Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 537: 111425, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34391847

RESUMO

BACKGROUND: Previously, we reported that Mof was highly expressed in α-cells, and its knockdown led to ameliorated fasting blood glucose (FBG) and glucose tolerance in non-diabetic mice, attributed by reduced total α-cell but enhanced prohormone convertase (PC)1/3-positive α-cell mass. However, how Mof and histone 4 lysine 16 acetylation (H4K16ac) control α-cell and whether Mof inhibition improves glucose handling in type 2 diabetes (T2DM) mice remain unknown. METHODS: Mof overexpression and chromatin immunoprecipitation sequence (ChIP-seq) based on H4K16ac were applied to determine the effect of Mof on α-cell transcriptional factors and underlying mechanism. Then we administrated mg149 to α-TC1-6 cell line, wild type, db/db and diet-induced obesity (DIO) mice to observe the impact of Mof inhibition in vitro and in vivo. In vitro, western blotting and TUNEL staining were used to examine α-cell apoptosis and function. In vivo, glucose tolerance, hormone levels, islet population, α-cell ratio and the co-staining of glucagon and PC1/3 or PC2 were examined. RESULTS: Mof activated α-cell-specific transcriptional network. ChIP-seq results indicated that H4K16ac targeted essential genes regulating α-cell differentiation and function. Mof activity inhibition in vitro caused impaired α-cell function and enhanced apoptosis. In vivo, it contributed to ameliorated glucose intolerance and islet dysfunction, characterized by decreased fasting glucagon and elevated post-challenge insulin levels in T2DM mice. CONCLUSION: Mof regulates α-cell differentiation and function via acetylating H4K16ac and H4K16ac binding to Pax6 and Foxa2 promoters. Mof inhibition may be a potential interventional target for T2DM, which led to decreased α-cell ratio but increased PC1/3-positive α-cells.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/fisiopatologia , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Glucagon/patologia , Intolerância à Glucose/enzimologia , Intolerância à Glucose/fisiopatologia , Histona Acetiltransferases/antagonistas & inibidores , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Dieta , Redes Reguladoras de Genes/efeitos dos fármacos , Células Secretoras de Glucagon/efeitos dos fármacos , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Pró-Proteína Convertase 1/metabolismo , Salicilatos/farmacologia
2.
J Biol Chem ; 296: 100297, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33460647

RESUMO

The nutrient sensor O-GlcNAc transferase (OGT) catalyzes posttranslational addition of O-GlcNAc onto target proteins, influencing signaling pathways in response to cellular nutrient levels. OGT is highly expressed in pancreatic glucagon-secreting cells (α-cells), which secrete glucagon in response to hypoglycemia. The objective of this study was to determine whether OGT is necessary for the regulation of α-cell mass and function in vivo. We utilized genetic manipulation to produce two α-cell specific OGT-knockout models: a constitutive glucagon-Cre (αOGTKO) and an inducible glucagon-Cre (i-αOGTKO), which effectively delete OGT in α-cells. Using approaches including immunoblotting, immunofluorescent imaging, and metabolic phenotyping in vivo, we provide the first insight on the role of O-GlcNAcylation in α-cell mass and function. αOGTKO mice demonstrated normal glucose tolerance and insulin sensitivity but displayed significantly lower glucagon levels during both fed and fasted states. αOGTKO mice exhibited significantly lower α-cell glucagon content and α-cell mass at 6 months of age. In fasting, αOGTKO mice showed impaired pyruvate stimulated gluconeogenesis in vivo and reduced glucagon secretion in vitro. i-αOGTKO mice showed similarly reduced blood glucagon levels, defective in vitro glucagon secretion, and normal α-cell mass. Interestingly, both αOGTKO and i-αOGTKO mice had no deficiency in maintaining blood glucose homeostasis under fed or fasting conditions, despite impairment in α-cell mass and function, and glucagon content. In conclusion, these studies provide a first look at the role of OGT signaling in the α-cell, its effect on α-cell mass, and its importance in regulating glucagon secretion in hypoglycemic conditions.


