Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Thorac Cardiovasc Surg ; 159(5): 1825-1835.e2, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31353103

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are promising therapeutics for cardiovascular disease, but poorly-timed delivery might hinder efficacy. We characterized the time-dependent response to endothelial progenitor cell (EPC)-EVs within an injectable shear-thinning hydrogel (STG+EV) post-myocardial infarction (MI) to identify when an optimal response is achieved. METHODS: The angiogenic effects of prolonged hypoxia on cell response to EPC-EV therapy and EV uptake affinity were tested in vitro. A rat model of acute MI via left anterior descending artery ligation was created and STG+EV was delivered via intramyocardial injections into the infarct border zone at time points corresponding to phases of post-MI inflammation: 0 hours (immediate), 3 hours (acute inflammation), 4 days (proliferative), and 2 weeks (fibrosis). Hemodynamics 4 weeks post-treatment were compared across treatment and control groups (phosphate buffered saline [PBS], shear-thinning gel). Scar thickness and ventricular diameter were assessed histologically. The primary hemodynamic end point was end systolic elastance. The secondary end point was scar thickness. RESULTS: EPC-EVs incubated with chronically versus acutely hypoxic human umbilical vein endothelial cells resulted in a 2.56 ± 0.53 versus 1.65 ± 0.15-fold increase (P = .05) in a number of vascular meshes and higher uptake of EVs over 14 hours. End systolic elastance improved with STG+EV therapy at 4 days (0.54 ± 0.08) versus PBS or shear-thinning gel (0.26 ± 0.03 [P = .02]; 0.23 ± 0.02 [P = .01]). Preservation of ventricular diameter (6.20 ± 0.73 mm vs 8.58 ± 0.38 mm [P = .04]; 9.13 ± 0.25 mm [P = .01]) and scar thickness (0.89 ± 0.05 mm vs 0.62 ± 0.03 mm [P < .0001] and 0.58 ± 0.05 mm [P < .0001]) was significantly greater at 4 days, compared wit PBS and shear-thinning gel controls. CONCLUSIONS: Delivery of STG+EV 4 days post-MI improved left ventricular contractility and preserved global ventricular geometry, compared with controls and immediate therapy post-MI. These findings suggest other cell-derived therapies can be optimized by strategic timing of therapeutic intervention.


Assuntos
Células Progenitoras Endoteliais/transplante , Vesículas Extracelulares/transplante , Hemodinâmica , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Neovascularização Fisiológica , Tempo para o Tratamento , Adamantano/química , Animais , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Progenitoras Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fibrose , Géis , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Ácido Hialurônico/química , Mediadores da Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Ratos Wistar , Fatores de Tempo , beta-Ciclodextrinas/química
2.
Cytotherapy ; 21(4): 444-459, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30904331

RESUMO

BACKGROUND: Endothelial progenitor cells (EPCs) are circulating progenitor cells that can play an essential role in vascular remodelling. In this work, we compared the role of two EPCs cultivated with different mediums in the resolution of the arterial thrombus induced by FeCl3 lesion and in vessel re-endothelization in the mouse carotid artery. METHODS: Mice mononuclear cells were differentiated into EPCs using Dulbecco's Modified Eagle's Medium (DMEM) and vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) and IGF (Insulin Growth Factor) called EPCs--M1) or with EGM2(endothelial growth medium) (media supplemented with growth factors from Lonza called (EPCs-M2) for 30days and characterized using flow cytometry. The animals received three EPC injections post-lesion, and we analyzed thrombosis time, vessel re-endothelization, metalloproteinases activities, eNOS (endothelial Nitric oxide synthase) presence and SDF-1(Stromal Derived Factor- 1) levels in circulation. RESULTS: EPC-M1 presented a more immature progenitor profile than EPC-M2 cells. The injection of EPC-M1 prolonged the thrombosis time, and the treatment with the different EPCs increased eNOS expression and MMP2 (Metalloproteinase 2) activity and decreased SDF-1 in plasma. Only EPC-M1 treatment increased both MMP2 and MMP9 and reduced thrombus after 7days. Also, both EPCs decreased platelet aggregation in vitro. CONCLUSIONS: EPCs-M1 were more efficient in all of the analyzed assays. EPCsM2 may be a more mature EPC, proliferating less and promoting a less significant matrix remodelling. EPCs can promote vascular remodelling by inhibiting thrombosis and stimulating vascular wall remodelling and the treatment with a more immature progenitor may be more efficient in this process.


