Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 317(2): 634-48, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18394597

RESUMO

The Drosophila thorax exhibits 11 pairs of large sensory organs (macrochaetes) identified by their unique position. Remarkably precise, this pattern provides an excellent model system to study the genetic basis of pattern formation. In imaginal wing discs, the achaete-scute proneural genes are expressed in clusters of cells that prefigure the positions of each macrochaete. The activities of prepatterning genes provide positional cues controlling this expression pattern. The three homeobox genes clustered in the iroquois complex (araucan, caupolican and mirror) are such prepattern genes. mirror is generally characterized as performing functions predominantly different from the other iroquois genes. Conversely, araucan and caupolican are described in previous studies as performing redundant functions in most if not all processes in which they are involved. We have addressed the question of the specific role of each iroquois gene in the prepattern of the notum and we clearly demonstrate that they are intrinsically different in their contribution to this process: caupolican and mirror, but not araucan, are required for the neural patterning of the lateral notum. However, when caupolican and/or mirror expression is reduced, araucan loss of function has an effect on thoracic bristles development. Moreover, the overexpression of araucan is able to rescue caupolican loss of function. We conclude that, although retaining some common functionalities, the Drosophila iroquois genes are in the process of diversification. In addition, caupolican and mirror are required for stripe expression and, therefore, to specify the muscular attachment sites prepattern. Thus, caupolican and mirror may act as common prepattern genes for all structures in the lateral notum.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Tórax/embriologia , Fatores de Transcrição/fisiologia , Animais , Mapeamento Cromossômico , Primers do DNA , Evolução Molecular , Imuno-Histoquímica , Hibridização In Situ , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/embriologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
2.
J Exp Zool B Mol Dev Evol ; 310(4): 370-83, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638322

RESUMO

Two embryonic cell populations, the neural crest and cranial ectodermal placodes, between them give rise to many of the unique characters of vertebrates. Neurogenic placode derivatives are vital for sensing both external and internal stimuli. In this speculative review, we discuss potential developmental and evolutionary relationships between two placode series that are usually considered to be entirely independent: lateral line placodes, which form the mechanosensory and electroreceptive hair cells of the anamniote lateral line system as well as their afferent neurons, and epibranchial placodes (geniculate, petrosal and nodose), which form Phox2b(+) visceral sensory neurons with input from both the external and internal environment. We illustrate their development using molecular data we recently obtained in shark embryos, and we describe their derivatives, including the possible geniculate placode origin of a mechanosensory sense organ associated with the first pharyngeal pouch/cleft (the anamniote spiracular organ/amniote paratympanic organ). We discuss how both lateral line and epibranchial placodes can be related in different ways to the otic placode (which forms the inner ear and its afferent neurons), and how both are important for protective somatic reflexes. Finally, we put forward a highly speculative proposal about the original function of the cells whose evolutionary descendants today include the derivatives of the lateral line, otic and epibranchial placodes, namely that they produced sensory receptors and neurons for Phox2b-dependent protective reflex circuits. We hope this review will stimulate both debate and a fresh look at possible developmental and evolutionary relationships between these seemingly disparate and independent placodes.


Assuntos
Evolução Biológica , Orelha Interna/embriologia , Sistema da Linha Lateral/embriologia , Neurônios/fisiologia , Células Receptoras Sensoriais/embriologia , Tubarões/embriologia , Animais , Proteínas de Homeodomínio/metabolismo , Especificidade da Espécie , Fatores de Transcrição/metabolismo
3.
Anat Rec (Hoboken) ; 290(9): 1178-89, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17722001

RESUMO

Ampullary organs of Acipenser naccarii sturgeons were examined by optical and electronic microscopy (transmission electron microscopy and scanning electron microscopy) from hatching until 1 month later when the juvenile phase is completely established. It was observed that, when A. naccarii begins to feed actively, the ultrastructural characteristics of ampullary organs already correspond to those of adult animals. These organs may, therefore, be functional and, together with taste buds, facilitate food search after exhaustion of yolk sac food reserves. Mature ampullary organs of A. naccarii are formed by an ampulla that communicates with the exterior by means of a short channel. These ampullae correspond to the sensory portion of these receptors and are formed by two cell types: receptor cells and support cells. Receptor cells present a kinocilium on their free surface and establish ribbon synapses with axon nerve endings that arise from the underlying conjunctive tissue. Support cells enclose receptor cells, bear stereocilia and occasional cilia, and are of a secretory nature. The mucus associated with ampullary organs mainly comprises neutral mucopolysaccharides, whereas mucopolysaccharides are usually acid in other fish groups.


