year, respectively (mean difference, -0.72%/year; 95% CI,-0.84 to -0.60; P < .001). Similarly, 83 eyes were slow OCT progressors, while 84 eyes were fast with mean retinal nerve fiber layer thinning of -0.09 µm per year and -0.60 µm per year, respectively (mean difference, -0.51 µm/year; 95% CI,-0.59 to -0.43; P < .001). The fast OCTA and OCT progressors were associated with more rapid visual field loss (mean difference, -0.18 dB/year; 95% CI,-0.30 to -0.06; P = .004 and -0.17 dB/year; 95% CI,-0.29 to -0.06; P = .002, respectively). Fast OCTA progressing eyes were more likely to have visual field progression (hazard ratio, 1.96; 95% CI, 1.04-3.69; P = .04). Seventeen of 52 eyes (32.7%; 95% CI, 32.5-32.8) with fast OCTA and OCT progression developed subsequent visual field likely progression. Conclusion and Relevance: Rapid initial optic nerve head capillary density loss from OCTA was associated with a faster rate of visual field progression and a doubling of the risk of developing event progression in this study. These findings may support clinical use of OCTA and OCT optic nerve head measurements for risk assessment of glaucoma progression.


Assuntos
Capilares , Progressão da Doença , Glaucoma de Ângulo Aberto , Pressão Intraocular , Fibras Nervosas , Disco Óptico , Células Ganglionares da Retina , Vasos Retinianos , Tomografia de Coerência Óptica , Campos Visuais , Humanos , Campos Visuais/fisiologia , Feminino , Masculino , Disco Óptico/irrigação sanguínea , Estudos Retrospectivos , Tomografia de Coerência Óptica/métodos , Capilares/patologia , Capilares/diagnóstico por imagem , Idoso , Células Ganglionares da Retina/patologia , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Pressão Intraocular/fisiologia , Glaucoma de Ângulo Aberto/fisiopatologia , Glaucoma de Ângulo Aberto/diagnóstico , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Seguimentos , Testes de Campo Visual , Angiofluoresceinografia/métodos , Fatores de Risco , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/fisiopatologia , Hipertensão Ocular/fisiopatologia , Hipertensão Ocular/diagnóstico
16.
Sci Rep ; 14(1): 11758, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783015

RESUMO

Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease management to mitigate further vision deterioration. The advent of optical coherence tomography (OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network (CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post-prediction aggregation of all B-scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from the OCT data. However, in the absence of extensively pre-trained 3D models, the comparative efficacy of 2D and 3D-CNN algorithms in detecting glaucoma from volumetric OCT images remains unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT images using select state-of-the-art (SOTA) 2D-CNN models, 3D adaptations of these 2D-CNN models with specific weight transfer techniques, and a custom 5-layer 3D-CNN-Encoder algorithm. The performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, to provide a comprehensive understanding of the models' capabilities in identifying glaucoma. Our findings demonstrate that the 2D-CNN algorithm consistently provided robust results compared to their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre-trained 3D models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D and 3D-CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights the potential of 2D algorithms for volumetric OCT image-based glaucoma detection.


Assuntos
Algoritmos , Glaucoma , Redes Neurais de Computação , Tomografia de Coerência Óptica , Tomografia de Coerência Óptica/métodos , Humanos , Glaucoma/diagnóstico por imagem , Glaucoma/diagnóstico , Imageamento Tridimensional/métodos , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia , Células Ganglionares da Retina/patologia
17.
Transl Vis Sci Technol ; 13(5): 8, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38739084