Assuntos
Células Progenitoras Endoteliais/transplante , Trombose/terapia , Animais , Artérias/patologia , Diferenciação Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Embolização Terapêutica , Células Progenitoras Endoteliais/metabolismo , Gelatinases/metabolismo , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/metabolismo , Agregação Plaquetária , Trombose/enzimologia , Trombose/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
J Thorac Cardiovasc Surg ; 157(4): 1479-1490, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30579534

RESUMO

OBJECTIVES: The ventricle undergoes adverse remodeling after myocardial infarction, resulting in abnormal biomechanics and decreased function. We hypothesize that tissue-engineered therapy could minimize postischemic remodeling through mechanical stress reduction and retention of tensile myocardial properties due to improved endothelial progenitor cell retention and intrinsic biomechanical properties of the hyaluronic acid shear-thinning gel. METHODS: Endothelial progenitor cells were harvested from adult Wistar rats and resuspended in shear-thinning gel. The constructs were injected at the border zone of ischemic rat myocardium in an acute model of myocardial infarction. Myocardial remodeling, tensile properties, and hemodynamic function were analyzed: control (phosphate-buffered saline), endothelial progenitor cells, shear-thinning gel, and shear-thinning gel + endothelial progenitor cells. Novel high-resolution, high-sensitivity ultrasound with speckle tracking allowed for global strain analysis. Uniaxial testing assessed tensile biomechanical properties. RESULTS: Shear-thinning gel + endothelial progenitor cell injection significantly increased engraftment and retention of the endothelial progenitor cells within the myocardium compared with endothelial progenitor cells alone. With the use of strain echocardiography, a significant improvement in left ventricular ejection fraction was noted in the shear-thinning gel + endothelial progenitor cell cohort compared with control (69.5% ± 10.8% vs 40.1% ± 4.6%, P = .04). A significant normalization of myocardial longitudinal displacement with subsequent stabilization of myocardial velocity with shear-thinning gel + endothelial progenitor cell therapy compared with control was also evident (0.84 + 0.3 cm/s vs 0.11 ± 0.01 cm/s, P = .03). A significantly positive and higher myocardial strain was observed in shear-thinning gel + endothelial progenitor cell (4.5% ± 0.45%) compared with shear-thinning gel (3.7% ± 0.24%), endothelial progenitor cell (3.5% ± 0.97%), and control (8.6% ± 0.3%, P = .05). A resultant reduction in dynamic stiffness was noted in the shear-thinning gel + endothelial progenitor cell cohort. CONCLUSIONS: This novel injectable shear-thinning hyaluronic acid hydrogel demonstrates stabilization of border zone myocardium with reduction in adverse myocardial remodeling and preservation of myocardial biomechanics. The cellular construct provides a normalization of strain measurements and reduces left ventricular dilatation, thus resulting in improvement of left ventricular function.


Assuntos
Células Progenitoras Endoteliais/transplante , Hemodinâmica , Ácido Hialurônico/administração & dosagem , Infarto do Miocárdio/cirurgia , Miocárdio/patologia , Transplante de Células-Tronco/métodos , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Fenômenos Biomecânicos , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Sobrevivência de Enxerto , Hidrogéis , Injeções , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Neovascularização Fisiológica , Ratos Wistar , Recuperação de Função Fisiológica , Estresse Mecânico , Resistência à Tração
4.
Cytotherapy ; 17(10): 1447-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26349001

RESUMO

BACKGROUND AIMS: Dermatan sulfate (DS), an anticoagulant and antithrombotic glycosaminoglycan, also has anti-inflammatory activity. In this study, we investigated the effect of DS treatment in the presence or absence of bone marrow mononuclear cells (MNCs) or endothelial progenitor cells (EPCs) in the vascular response to carotid artery lesion in C57BL6 mice. METHODS: Thrombus formation, the expression of adhesion molecules and factors involved in vascular remodeling, inflammation or vascular tone were analyzed by histologic examination, Western blotting and enzyme-linked immunoassay 1 and 3 days after vascular injury. RESULTS: DS injections prevented thrombus formation and decreased P-selectin expression after 3 days of the injury. DS treatment also increased plasma SDF-1 levels but failed to rescue endothelial nitric oxide synthase (eNOS) expression, which is responsible for vascular tone. Treatment with MNCs alone failed to prevent thrombus formation 1 day after injury and increased intercellular adhesion molecule-1 expression, likely because of the inflammatory nature of these cells. Treatment with EPCs with DS was the most efficient among all therapies studied. Dual administration of EPCs and DS promoted an increase in the expression of adhesion molecules and, at the same time, induced a higher expression of eNOS at the injury site. Furthermore, it stimulated an elevated number of EPCs to migrate and adhere to the vascular wall. DISCUSSION: Simultaneous treatment with EPCs and DS increased the expression of adhesion molecules, prevented thrombosis, rescued the expression of eNOS and increased migration of EPCs to the site of injury, thereby affecting thrombus remodeling and inflammation and can be involved in vessel hemostasis.