Assuntos
Peixes/anatomia & histologia , Órgãos dos Sentidos/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Cílios/ultraestrutura , Peixes/embriologia , Peixes/crescimento & desenvolvimento , Glicosaminoglicanos/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Muco/química , Organogênese , Órgãos dos Sentidos/química , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Células Receptoras Sensoriais/embriologia , Células Receptoras Sensoriais/crescimento & desenvolvimento
4.
Dev Biol ; 285(2): 545-53, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16084506

RESUMO

The achaete-scute complex of Drosophila has been the focus of extensive genetic and developmental analysis. Of the four genes at this locus, achaete and scute appear to act redundantly to specify the peripheral nervous system. They share cis-regulatory elements and are co-expressed at the same locations. A mutation removing scute activity has been previously described; it causes a loss of some sensory bristles. Thus, when Scute is absent, the activity of achaete allows formation of the remaining bristles. However, all existing achaete mutants are rearrangements affecting regulatory sequences common to both achaete and scute. To determine the level of redundancy between the two genes, we have used a P element approach to generate a null allele of achaete, which leaves scute and all cis-regulatory elements intact. We find that the peripheral nervous system of achaete null mutant larvae and imagos lacks any detectable phenotype. However, when the levels of Scute are limiting, then some sensory organs are missing in achaete mutant flies. achaete and scute are thought to have arisen from a duplication event about 100 Myr ago. The difference between achaete and scute null flies is surprising and raises the question of the retention of both genes during the course of evolution.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Sistema Nervoso Periférico/embriologia , Fenótipo , Células Receptoras Sensoriais/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Primers do DNA , Evolução Molecular , Componentes do Gene , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , Mutagênese , Sistema Nervoso Periférico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Receptoras Sensoriais/metabolismo
5.
Development ; 132(9): 2191-202, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15799999

RESUMO

Neurotrophins (Nt) and their tyrosine kinase Trk receptors play an essential role in the development and maintenance of the complex vertebrate nervous system. Invertebrate genome sequencing projects have suggested that the Nt/Trk system is a vertebrate innovation. We describe the isolation and characterisation of the amphioxus Trk receptor, AmphiTrk. Its ancestral link to vertebrate Trk receptors is supported by phylogenetic analysis and domain characterisation. The genomic structure of AmphiTrk strongly suggests that a ProtoTrk gene emerged by means of exon-shuffling prior to the cephalochordate/vertebrate split. We also examined the physiological response of AmphiTrk to vertebrate neurotrophins, and found that despite 500 million years of divergence, AmphiTrk transduces signals mediated by NGF, BDNF, NT3 and NT4. Markedly, AmphiTrk is able to activate survival and differentiation pathways, but fails to activate the PLCgamma pathway, which is involved in synaptic plasticity in higher vertebrates. AmphiTrk is expressed during amphioxus embryogenesis in sensory neural precursors in the epidermis, which possesses single migratory cells. We propose that the duplication and divergence of the Nt/Trk system, in tandem with recruitment of the PLCgamma pathway, may have provided the genetic basis for a key aspect of vertebrate evolution: the complexity of the nervous system.


Assuntos
Cordados não Vertebrados/metabolismo , Fatores de Crescimento Neural/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Southern Blotting , Cordados não Vertebrados/embriologia , Humanos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/embriologia , Análise de Sequência de Proteína , Vertebrados/metabolismo
6.
Anat Embryol (Berl) ; 209(3): 179-92, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15712011

RESUMO

This study follows the histogenesis of the oropharyngeal cavity taste buds, along with the development of the relevant neural centers and gustatory nerves, in two cichlid species: the substrate-brooding Cichlasoma cyanoguttatum and the mouth-brooding Astatotilapia flavijosephi, from fertilization to 20-day-old juveniles, grown at a temperature of 26 degrees C. Significant differences in pace of development were shown between the two social types: Substrate-brooders complete embryogenesis and hatch 48 h after fertilization (HAF) and begin to swim 120 HAF, with the yolk sac disappearing 160 HAF, whereas mouth-brooders hatch 84 HAF and begin to swim 196 HAF, with the yolk sac disappearing 360 HAF. Histogenesis of primordial taste buds occurs 75 HAF and 160 HAF in C. cyanoguttatum and A. flavijosephi, respectively. Accordingly, the related sensory ganglia and nerves (VII, IX, and X) develop much earlier in the substrate-brooded larvae and postlarvae. Nerve and brain development in juvenile A. flavijosephi of 13 mm total length (TL) closely resemble those of 8-mm-TL C. cyanoguttatum. These differences in development continue throughout the early stages of growth. Similar differences are observed in the ripening and increase in number of taste buds and dentition on the jaws and pharyngeal bones. The possible triggers and causes of such differences in development, as well as the inductors of taste bud development, are discussed.


Assuntos
Vias Aferentes/embriologia , Encéfalo/embriologia , Ciclídeos/embriologia , Boca/embriologia , Células Receptoras Sensoriais/embriologia , Papilas Gustativas/embriologia , Vias Aferentes/crescimento & desenvolvimento , Vias Aferentes/ultraestrutura , Animais , Comportamento Animal/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , Diferenciação Celular/fisiologia , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/fisiologia , Nervos Cranianos/embriologia , Nervos Cranianos/crescimento & desenvolvimento , Nervos Cranianos/ultraestrutura , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura , Gânglios Sensitivos/embriologia , Gânglios Sensitivos/crescimento & desenvolvimento , Gânglios Sensitivos/ultraestrutura , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Comportamento Materno/fisiologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Boca/crescimento & desenvolvimento , Boca/ultraestrutura , Faringe/embriologia , Faringe/crescimento & desenvolvimento , Faringe/ultraestrutura , Células Receptoras Sensoriais/crescimento & desenvolvimento , Células Receptoras Sensoriais/ultraestrutura , Paladar/fisiologia , Papilas Gustativas/crescimento & desenvolvimento , Papilas Gustativas/ultraestrutura , Dente/embriologia , Dente/crescimento & desenvolvimento , Dente/ultraestrutura
7.
Brain Behav Evol ; 64(3): 163-81, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15353908

RESUMO

The lateral line system is composed of both mechanoreceptors, which exhibit little variation in structure between taxonomic groups, and electroreceptors, which exhibit considerably more variation. Cathodally sensitive ampullary electroreceptors are the primitive condition and are found in agnathans, chondrichthyans, and most osteichthyans. Aquatic amphibians also have ampullary electroreceptors for at least part of their life cycle. The more recently evolved anodally sensitive ampullary electroreceptors and tuberous electroreceptors are only found in four groups of teleost fishes. The basic ontogenetic unit of lateral line development is the dorsolateral placode. Primitively, there are six pairs of placodes, which pass through sequential stages of development into lateral line receptors. There is no question about the origin of primitive mechanoreceptors or electroreceptors, however, we do not have a good understanding of the origin of teleost mechanoreceptors and their ampullary or tuberous electroreceptors; do they come exclusively from dorsolateral placodes or from neural crest or even general ectoderm? A second intriguing lateral line question is how certain teleost fish groups evolved tuberous electroreceptors. Electroreception appears to have re-evolved at least twice in teleosts after being lost during the neopterygian radiation. It has been suggested that the development of tuberous electroreceptors might be due to changes in placodal patterning or a change in the general ectoderm that placodes arise from. Unfortunately, our understanding of lateral line origins in fishes is very sketchy, and, if we are to answer such an evolutionary question, we first need more complete information about lateral line development in a variety of fishes, which can then be combined with gene expression data to better interpret lateral line receptor development.


Assuntos
Órgão Elétrico/crescimento & desenvolvimento , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Órgãos dos Sentidos/crescimento & desenvolvimento , Células Receptoras Sensoriais/crescimento & desenvolvimento , Animais , Ectoderma/citologia , Ectoderma/fisiologia , Órgão Elétrico/citologia , Órgão Elétrico/embriologia , Órgão Elétrico/fisiologia , Indução Embrionária/fisiologia , Peixes/anatomia & histologia , Peixes/embriologia , Peixes/genética , Mecanorreceptores/embriologia , Mecanorreceptores/crescimento & desenvolvimento , Mecanorreceptores/fisiologia , Organogênese/fisiologia , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Células Receptoras Sensoriais/embriologia , Células Receptoras Sensoriais/fisiologia
8.
Dev Biol ; 270(2): 499-512, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15183729

RESUMO

The three cells that comprise each C. elegans sensory ray (two sensory neurons and a structural cell) descend from a single neuroblast precursor cell. The atonal ortholog lin-32 and the E/daughterless ortholog hlh-2 act to confer neural competence during ray development, but additional regulatory factors that control specific aspects of cell fate are largely unknown. Here, we use full-genome DNA microarrays to compare gene expression profiles in adult males of two mutant strains to identify new components of the regulatory network that controls ray development and function. This approach identified a large set of candidate ray genes. Using reporter genes, we confirmed ray expression for 13 of these, including a beta-tubulin, a TWK-family channel, a putative chemoreceptor and four novel genes (the cwp genes) with a potential role in sensory signaling through the C. elegans polycystins lov-1 and pkd-2. Additionally, we have found several ray-expressed transcription factors, including the Zn-finger factor egl-46 and the bHLH gene hlh-10. The expression of many of these genes requires lin-32 function, though this requirement may not reflect direct activation by lin-32. Our strategy provides a complementary foundation for modeling the genetic network that controls the development of a simple sensory organ.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Perfilação da Expressão Gênica , Células Receptoras Sensoriais/embriologia , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/metabolismo , Bases de Dados Genéticas , Elementos E-Box/genética , Genes Reporter/genética , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Células Receptoras Sensoriais/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
J Comp Neurol ; 475(2): 188-201, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15211460

RESUMO

A specific laryngeal sensory epithelium (SLSE), which includes arrays of solitary chemoreceptor cells, is described in the supraglottic region of the rat. Two plates of SLSE were found, one on each side of the larynx. The first plate was located in the ventrolateral wall of the larynx, and the second was located in the interarytenoidal region. In SLSE, immunoblotting showed the presence of alpha-gustducin and phospholipase C beta2 (PLCbeta2), which are two markers of chemoreceptor cells. At immunocytochemistry, laryngeal immunoreactivity for alpha-gustducin was localized mainly in solitary chemosensory cells. Double-label immunocytochemistry using confocal microscopy demonstrated that alpha-gustducin-expressing cells in large part colocalize type III IP3 receptor (IP3R3), another key molecule in bitter taste perception. However, some IP3R3-expressing cells do not colocalize alpha-gustducin. At ultrastructural immunocytochemistry, these cells showed packed apical microvilli, clear cytoplasmic vesicles, and cytoneural junctions. SLSE was characterized by high permeability to a tracer due to poorly developed junctional contacts between superficial cells. Junctions were short in length and showed little contact with the terminal web. Ultrastructural analysis showed deep pits among the superficial cells. In SLSE, high density of intraepithelial nerve fibers was found. The lamina propria of the SLSE appeared thicker than that in other supraglottic regions. It was characterized by the presence of a well-developed subepithelial nerve plexus. The immunocytochemical and ultrastructural data suggested that SLSE is a chemoreceptor located in an optimal position for detecting substances entering the larynx from the pharynx or the trachea.


Assuntos
Células Epiteliais/ultraestrutura , Mucosa Laríngea/inervação , Mucosa Laríngea/ultraestrutura , Nervos Laríngeos/ultraestrutura , Laringe/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Animais , Canais de Cálcio/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/ultraestrutura , Células Epiteliais/metabolismo , Feminino , Imuno-Histoquímica , Receptores de Inositol 1,4,5-Trifosfato , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Isoenzimas/metabolismo , Mucosa Laríngea/metabolismo , Nervos Laríngeos/metabolismo , Laringe/fisiologia , Masculino , Microscopia Eletrônica , Microscopia Eletrônica de Varredura , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Fosfolipase C beta , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Células Receptoras Sensoriais/embriologia , Paladar/fisiologia , Transducina/metabolismo , Fosfolipases Tipo C/metabolismo
10.
Mech Dev ; 121(7-8): 729-38, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15210180

RESUMO

We performed a systematic screen for mutations affecting the trajectory of axons visualized by immunohistochemical staining of Medaka embryos with anti-acetylated tubulin antibody. Among the mutations identified, yanagi (yan) and kazura (kaz) mutations caused specific defects in projection of the posterior lateral line (PLL) nerve. In yan and kaz mutant embryos, the PLL nerve main bundle was misrouted ventrally and dorsally or anteriorly. Medaka semaphorin3A, sdf1, and cxcr4 cDNA fragments were cloned to allow analysis of these mutants. There were no changes in semaphorin3A or sdf1 expression in mutant embryos, suggesting that the tissues expressing semaphorin3A or sdf1 that are involved in PLL nerve guidance are present in these mutant embryos. Double staining revealed that the mislocated PLL primordium and growth cone of the ectopically projected PLL nerve were always colocalized in both yan and kaz mutant embryos, suggesting that migration of PLL primordia and PLL nerve growth cones are not uncoupled in these mutants. Although homozygous yan larvae showed incomplete migration of the PLL primordium along the anteroposterior axis, ventral proneuromast migration was complete, suggesting that ventral migration of the proneuromast does not require the signaling affected in yan mutants. In addition to the PLL system, the distribution of primordial germ cells (PGCs) was also affected in both yan and kaz mutant embryos, indicating that yan and kaz genes are required for the migration of both PLL primordia and PGCs. Genetic linkage analysis indicated that kaz is linked to cxcr4, but yan is not linked to sdf1 or cxcr4. These mutations will provide genetic clues to investigate the molecular mechanism underlying formation of the PLL system.


Assuntos
Mutação , Oryzias/embriologia , Oryzias/genética , Células Receptoras Sensoriais/embriologia , Animais , Nervos Periféricos/embriologia
11.
Dev Biol ; 269(1): 123-36, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15081362

RESUMO

Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo, the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1-CXCR4 expression pattern suggested that SDF-1-CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line. Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.


Assuntos
Movimento Celular/fisiologia , Quimiocinas CXC/genética , Células Receptoras Sensoriais/embriologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Quimiocina CXCL12 , Quimiocinas CXC/metabolismo , Oligonucleotídeos Antissenso , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Células Receptoras Sensoriais/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
12.
J Neurocytol ; 33(6): 617-29, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16217618

RESUMO

Tongue embryonic taste buds begin to differentiate before the onset of gustatory papilla formation in murine. In light of this previous finding, we sought to reexamine the developing sensory innervation as it extends toward the lingual epithelium between E 11.5 and 14.5. Nerve tracings with fluorescent lipophilic dyes followed by confocal microscope examination were used to study the terminal branching of chorda tympani and lingual nerves. At E11.5, we confirmed that the chorda tympani nerve provided for most of the nerve branching in the tongue swellings. At E12.5, we show that the lingual nerve contribution to the overall innervation of the lingual swellings increased to the extent that its ramifications matched those of the chorda tympani nerve. At E13.0, the chorda tympani nerve terminal arborizations appeared more complex than those of the lingual nerve. While the chorda tympani nerve terminal branching appeared close to the lingual epithelium that of the trigeminal nerve remained rather confined to the subepithelial mesenchymal tissue. At E13.5, chorda tympani nerve terminals projected specifically to an ordered set of loci on the tongue dorsum corresponding to the epithelial placodes. In contrast, the lingual nerve terminals remained subepithelial with no branches directed towards the placodes. At E14.5, chorda tympani nerve filopodia first entered the apical epithelium of the developing fungiform papilla. The results suggest that there may be no significant delay between the differentiation of embryonic taste buds and their initial innervation.


Assuntos
Nervo da Corda do Tímpano/embriologia , Gânglio Geniculado/embriologia , Nervo Lingual/embriologia , Papilas Gustativas/embriologia , Língua/embriologia , Língua/inervação , Animais , Carbocianinas , Diferenciação Celular/fisiologia , Nervo da Corda do Tímpano/citologia , Nervo da Corda do Tímpano/fisiologia , Epitélio/embriologia , Epitélio/fisiologia , Corantes Fluorescentes , Gânglio Geniculado/citologia , Gânglio Geniculado/fisiologia , Cones de Crescimento/fisiologia , Cones de Crescimento/ultraestrutura , Nervo Lingual/citologia , Nervo Lingual/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura , Células Receptoras Sensoriais/embriologia , Células Receptoras Sensoriais/fisiologia , Células Receptoras Sensoriais/ultraestrutura , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Língua/citologia
13.
J Neurocytol ; 33(6): 631-46, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16217619

RESUMO

Neurotrophins, neurotrophin receptors and sensory neurons are required for the development of lingual sense organs. For example, neurotrophin 3 sustains lingual somatosensory neurons. In the traditional view, sensory axons will terminate where neurotrophin expression is most pronounced. Yet, lingual somatosensory axons characteristically terminate in each filiform papilla and in each somatosensory prominence within a cluster of cells expressing the p75 neurotrophin receptor (p75NTR), rather than terminating among the adjacent cells that secrete neurotrophin 3. The p75NTR on special specialized clusters of epithelial cells may promote axonal arborization in vivo since its over-expression by fibroblasts enhances neurite outgrowth from overlying somatosensory neurons in vitro. Two classical observations have implicated gustatory neurons in the development and maintenance of mammalian taste buds--the early arrival times of embryonic innervation and the loss of taste buds after their denervation in adults. In the modern era more than a dozen experimental studies have used early denervation or neurotrophin gene mutations to evaluate mammalian gustatory organ development. Necessary for taste organ development, brain-derived neurotrophic factor sustains developing gustatory neurons. The cardinal conclusion is readily summarized: taste buds in the palate and tongue are induced by innervation. Taste buds are unstable: the death and birth of taste receptor cells relentlessly remodels synaptic connections. As receptor cells turn over, the sensory code for taste quality is probably stabilized by selective synapse formation between each type of gustatory axon and its matching taste receptor cell. We anticipate important new discoveries of molecular interactions among the epithelium, the underlying mesenchyme and gustatory innervation that build the gustatory papillae, their specialized epithelial cells, and the resulting taste buds.


Assuntos
Epitélio/embriologia , Epitélio/inervação , Células Receptoras Sensoriais/embriologia , Papilas Gustativas/embriologia , Língua/embriologia , Língua/inervação , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Nervo da Corda do Tímpano/citologia , Nervo da Corda do Tímpano/embriologia , Nervo da Corda do Tímpano/fisiologia , Epitélio/fisiologia , Nervo Lingual/citologia , Nervo Lingual/embriologia , Nervo Lingual/fisiologia , Camundongos , Receptor de Fator de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia , Língua/citologia
14.
Dev Biol ; 234(1): 55-71, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-11356019

RESUMO

In order to determine the time window for induction of lateral line placodes in the axolotl, we performed two series of heterotopic and isochronic transplantations from pigmented to albino embryos at different stages of embryogenesis and assessed the distribution of pigmented neuromasts in the hosts at later stages. First, ectoderm from the prospective placodal region was transplanted to the belly between early neurula and mid tailbud stages (stages 13-27). Whereas grafts from early neurulae typically differentiated only into epidermis, grafts from late neural fold stages on reliably resulted in differentiation of ectopic pigmented neuromasts. Second, belly ectoderm was transplanted to the prospective placodal region between early neurula and tailbud stages (stages 13-35). Normal lateral lines containing pigmented neuromasts formed in most embryos when grafts were performed prior to early tailbud stages (stage 24) but not when they were performed later. Our findings indicate that lateral line placodes, from which neuromasts originate, are already determined at late neural fold stages (first series of grafts) but are inducible until early tailbud stages (second series of grafts). A further series of heterochronic transplantations demonstrated that the decline of inducibility at mid tailbud stages is mainly due to the loss of ectodermal competence.


Assuntos
Ambystoma/embriologia , Ectoderma/transplante , Indução Embrionária , Células Receptoras Sensoriais/embriologia , Abdome/embriologia , Albinismo , Animais , Cabeça/embriologia , Mecanorreceptores/embriologia , Pigmentação , Fatores de Tempo
15.
Mech Dev ; 98(1-2): 151-5, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11044620

RESUMO

The homeobox gene Six4/AREC3 is a member of the vertebrate Six family of transcription factor genes. In this study we describe the cloning and expression of three zebrafish homologues of Six4/AREC3, six4.1, six4.2 and six4.3. These zebrafish Six4 proteins show high homology to the mammalian Six4/AREC3 proteins in the most C-terminal region in addition to the Six domain and homeodomain. Whole-mount in situ hybridization showed that six4.1 is expressed in the presumptive cranial placodal precursor cells, and later in the olfactory, otic and lateral line placodes. six4.2 is expressed in the presomitic mesoderm, somites and pectoral fin bud. six4.3 appears to be a unique member of the Six4 proteins and is expressed ubiquitously at gastrulation and later in the tectum.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Transativadores , Proteínas de Peixe-Zebra , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Receptoras Sensoriais/embriologia , Homologia de Sequência de Aminoácidos , Somitos/metabolismo
16.
Dev Dyn ; 218(2): 359-70, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10842362

RESUMO

Inactivation of neurotrophin-3 (NT3) completely blocks the development of limb proprioceptive neurons and their end organs, the muscle spindles. We examined whether cranial proprioceptive neurons of the trigeminal mesencephalic nucleus (TMN) require NT3, brain-derived neurotrophic factor (BDNF) or neurotrophin-4 (NT4) for their development. Complements of TMN neurons and masticatory muscle spindles were decreased by 62% in NT3 null mutants, 33% in BDNF null mutants, and 10% in NT4 null mutant mice at birth. The extent of proprioceptive deficiencies differed among different masticatory muscles, particularly in NT3 null mice. Masticatory muscles of embryonic mice heterozygous for the NT3(lacZneo) or BDNF(lacZ) reporter genes expressed both NT3 and BDNF, consistent with target-derived neurotrophin support of TMN neurons. Although more than 90% of TMN neurons expressed TrkB as well as TrkC receptor proteins by immunocytochemistry in wild-type newborns, TrkC or TrkB null mice exhibited only partial proprioceptive deficiencies similar to those present in NT3 or BDNF;NT4 null mice. Thus, in terms of the survival outcome, two main subpopulations of TMN neurons may exist during embryogenesis, one dependent on TrkC/NT3 functioning and the other utilizing TrkB/BDNF signaling. The differential dependence of TMN neurons on neurotrophins may reflect differential accessibility of the neurons to limiting amounts of NT3, BDNF, or NT4 in target tissues, especially if the tissue distribution or levels of BDNF, NT3, and NT4 were dynamically regulated both spatially and temporally.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurotrofina 3/metabolismo , Células Receptoras Sensoriais/embriologia , Núcleos do Trigêmeo/embriologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Dosagem de Genes , Expressão Gênica , Músculos da Mastigação/embriologia , Músculos da Mastigação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fusos Musculares/embriologia , Fusos Musculares/metabolismo , Fatores de Crescimento Neural/genética , Neurônios , Neurotrofina 3/genética , Receptor trkB/genética , Receptor trkB/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Crânio , Núcleos do Trigêmeo/metabolismo
17.
Brain Behav Evol ; 50(1): 25-37, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9209764

RESUMO

An outgroup analysis of multiple ontogenies provides the most robust approach to understanding phylogeny. Such an analysis of the lateral line system among extinct and extant gnathostomes reveals that lateral line placodes constitute the basic ontogenetic unit responsible for the development of this system. Six pairs of lateral line placodes appear to have existed in the earliest gnathostomes, and eight stages (stages A-H) can be recognized in their differentiation. Terminal truncation (heterochronic changes) in the primitive sequence of placodal development has occurred in one or more placodes in each gnathostome radiation, with the most extensive truncations occurring in arthrodire placoderms, lepidosirenid lungfishes and extant amphibians. The most extensive nonterminal changes in the primitive sequence of placodal development involve the failure of electroreceptors to form within the lateral zones of the elongatiang sensory ridges of the placodes. This nonterminal change appears to have occurred independently in ancestral neopterygian bony fishes, in many amphibians and, possibly, in the extinct acanthodians. At least two teleost radiations, osteoglossomorphs and ostariophysines, have re-evolved electroreceptors which may represent additional nonterminal changes in placodal patterning or, possibly, a change in the embryonic source of these receptors.


Assuntos
Evolução Biológica , Nervos Cranianos/anatomia & histologia , Peixes/anatomia & histologia , Metamorfose Biológica/fisiologia , Filogenia , Células Receptoras Sensoriais/anatomia & histologia , Animais , Nervos Cranianos/embriologia , Peixes/embriologia , Larva/anatomia & histologia , Células Receptoras Sensoriais/embriologia
18.
Morfologiia ; 112(4): 7-17, 1997.
Artigo em Russo | MEDLINE | ID: mdl-9424238

RESUMO

In motor unit anlage successive formation of morphophysiological and biochemical components of system-forming units (histophysiological compartments) occurs. Simultaneously functional differentiation of motor units takes place, based on morphological, biochemical and functional heterogeneity of nervous, muscular and synaptic motor unit components. Intrinsic genetic programmes of main nervous and skeletal muscular tissue differons are the leading ones in early stages of embryogenesis. Morphofunctional base for realization of neurogenic control of skeletal musculature fibres histochemical differentiation forms in muscle anlage. Genetic programmes of two tissues development come to direct (contact) interaction through outer regions of cell membranes: motor neurons participation in skeletal muscular tissue histogenesis, especially on the stage of muscular tubules differentiation into muscular fibres of certain histophysiological type is essential. Most complicated changes are observed in postsynaptic membrane area. This allows to emphasize the development of the symphast nucleo-sarcoplasmic compartment. In further, adaptive changes and morphological manifestations of skeletal muscular tissue genetic programme realization arise in myogenesis with motor neurons role progressively increasing and becoming the predominant one.


Assuntos
Neurônios Motores/fisiologia , Vertebrados/embriologia , Vertebrados/crescimento & desenvolvimento , Animais , Diferenciação Celular , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Músculos/embriologia , Músculos/inervação , Células Receptoras Sensoriais/embriologia , Células Receptoras Sensoriais/crescimento & desenvolvimento , Sinapses/fisiologia
19.
Teratology ; 53(5): 292-303, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8879087

RESUMO

Retinoic acid (RA) is an active metabolite of vitamin A that is teratogenic when present in excess during mammalian embryogenesis. We have investigated the effect of embryonic exposure to nonphysiological levels of all-trans RA on the development of the mouse inner ear. Dysmorphogenesis of both vestibular and auditory portions of the inner ear, and abnormal formation of the surrounding capsule are produced by exposure to teratogenic levels of RA at an embryonic age of 9 days (E9). There was no observable teratogenic effect of RA when administered at earlier (i.e., E7 or E8) or later (i.e., E10) stages of otic morphogenesis. We hypothesize that exposure to high levels of RA during a critical period of early otic morphogenesis interferes with the inductive tissue interactions required for inner ear development.


Assuntos
Anormalidades Induzidas por Medicamentos/etiologia , Orelha Interna/anormalidades , Teratogênicos/toxicidade , Tretinoína/toxicidade , Anormalidades Induzidas por Medicamentos/embriologia , Anormalidades Induzidas por Medicamentos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Idade Gestacional , Imuno-Histoquímica , Proteínas de Filamentos Intermediários , Masculino , Troca Materno-Fetal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Proteínas de Neurofilamentos/metabolismo , Gravidez , Células Receptoras Sensoriais/anormalidades , Células Receptoras Sensoriais/embriologia , Células Receptoras Sensoriais/metabolismo
20.
C R Acad Sci III ; 318(10): 1029-35, 1995 Oct.
Artigo em Francês | MEDLINE | ID: mdl-8556448

RESUMO

In order to decrease the rate of postembryonic development of electroreceptor organs, excisions of epidermis and deafferentations were carried out in the gymnotid fish Eigenmannia virescens. Twenty-five days later, the epidermis showed electroreceptor organs without innervation. Some of these at the beginning of their development consisted of masses of identical cells, whereas others showed presumed sensory cells whose cytoplasm contained rudimentary synaptic structures. The epidermis also showed differentiated tuberous organs with a low number of sensory cells. In all these organs, radioactive thymidine was fixed in the nuclei of the platform accessory cells. Thirty-five-40 days after surgery, tuberous organs were identical to the functional organs, and thymidine was detected in the nuclei of the cavity accessory cells. These results show that the gymnotid electroreceptor organs can develop before any nervous contact occurs, and suggest that they might originate from epidermal cells.


Assuntos
Peixe Elétrico/embriologia , Órgão Elétrico/embriologia , Células Receptoras Sensoriais/embriologia , Animais , Diferenciação Celular , Epiderme/cirurgia , Epiderme/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...