RESUMO

Purpose: This study aimed to evaluate the ocular characteristics associated with spontaneously high myopia in adult nonhuman primates (NHPs). Methods: A total of 537 eyes of 277 macaques with an average age of 18.53 ± 3.01 years (range = 5-26 years), raised in a controlled environment, were included. We measured ocular parameters, including spherical equivalent (SE), axial length (AXL), and intraocular pressure. The 45-degree fundus images centered on the macula and the disc assessed the fundus tessellation and parapapillary atrophy (PPA). Additionally, optical coherence tomography (OCT) was used to measure the thickness of the retinal nerve fiber layer (RNFL). Results: The mean SE was -1.58 ± 3.71 diopters (D). The mean AXL was 18.76 ± 0.86 mm. The prevalence rate of high myopia was 17.7%. As myopia aggravated, the AXL increased (r = -0.498, P < 0.001). Compared with non-high myopia, highly myopic eyes had a greater AXL (P < 0.001), less RNFL thickness (P = 0.004), a higher incidence of PPA (P < 0.001), and elevated grades of fundus tessellation (P < 0.001). The binary logistic regression was performed, which showed PPA (odds ratio [OR] = 4.924, 95% confidence interval [CI] = 2.375-10.207, P < 0.001) and higher grades of fundus tessellation (OR = 1.865, 95% CI = 1.474-2.361, P < 0.001) were independent risk characteristics for high myopia. Conclusions: In NHPs, a higher grade of fundus tessellation and PPA were significant biomarkers of high myopia. Translational Relevance: The study demonstrates adult NHPs raised in conditioned rooms have a similar prevalence and highly consistent fundus changes with human beings, which strengthens the foundation for utilizing macaques as an animal model in high myopic studies.


Assuntos
Fundo de Olho , Tomografia de Coerência Óptica , Animais , Masculino , Feminino , Modelos Animais de Doenças , Disco Óptico/patologia , Disco Óptico/diagnóstico por imagem , Atrofia Óptica/patologia , Atrofia Óptica/epidemiologia , Pressão Intraocular/fisiologia , Miopia Degenerativa/patologia , Miopia Degenerativa/epidemiologia , Fibras Nervosas/patologia , Comprimento Axial do Olho/patologia , Células Ganglionares da Retina/patologia , Miopia/patologia , Miopia/epidemiologia , Miopia/veterinária
18.
Transl Vis Sci Technol ; 13(5): 9, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38743409

RESUMO

Purpose: To assess the diagnostic performance and structure-function association of retinal retardance (RR), a customized metric measured by a prototype polarization-sensitive optical coherence tomography (PS-OCT), across various stages of glaucoma. Methods: This cross-sectional pilot study analyzed 170 eyes from 49 healthy individuals and 68 patients with glaucoma. The patients underwent PS-OCT imaging and conventional spectral-domain optical coherence tomography (SD-OCT), as well as visual field (VF) tests. Parameters including RR and retinal nerve fiber layer thickness (RNFLT) were extracted from identical circumpapillary regions of the fundus. Glaucomatous eyes were categorized into early, moderate, or severe stages based on VF mean deviation (MD). The diagnostic performance of RR and RNFLT in discriminating glaucoma from controls was assessed using receiver operating characteristic (ROC) curves. Correlations among VF-MD, RR, and RNFLT were evaluated and compared within different groups of disease severity. Results: The diagnostic performance of both RR and RNFLT was comparable for glaucoma detection (RR AUC = 0.98, RNFLT AUC = 0.97; P = 0.553). RR showed better structure-function association with VF-MD than RNFLT (RR VF-MD = 0.68, RNFLT VF-MD = 0.58; z = 1.99; P = 0.047) in glaucoma cases, especially in severe glaucoma, where the correlation between VF-MD and RR (r = 0.73) was significantly stronger than with RNFLT (r = 0.43, z = 1.96, P = 0.050). In eyes with early and moderate glaucoma, the structure-function association was similar when using RNFLT and RR. Conclusions: RR and RNFLT have similar performance in glaucoma diagnosis. However, in patients with glaucoma especially severe glaucoma, RR showed a stronger correlation with VF test results. Further research is needed to validate RR as an indicator for severe glaucoma evaluation and to explore the benefits of using PS-OCT in clinical practice. Translational Relevance: We demonstrated that PS-OCT has the potential to evaluate the status of RNFL structural damage in eyes with severe glaucoma, which is currently challenging in clinics.