Assuntos
Lesões das Artérias Carótidas/terapia , Dermatan Sulfato/uso terapêutico , Células Progenitoras Endoteliais/transplante , Fibrinolíticos/uso terapêutico , Trombose/prevenção & controle , Remodelação Vascular/fisiologia , Animais , Anti-Inflamatórios/farmacologia , Células da Medula Óssea/citologia , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Lesões das Artérias Carótidas/tratamento farmacológico , Lesões das Artérias Carótidas/cirurgia , Adesão Celular/fisiologia , Moléculas de Adesão Celular/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Quimiocina CXCL12/biossíntese , Terapia Combinada , Molécula 1 de Adesão Intercelular/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III/biossíntese , Selectina-P/biossíntese
5.
J Thorac Cardiovasc Surg ; 150(5): 1268-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26293548

RESUMO

OBJECTIVES: The clinical translation of cell-based therapies for ischemic heart disease has been limited because of low cell retention (<1%) within, and poor targeting to, ischemic myocardium. To address these issues, we developed an injectable hyaluronic acid (HA) shear-thinning hydrogel (STG) and endothelial progenitor cell (EPC) construct (STG-EPC). The STG assembles as a result of interactions of adamantine- and ß-cyclodextrin-modified HA. It is shear-thinning to permit delivery via a syringe, and self-heals upon injection within the ischemic myocardium. This directed therapy to the ischemic myocardial border zone enables direct cell delivery to address adverse remodeling after myocardial infarction. We hypothesize that this system will enhance vasculogenesis to improve myocardial stabilization in the context of a clinically translatable therapy. METHODS: Endothelial progenitor cells (DiLDL(+) VEGFR2(+) CD34(+)) were harvested from adult male rats, cultured, and suspended in the STG. In vitro viability was quantified using a live-dead stain of EPCs. The STG-EPC constructs were injected at the border zone of ischemic rat myocardium after acute myocardial infarction (left anterior descending coronary artery ligation). The migration of the enhanced green fluorescent proteins from the construct to ischemic myocardium was analyzed using fluorescent microscopy. Vasculogenesis, myocardial remodeling, and hemodynamic function were analyzed in 4 groups: control (phosphate buffered saline injection); intramyocardial injection of EPCs alone; injection of the STG alone; and treatment with the STG-EPC construct. Hemodynamics and ventricular geometry were quantified using echocardiography and Doppler flow analysis. RESULTS: Endothelial progenitor cells demonstrated viability within the STG. A marked increase in EPC engraftment was observed 1-week postinjection within the treated myocardium with gel delivery, compared with EPC injection alone (17.2 ± 0.8 cells per high power field (HPF) vs 3.5 cells ± 1.3 cells per HPF, P = .0002). A statistically significant increase in vasculogenesis was noted with the STG-EPC construct (15.3 ± 5.8 vessels per HPF), compared with the control (P < .0001), EPC (P < .0001), and STG (P < .0001) groups. Statistically significant improvements in ventricular function, scar fraction, and geometry were noted after STG-EPC treatment compared with the control. CONCLUSIONS: A novel injectable shear-thinning HA hydrogel seeded with EPCs enhanced cell retention and vasculogenesis after delivery to ischemic myocardium. This therapy limited adverse myocardial remodeling while preserving contractility.


Assuntos
Células Progenitoras Endoteliais/transplante , Ácido Hialurônico/química , Isquemia Miocárdica/cirurgia , Miocárdio/patologia , Regeneração , Alicerces Teciduais , Animais , Movimento Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Ecocardiografia Doppler , Células Progenitoras Endoteliais/metabolismo , Fibrose , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Hidrogéis , Masculino , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Neovascularização Fisiológica , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo , Transfecção , Função Ventricular Esquerda , Pressão Ventricular , Remodelação Ventricular , beta-Ciclodextrinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA