Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Braz J Med Biol Res ; 51(10): e7417, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30156610

RESUMO

It is well known that the aminoglycoside antibiotic gentamicin is capable of causing damage to kidney cells. Given the known involvement of Ca2+ in the nephrotoxic action of gentamicin, the purpose of this study was to establish a relationship between the concentration of intracellular Ca2+ ([Ca2+]i) and cellular cytotoxicity using MDCK-C11 cells, a clone that has several properties that resemble those of intercalated cells of the distal nephron. Changes in [Ca2+]i was determined using fluorescence microscopy. Cell viability was evaluated by the neutral red method, and cell cytotoxicity by the MTT method. The [Ca2+]i gradually increased when cells were exposed to 0.1 mM gentamicin for 10, 20, and 30 min. The presence of extracellular Ca2+ was found to be necessary to stimulate the increase in [Ca2+]i induced by gentamicin, since this stimulus disappeared by using 1.8 mM EGTA (a Ca2+ chelator). Morphological changes were observed with scanning electron microscopy in epithelial cells exposed to the antibiotic. Furthermore, with the MTT method, a decrease in metabolic activity induced by gentamicin was observed, which indicates a cytotoxic effect. In conclusion, gentamicin was able to alter [Ca2+]i, change the morphology of MDCK-C11 cells, and promote cytotoxicity.


Assuntos
Antibacterianos/toxicidade , Cálcio/metabolismo , Gentamicinas/toxicidade , Células Madin Darby de Rim Canino/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Cães , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Animais , Néfrons/citologia , Néfrons/efeitos dos fármacos
2.
Braz. j. med. biol. res ; 51(10): e7417, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951710

RESUMO

It is well known that the aminoglycoside antibiotic gentamicin is capable of causing damage to kidney cells. Given the known involvement of Ca2+ in the nephrotoxic action of gentamicin, the purpose of this study was to establish a relationship between the concentration of intracellular Ca2+ ([Ca2+]i) and cellular cytotoxicity using MDCK-C11 cells, a clone that has several properties that resemble those of intercalated cells of the distal nephron. Changes in [Ca2+]i was determined using fluorescence microscopy. Cell viability was evaluated by the neutral red method, and cell cytotoxicity by the MTT method. The [Ca2+]i gradually increased when cells were exposed to 0.1 mM gentamicin for 10, 20, and 30 min. The presence of extracellular Ca2+ was found to be necessary to stimulate the increase in [Ca2+]i induced by gentamicin, since this stimulus disappeared by using 1.8 mM EGTA (a Ca2+ chelator). Morphological changes were observed with scanning electron microscopy in epithelial cells exposed to the antibiotic. Furthermore, with the MTT method, a decrease in metabolic activity induced by gentamicin was observed, which indicates a cytotoxic effect. In conclusion, gentamicin was able to alter [Ca2+]i, change the morphology of MDCK-C11 cells, and promote cytotoxicity.


Assuntos
Animais , Cães , Gentamicinas/toxicidade , Cálcio/metabolismo , Testes de Toxicidade/métodos , Células Madin Darby de Rim Canino/efeitos dos fármacos , Antibacterianos/toxicidade , Microscopia Eletrônica de Varredura , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Modelos Animais , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/ultraestrutura , Néfrons/citologia , Néfrons/efeitos dos fármacos
3.
Exp Parasitol ; 183: 69-75, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29097064

RESUMO

Free-living amoebae of the genus Acanthamoeba are protozoa ubiquitously found in nature. Some species of the genus are potentially pathogenic for humans provoking keratitis in healthy individuals, often in contact lens wearers and opportunistic infections such as pneumonitis, fatal granulomatous encephalitis and skin infections, particularly in immunocompromised individuals. The pathogenic mechanisms of these amoebae are poorly understood, however it had been suggested that contact dependent mechanisms are important during invasion, regardless of the epithelia type, since amoebae penetrate epithelia separating tight junction (TJ). This study was undertaken to determine whether Acanthamoeba sp. (T4) damages the barrier function of the TJ in MDCK epithelial monolayers. Actin cytoskeleton staining and electron microscopy analyses were performed; paracellular permeability and TJ sealing were evaluated by apicobasolateral diffusion of ruthenium red and transepithelial resistance (TER) measurements; immunofluorescence and Western blot assays were performed to locate and estimate expression of TJ protein claudins 2 (Cldn2) and 4 (Cldn4). The results show that Acanthamoeba sp. crosses the MDCK monolayer without altering the actin cytoskeleton or the morphology of the cells. When trophozoites or conditioned medium interact with the monolayer, paracellular diffusion of ruthenium red increases. After 6 h, the amoebae, but not their conditioned medium, increase the TER, and Cldn2 is removed from the TJ, and its overall content in the cells diminishes, while Cldn4 is targeted to the TJ without changing its expression level. In conclusion Acanthamoeba (T4) crosses MDCK monolayer without damaging the cells, increasing permeability and TER through Cldn2 degradation, and redirecting Cldn4 to TJ. These results strongly suggest that contact-dependent mechanisms are relevant during amoebae invasion.


Assuntos
Acanthamoeba/fisiologia , Células Madin Darby de Rim Canino/parasitologia , Junções Íntimas/parasitologia , Acanthamoeba/patogenicidade , Acanthamoeba/ultraestrutura , Animais , Western Blotting , Claudina-2/metabolismo , Claudina-4/metabolismo , Meios de Cultivo Condicionados , Cães , Impedância Elétrica , Imunofluorescência , Indicadores e Reagentes/metabolismo , Células Madin Darby de Rim Canino/ultraestrutura , Microscopia Eletrônica de Transmissão , Permeabilidade , Rutênio Vermelho/metabolismo , Junções Íntimas/química , Junções Íntimas/metabolismo , Trofozoítos/fisiologia , Trofozoítos/ultraestrutura
4.
Exp Parasitol ; 174: 31-41, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28011167

RESUMO

Trypanosoma brucei are extracellular hemoflagellate protozoan parasites and one of the causative agents of a devastating zoonotic disease called African Trypanosomiasis. In humans, the disease is caused by Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense, which cross the blood brain barrier (BBB) causing neurological disorders which culminate in death if untreated. In some domestic animals and laboratory rodents, Trypanosoma brucei brucei causes a disease similar to that in humans. The mechanism by which Trypanosoma brucei brucei invade biological barriers including the BBB has not been fully elucidated. To further address this issue, Mardin Dardy Canine Kidney II (MDCKII) and Human dermal microvascular endothelial cell (HDMEC) monolayers were grown to confluence on transwell inserts to constitute in vitro biological barriers. MDCKII cells were chosen for their ability to form tight junctions similar to those formed by the BBB endothelial cells. Labeled trypanosomes were placed in the upper chamber of transwell inserts layered with confluent MDCKII/HDMEC monolayers and their ability to cross the monolayer over time evaluated. Our results show that only 0.5-1.25% of Trypanosoma brucei brucei were able to migrate across the monolayers after 3 h. By employing immune-staining and confocal microscopic analysis we observed that trypanosomes were located at the tight junctions and inside the cell in the MDCK II monolayers indicating that they crossed the monolayer using both the paracellular and transcellular routes. Our observations also showed that there seemed to be no obvious degradation of junction proteins Zonula Ocludens-1, Occludin and Ecadherin. In the HDMEC cell monolayer, our scanning electron microscopy data showed that Trypanosoma brucei brucei is able to modulate the plasma membrane to form invaginations similar to cuplike structures formed by Tlymphocytes. However these structures seemed to be independent of vascular adhesion molecules suggesting that they could be more like the membrane ruffles formed by certain intracellular bacteria during invasion. Taken together, our data reveal a mechanism by which Trypanosoma brucei brucei is able to cross different biological barriers including the BBB without causing any obvious damage.


Assuntos
Barreira Hematoencefálica/parasitologia , Células Madin Darby de Rim Canino/parasitologia , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/parasitologia , Animais , Barreira Hematoencefálica/ultraestrutura , Linhagem Celular , Membrana Celular/parasitologia , Membrana Celular/ultraestrutura , Cães , Flagelos/fisiologia , Flagelos/ultraestrutura , Imunofluorescência , Humanos , Células Madin Darby de Rim Canino/ultraestrutura , Camundongos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Coelhos , Ratos , Proteínas de Junções Íntimas/química , Junções Íntimas/parasitologia , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/patologia
5.
Life Sci ; 164: 23-30, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27593572

RESUMO

AIMS: Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. MAIN METHODS: The renal epithelial cells (MDCK) were exposed to 200µg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. KEY FINDINGS: Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. SIGNIFICANCE: The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease.


Assuntos
Oxalato de Cálcio/toxicidade , Células Epiteliais/efeitos dos fármacos , Proteínas da Matriz Extracelular/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Células Epiteliais/citologia , Células Epiteliais/patologia , Citometria de Fluxo , Humanos , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/ultraestrutura
6.
Nano Lett ; 15(7): 4737-44, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26065925

RESUMO

Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging.


Assuntos
Células Epiteliais/ultraestrutura , Grafite/química , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Influenza Humana/virologia , Microscopia Eletrônica de Transmissão/métodos , Animais , Linhagem Celular , Cães , Desenho de Equipamento , Humanos , Células Madin Darby de Rim Canino/ultraestrutura , Microscopia Eletrônica de Transmissão/instrumentação , Soluções/química
7.
PLoS One ; 9(8): e104994, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157572

RESUMO

ZO-1, ZO-2 and ZO-3 are tight junction-associated scaffold proteins that bind to transmembrane proteins of tight junctions and the underlying cytoskeleton. ZO-1 is involved in the regulation of cytoskeletal organization, but its detailed molecular mechanism is less well understood. Gene knockout is an ideal method to investigate the functions of proteins that might have redundant functions such as ZO proteins, when compared with methods such as RNA interference-mediated suppression of gene expression. In this study we applied transcription activator-like effector nucleases (TALENs), a recently developed genome editing method for gene knockout, and established ZO-1 knockout clones in Madin-Darby canine kidney (MDCK) cells. ZO-1 knockout induced striking changes in myosin organization at cell-cell contacts and disrupted the localization of tight junction proteins; these findings were previously unseen in studies of ZO-1 knockdown by RNA interference. Rescue experiments revealed that trace ZO-1 expression reversed these changes while excessive ZO-1 expression induced an intensive zigzag shape of cell-cell junctions. These results suggest a role for ZO-1 in the regulation of cytoskeleton and shape of cell-cell junctions in MDCK cells and indicate the advantage of knockout analysis in cultured cells.


Assuntos
Forma Celular , Citoesqueleto/metabolismo , Técnicas de Silenciamento de Genes/métodos , Células Madin Darby de Rim Canino/citologia , Proteína da Zônula de Oclusão-1/genética , Animais , Sequência de Bases , Citoesqueleto/ultraestrutura , Cães , Técnicas de Inativação de Genes , Marcação de Genes , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/ultraestrutura , Dados de Sequência Molecular , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-2/genética , Proteína da Zônula de Oclusão-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...