Assuntos
Glaucoma , Fibras Nervosas , Células Ganglionares da Retina , Tomografia de Coerência Óptica , Campos Visuais , Humanos , Tomografia de Coerência Óptica/métodos , Estudos Transversais , Masculino , Feminino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Projetos Piloto , Campos Visuais/fisiologia , Glaucoma/fisiopatologia , Glaucoma/diagnóstico por imagem , Idoso , Células Ganglionares da Retina/patologia , Curva ROC , Testes de Campo Visual/métodos , Adulto , Pressão Intraocular/fisiologia
19.
Transl Vis Sci Technol ; 13(5): 20, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38780955

RESUMO

Purpose: We sough to develop an automatic method of quantifying optic disc pallor in fundus photographs and determine associations with peripapillary retinal nerve fiber layer (pRNFL) thickness. Methods: We used deep learning to segment the optic disc, fovea, and vessels in fundus photographs, and measured pallor. We assessed the relationship between pallor and pRNFL thickness derived from optical coherence tomography scans in 118 participants. Separately, we used images diagnosed by clinical inspection as pale (n = 45) and assessed how measurements compared with healthy controls (n = 46). We also developed automatic rejection thresholds and tested the software for robustness to camera type, image format, and resolution. Results: We developed software that automatically quantified disc pallor across several zones in fundus photographs. Pallor was associated with pRNFL thickness globally (ß = -9.81; standard error [SE] = 3.16; P < 0.05), in the temporal inferior zone (ß = -29.78; SE = 8.32; P < 0.01), with the nasal/temporal ratio (ß = 0.88; SE = 0.34; P < 0.05), and in the whole disc (ß = -8.22; SE = 2.92; P < 0.05). Furthermore, pallor was significantly higher in the patient group. Last, we demonstrate the analysis to be robust to camera type, image format, and resolution. Conclusions: We developed software that automatically locates and quantifies disc pallor in fundus photographs and found associations between pallor measurements and pRNFL thickness. Translational Relevance: We think our method will be useful for the identification, monitoring, and progression of diseases characterized by disc pallor and optic atrophy, including glaucoma, compression, and potentially in neurodegenerative disorders.


Assuntos
Aprendizado Profundo , Fibras Nervosas , Disco Óptico , Fotografação , Software , Tomografia de Coerência Óptica , Humanos , Disco Óptico/diagnóstico por imagem , Disco Óptico/patologia , Tomografia de Coerência Óptica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Fibras Nervosas/patologia , Fotografação/métodos , Adulto , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/citologia , Idoso , Doenças do Nervo Óptico/diagnóstico por imagem , Doenças do Nervo Óptico/diagnóstico , Doenças do Nervo Óptico/patologia , Fundo de Olho
20.
Pol J Pathol ; 75(1): 40-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741428

RESUMO

C1q/TNF-related protein-9 (CTRP9) has been reported to play roles in several types of retinal diseases. However, the role and the potential mechanism of CTRP9 in glaucoma are still incompletely understood. The expression of CTRP9 in OGD/R-induced retinal ganglion cells (RGCs) was detected by quantitative real-time polymerase chain reaction and western blot assay. Cell proliferation was identified by cell counting Kit-8 assay. Flow cytometry, enzyme-linked immunosorbent assay and western blot assay were performed to assess cell apoptosis. Unfolded protein response (UPR), endoplasmic reticulum (ER) stress and the AMPK pathway were evaluated by western blot assay. The data showed that the expression of CTRP9 was significantly downregulated in OGD/R-induced 661W cells. OGD/R treatment reduced cell viability, promoted cell apoptosis and activated the UPR and ER stress. The overexpression of CTRP9 reversed the effects of OGD/R on 661W cell viability, apoptosis, the UPR and ER stress, as well as the AMPK pathway. However, Compound C, an inhibitor of AMPK signaling, reversed the protection of CTRP9 overexpression against injury from OGD/R in 661W cells. In summary, the results revealed that CTRP9 abated the apoptosis and UPR of OGD/R-induced RGCs by regulating the AMPK pathway, which may provide a promising target for the treatment of glaucoma.


Assuntos
Proteínas Quinases Ativadas por AMP , Apoptose , Estresse do Retículo Endoplasmático , Células Ganglionares da Retina , Transdução de Sinais , Resposta a Proteínas não Dobradas , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Linhagem Celular , Adiponectina/metabolismo , Sobrevivência Celular , Glucose/metabolismo , Glaucoma/metabolismo , Glaucoma/patologia , Glicoproteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...