Assuntos
Glicemia/metabolismo , Células Secretoras de Glucagon/enzimologia , Glucagon/biossíntese , N-Acetilglucosaminiltransferases/genética , Obesidade/genética , Acilação/efeitos dos fármacos , Animais , Jejum/metabolismo , Feminino , Efeito Fundador , Glucagon/deficiência , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/patologia , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Teste de Tolerância a Glucose , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Resistência à Insulina , Integrases/genética , Integrases/metabolismo , Masculino , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/deficiência , Obesidade/enzimologia , Obesidade/patologia , Ácido Pirúvico/metabolismo , Ácido Pirúvico/farmacologia
3.
J Cell Physiol ; 235(1): 166-175, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180589

RESUMO

The pancreatic islets of Langerhans, mainly formed by glucagon-producing α-cells and insulin-producing ß-cells, are critical for glucose homeostasis. Insulin and glucagon oppositely modulate blood glucose levels in health, but a combined decline in insulin secretion together with increased glucagon secretion contribute to hyperglycemia in diabetes. Despite this bi-hormonal dysregulation, most studies have focused on insulin secretion and much less is known about glucagon secretion. Therefore, a deeper understanding of α-cell metabolism and glucagon secretion is of great interest. Here, we show that phosphoenolpyruvate carboxykinase (PCK1), an essential cataplerotic enzyme involved in metabolism and long considered to be absent from the pancreatic islet, is expressed in pancreatic α-cells of both murine and human. Furthermore, PCK1 transcription is induced by fasting and diabetes in rat pancreas, which indicates that the PCK1 activity is required for α-cell adaptation to different metabolic states. To our knowledge, this is the first evidence implicating PCK1 expression in α-cell metabolism.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Células Secretoras de Glucagon/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Pâncreas/enzimologia , Pâncreas/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Ratos
4.
Histol Histopathol ; 33(11): 1167-1180, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29726577

RESUMO

Insulin Degrading Enzyme (IDE) is an endopeptidase that degrades insulin and glucagon. Ide gene has been associated with type-2 diabetes mellitus (DM2). However, the physiological role(s) of IDE in glucose homeostasis and its potential therapeutic benefit remain not completely known. To contribute in the understanding of IDE's role in glucose metabolism, we analyzed IDE protein level in pancreatic islets from two hyperinsulinemic mouse models, db/db and high-fat diet (HFD) mice, as well as in human islets from DM2 patients treated with oral hypoglycemic agents (OHAs) or insulin. IDE protein level was detected by staining and by western-blot. INS1E cells, rat and human islets were treated with insulin and IDE protein level was studied. We have shown for the first time IDE staining in rodent and human tissue, using the proper negative control, IDE null mouse tissue. Our staining indicates that IDE is expressed in both beta- and alpha-cells, with higher expression in alpha-cells. Db/db and HFD mice islets showed increased IDE protein level. Interestingly, human islets from DM2 patients treated with OHAs showed decreased IDE protein level in beta-cells. Meanwhile, islets from insulin-treated DM2 patients showed augmented IDE protein level compared to OHAs patients, pointing to an upregulation of IDE protein level stimulated by insulin. These data correlate nicely with insulin-stimulated upregulation of IDE in cultured INS1E cells, as well as in rat and human islets. In conclusion, our study shows that IDE is expressed in pancreatic beta- and alpha-cells of both rodents and humans, having higher expression in alpha-cells. Furthermore, insulin stimulates IDE protein level in pancreatic beta-cells. These results may have implications in how DM2 patient's treatment affects their beta-cell function.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/enzimologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/enzimologia , Insulina/farmacologia , Insulisina/biossíntese , Ilhotas Pancreáticas/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Camundongos , Regulação para Cima
5.
Diabetes Obes Metab ; 19 Suppl 1: 42-53, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28466587

RESUMO

The "second messenger" archetype cAMP is one of the most important cellular signalling molecules with central functions including the regulation of insulin and glucagon secretion from the pancreatic ß- and α-cells, respectively. cAMP is generally considered as an amplifier of insulin secretion triggered by Ca2+ elevation in the ß-cells. Both messengers are also positive modulators of glucagon release from α-cells, but in this case cAMP may be the important regulator and Ca2+ have a more permissive role. The actions of cAMP are mediated by protein kinase A (PKA) and the guanine nucleotide exchange factor Epac. The present review focuses on how cAMP is regulated by nutrients, hormones and neural factors in ß- and α-cells via adenylyl cyclase-catalysed generation and phosphodiesterase-mediated degradation. We will also discuss how PKA and Epac affect ion fluxes and the secretory machinery to transduce the stimulatory effects on insulin and glucagon secretion. Finally, we will briefly describe disturbances of the cAMP system associated with diabetes and how cAMP signalling can be targeted to normalize hypo- and hypersecretion of insulin and glucagon, respectively, in diabetic patients.


Assuntos
AMP Cíclico/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistemas do Segundo Mensageiro , Adenilil Ciclases/metabolismo , Animais , Sinalização do Cálcio , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Exocitose , Células Secretoras de Glucagon/enzimologia , Glucose/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Comunicação Parácrina , Diester Fosfórico Hidrolases/metabolismo
6.
Am J Physiol Regul Integr Comp Physiol ; 310(2): R143-55, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26561648

RESUMO

Neuronostatin (NST) is a recently described peptide that is produced from the somatostatin preprohormone in pancreatic δ-cells. NST has been shown to increase glucagon secretion from primary rat pancreatic islets in low-glucose conditions. Here, we demonstrate that NST increases proglucagon message in α-cells and identify a potential mechanism for NST's cellular activities, including the phosphorylation of PKA following activation of the G protein-coupled receptor, GPR107. GPR107 is abundantly expressed in the pancreas, particularly, in rodent and human α-cells. Compromise of GPR107 in pancreatic α-cells results in failure of NST to increase PKA phosphorylation and proglucagon mRNA levels. We also demonstrate colocalization of GPR107 and NST on both mouse and human pancreatic α-cells. Taken together with our group's observation that NST infusion in conscious rats impairs glucose clearance in response to a glucose challenge and that plasma levels of the peptide are elevated in the fasted compared with the fed or fasted-refed state, these studies support the hypothesis that endogenous NST regulates islet cell function by interacting with GPR107 and initiating signaling in glucagon-producing α-cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Proglucagon/genética , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/agonistas , Animais , Linhagem Celular , Células Secretoras de Glucagon/enzimologia , Humanos , Masculino , Camundongos , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/metabolismo , Fosforilação , Interferência de RNA , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatostatina/metabolismo , Transfecção , Regulação para Cima
7.
Histochem Cell Biol ; 143(5): 497-504, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25361590

RESUMO

Fibroblast activation protein (FAP, seprase, EC 3.4.21.B28) and dipeptidyl peptidase-IV (DPP-IV, CD26, EC 3.4.14.5) are homologous serine proteases implicated in the modulation of the bioavailability and thus the function of a number of biologically active peptides. In spite of their generally nonoverlapping expression patterns, DPP-IV and FAP are co-expressed and probably co-regulated in certain cell types suggesting that for some biological processes their functional synergy is essential. By an in situ enzymatic activity assay, we show an abundant DPP-IV-like enzymatic activity sensitive to a highly specific DPP-IV inhibitor sitagliptin and corresponding DPP-IV immunoreactivity in the adult human islets of Langerhans. Moreover, the homologous protease FAP was present in the human endocrine pancreas and was co-expressed with DPP-IV. DPP-IV and FAP were found in the pancreatic alpha cells as determined by the co-localization with glucagon immunoreactivity. In summary, we show abundant enzymatic activity of the canonical DPP-IV (CD26) in Langerhans islets in the natural tissue context and demonstrate for the first time the co-expression of FAP and DPP-IV in pancreatic alpha cells in adult humans. Given their ability to proteolytically modify several biologically active peptides, both proteases have the potential to modulate the paracrine signaling in the human Langerhans islets.


Assuntos
Dipeptidil Peptidase 4/análise , Gelatinases/análise , Ilhotas Pancreáticas/enzimologia , Proteínas de Membrana/análise , Serina Endopeptidases/análise , Adulto , Endopeptidases , Glucagon/análise , Células Secretoras de Glucagon/enzimologia , Humanos , Imuno-Histoquímica , Ilhotas Pancreáticas/citologia , Microscopia Confocal
8.
Islets ; 5(3): 122-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23959334

RESUMO

AIMS/HYPOTHESIS: Protein gene product 9.5 (PGP 9.5) is a marker for neuroendocrine cells but has not been used for pancreatic islet cells and pancreatic endocrine tumors (PETs). Antibodies for PGP 9.5 are now commercially available for immunocytochemical study, with which immunostaining may be able to differentiate between benign and malignant PETs. RESULTS: All 4 kinds of normal islet cells were positively immunostained for PGP 9.5-moderately positive for ß-cells and strongly positive for δ-cells, whereas ganglion cells were immunostained more strongly than islet cells. Nine of 12 insulinomas were moderately to strongly positive for PGP 9.5. Two glucagonomas, 3 of 6 pancreatic polypeptidomas (PPomas), 3 of 9 gastrinomas, and 2 of 4 non-functioning PETs were negative for PGP 9.5. MATERIALS AND METHODS: Thirty-four PETs were immunocytochemically stained for PGP 9.5 using a rabbit polyclonal antibody together with immunostaining for 4 pancreatic hormones, chromogranin A (CgA), and gastrin. PETs consisted of 12 insulinomas, 2 glucagonomas, 1 somatostatinoma (SRIFoma), 6 PPomas, 9 gastrinomas, and 4 non-functioning PETs. CONCLUSION/INTERPRETATION: PGP 9.5 immunostaining was universally positive for 4 kinds of islet cells and was moderately to strongly positive for 9 of 12 (75%) insulinomas. All 22 non-ß-cell PETs were negative or weakly positive for PGP 9.5, and thus negative or weakly positive PGP 9.5 immunostaining may be used as a marker for potential malignancy and poor prognosis for non-ß-cell PETs.


Assuntos
Proteínas de Neoplasias/metabolismo , Células Neuroendócrinas/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Ubiquitina Tiolesterase/metabolismo , Biomarcadores/metabolismo , Gânglios/metabolismo , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Insulinoma/enzimologia , Insulinoma/metabolismo , Insulinoma/patologia , Gradação de Tumores , Proteínas do Tecido Nervoso/metabolismo , Células Neuroendócrinas/enzimologia , Células Neuroendócrinas/patologia , Pâncreas/inervação , Pâncreas/patologia , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia
9.
Drug Metab Dispos ; 40(10): 1878-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22798551

RESUMO

Exposure to cigarette smoke is an etiological factor of human pancreatic cancer and has been associated with an increased risk of pancreatic diseases, including pancreatitis and diabetes. The toxicants in cigarette smoke can reach pancreatic tissue, and most of the toxicants require cytochrome P450 (P450)-mediated metabolic activation to exert their toxicity. Among all the human P450 enzymes, CYP2A13 is the most efficient enzyme in the metabolic activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a major tobacco-specific toxicant and a suspected human carcinogen. It also metabolically activates 4-aminobiphenyl, another toxicant in cigarette smoke. Immunohistochemical analysis in this study demonstrated that CYP2A13 was selectively expressed in the islets but not in the exocrine portion of adult human pancreas. Further study using dual immunofluorescence labeling technique showed that CYP2A13 protein was mainly expressed in the α-islet but not in ß-islet cells. The selective expression of CYP2A13 in human pancreatic α-islet cells suggests that these islet cells could be damaged by the toxicants existing in cigarette smoke through CYP2A13-mediated in situ metabolic activation. Our result provides a mechanistic insight for human pancreatic diseases that have been associated with cigarette smoke exposure.


Assuntos
Hidrocarboneto de Aril Hidroxilases/análise , Células Secretoras de Glucagon/enzimologia , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biotransformação , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Imunofluorescência , Células Secretoras de Glucagon/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/etiologia , Fumar/efeitos adversos , Fumar/metabolismo , Especificidade por Substrato
10.
J Pineal Res ; 53(4): 390-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22672634

RESUMO

Melatonin has been shown to modulate glucose metabolism by influencing insulin secretion. Recent investigations have also indicated a regulatory function of melatonin on the pancreatic α-cells. The present in vitro and in vivo studies evaluated whether melatonin mediates its effects via melatonin receptors and which signaling cascade is involved. Incubation experiments using the glucagon-producing mouse pancreatic α-cell line αTC1 clone 9 (αTC1.9) as well as isolated pancreatic islets of rats and mice revealed that melatonin increases glucagon secretion. Preincubation of αTC1.9 cells with the melatonin receptor antagonists luzindole and 4P-PDOT abolished the glucagon-stimulatory effect of melatonin. In addition, glucagon secretion was lower in the pancreatic islets of melatonin receptor knockout mice than in the islets of the wild-type (WT) control animals. Investigations of melatonin receptor knockout mice revealed decreased plasma glucagon concentrations and elevated mRNA expression levels of the hepatic glucagon receptor when compared to WT mice. Furthermore, studies using pertussis toxin, as well as measurements of cAMP concentrations, ruled out the involvement of Gαi- and Gαs-coupled signaling cascades in mediating the glucagon increase induced by melatonin. In contrast, inhibition of phospholipase C in αTC1.9 cells prevented the melatonin-induced effect, indicating the physiological relevance of the Gαq-coupled pathway. Our data point to the involvement of the phosphatidylinositol 3-kinase signaling cascade in mediating melatonin effects in pancreatic α-cells. In conclusion, these findings provide evidence that the glucagon-stimulatory effect of melatonin in pancreatic α-cells is melatonin receptor mediated, thus supporting the concept of melatonin-modulated and diurnal glucagon release.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Glucagon/metabolismo , Melaninas/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Receptor MT1 de Melatonina/efeitos dos fármacos , Receptor MT2 de Melatonina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Glucagon/sangue , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Glucagon/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Toxina Pertussis/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética , Receptores de Glucagon/efeitos dos fármacos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Tetra-Hidronaftalenos/farmacologia , Técnicas de Cultura de Tecidos , Triptaminas/farmacologia , Fosfolipases Tipo C/metabolismo
11.
Diabetologia ; 54(1): 125-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20938634

RESUMO

AIM/HYPOTHESIS: AMP-activated protein kinase (AMPK), encoded by Prkaa genes, is emerging as a key regulator of overall energy homeostasis and the control of insulin secretion and action. We sought here to investigate the role of AMPK in controlling glucagon secretion from pancreatic islet alpha cells. METHODS: AMPK activity was modulated in vitro in clonal alphaTC1-9 cells and isolated mouse pancreatic islets using pharmacological agents and adenoviruses encoding constitutively active or dominant negative forms of AMPK. Glucagon secretion was measured during static incubation by radioimmunoassay. AMPK activity was assessed by both direct phosphotransfer assay and by western (immuno-)blotting of the phosphorylated AMPK α subunits and the downstream target acetyl-CoA carboxylase 1. Intracellular free [Ca²(+)] was measured using Fura-Red. RESULTS: Increasing glucose concentrations strongly inhibited AMPK activity in clonal pancreatic alpha cells. Forced increases in AMPK activity in alphaTC1-9 cells, achieved through the use of pharmacological agents including metformin, phenformin and A-769662, or via adenoviral transduction, resulted in stimulation of glucagon secretion at both low and high glucose concentrations, whereas AMPK inactivation inhibited both [Ca²(+)](i) increases and glucagon secretion at low glucose. Transduction of isolated mouse islets with an adenovirus encoding AMPK-CA under the control of the preproglucagon promoter increased glucagon secretion selectively at elevated glucose concentrations. CONCLUSIONS/INTERPRETATION: AMPK is strongly regulated by glucose in pancreatic alpha cells, and increases in AMPK activity are sufficient and necessary for the stimulation of glucagon release in vitro. Modulation of AMPK activity in alpha cells may therefore provide a novel approach to controlling blood glucose concentrations.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Feminino , Células Secretoras de Glucagon/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Metformina/farmacologia , Camundongos , Fenformin/farmacologia , Fosforilação/efeitos dos fármacos , Pironas/farmacologia , Tiofenos/farmacologia
12.
Diabetes ; 60(1): 148-56, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978093

RESUMO

OBJECTIVE: The physiologic significance of the nitric oxide (NO)/cGMP signaling pathway in islets is unclear. We hypothesized that cGMP-dependent protein kinase type I (cGKI) is directly involved in the secretion of islet hormones and glucose homeostasis. RESEARCH DESIGN AND METHODS: Gene-targeted mice that lack cGKI in islets (conventional cGKI mutants and cGKIα and Iß rescue mice [α/ßRM] that express cGKI only in smooth muscle) were studied in comparison to control (CTR) mice. cGKI expression was mapped in the endocrine pancreas by Western blot, immuno-histochemistry, and islet-specific recombination analysis. Insulin, glucagon secretion, and cytosolic Ca²(+) ([Ca²(+)](i)) were assayed by radioimmunoassay and FURA-2 measurements, respectively. Serum levels of islet hormones were analyzed at fasting and upon glucose challenge (2 g/kg) in vivo. RESULTS: Immunohistochemistry showed that cGKI is present in α- but not in ß-cells in islets of Langerhans. Mice that lack α-cell cGKI had significantly elevated fasting glucose and glucagon levels, whereas serum insulin levels were unchanged. High glucose concentrations strongly suppressed the glucagon release in CTR mice, but had only a moderate effect on islets that lacked cGKI. 8-Br-cGMP reduced stimulated [Ca²(+)](i) levels and glucagon release rates of CTR islets at 0.5 mmol/l glucose, but was without effect on [Ca²(+)](i) or hormone release in cGKI-deficient islets. CONCLUSIONS: We propose that cGKI modulates glucagon release by suppression of [Ca²(+)](i) in α-cells.


Assuntos
Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Guanilato Quinases/metabolismo , Animais , Glicemia/metabolismo , Cálcio/fisiologia , Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas Quinases Dependentes de GMP Cíclico/deficiência , Proteínas Quinases Dependentes de GMP Cíclico/genética , Primers do DNA , Amplificação de Genes , Genes Reporter , Glucagon/sangue , Células Secretoras de Glucagon/enzimologia , Teste de Tolerância a Glucose , Homeostase , Hipoxantina Fosforribosiltransferase/genética , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/fisiologia , Músculo Liso/enzimologia , RNA/genética , RNA/isolamento & purificação , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Exp Diabetes Res ; 2009: 631026, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19888425

RESUMO

Type 1 diabetes is caused by autoimmune destruction of pancreatic beta cells, possibly virus initiated. Virus infection induces alpha-interferon (IFN-alpha), leading to upregulation of genes encoding double-stranded (ds) RNA-dependent antiviral enzymes 2', 5'-oligoadenylate synthetase (2'5'AS) and PKR (p68). To investigate whether beta cell specificity could be due to antiviral differences between beta and alpha cells, we treated beta and alpha TC3 cell lines with IFN-alpha and/or poly(I:C) (a synthetic dsRNA). Results showed that, following IFN-alpha stimulation, increases in 2'5'AS levels and activities were significantly higher in beta than alpha cells (P < .001), whereas increases in PKR level and activity were comparable in the two cell types. Poly(I:C) stimulated 2'5'AS activity in beta but not alpha cells, and co-transfection IFN-alpha plus poly(I:C) induced apoptosis in beta but not alpha cells. These findings suggest that the elevated 2'5'AS response of pancreatic beta cells could render them particularly vulnerable to damage and/or apoptosis during virus infection.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Apoptose/efeitos dos fármacos , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Insulina/enzimologia , Interferon-alfa/farmacologia , Poli I-C/farmacologia , Viroses/enzimologia , 2',5'-Oligoadenilato Sintetase/análise , Animais , Células Cultivadas , Camundongos , Receptor 3 Toll-Like/fisiologia , Viroses/patologia , eIF-2 Quinase/análise , eIF-2 Quinase/metabolismo
14.
Diabetes ; 56(11): 2744-52, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17698597

RESUMO

OBJECTIVE: Glucagon, which raises blood glucose levels by stimulating hepatic glucose production, is produced in alpha-cells via cleavage of proglucagon by prohormone convertase (PC)-2. In the enteroendocrine L-cell, proglucagon is differentially processed by the alternate enzyme PC1/3 to yield glucagon-like peptide (GLP)-1, GLP-2, and oxyntomodulin, which have blood glucose-lowering effects. We hypothesized that alteration of PC expression in alpha-cells might convert the alpha-cell from a hyperglycemia-promoting cell to one that would improve glucose homeostasis. RESEARCH DESIGN AND METHODS: We compared the effect of transplanting encapsulated PC2-expressing alpha TC-1 cells with PC1/3-expressing alpha TCDeltaPC2 cells in normal mice and low-dose streptozotocin (STZ)-treated mice. RESULTS: Transplantation of PC2-expressing alpha-cells increased plasma glucagon levels and caused mild fasting hyperglycemia, impaired glucose tolerance, and alpha-cell hypoplasia. In contrast, PC1/3-expressing alpha-cells increased plasma GLP-1/GLP-2 levels, improved glucose tolerance, and promoted beta-cell proliferation. In GLP-1R(-/-) mice, the ability of PC1/3-expressing alpha-cells to improve glucose tolerance was attenuated. Transplantation of PC1/3-expressing alpha-cells prevented STZ-induced hyperglycemia by preserving beta-cell area and islet morphology, possibly via stimulating beta-cell replication. However, PC2-expressing alpha-cells neither prevented STZ-induced hyperglycemia nor increased beta-cell proliferation. Transplantation of alpha TCDeltaPC2, but not alpha TC-1 cells, also increased intestinal epithelial proliferation. CONCLUSIONS: Expression of PC1/3 rather than PC2 in alpha-cells induces GLP-1 and GLP-2 production and converts the alpha-cell from a hyperglycemia-promoting cell to one that lowers blood glucose levels and promotes islet survival. This suggests that alteration of proglucagon processing in the alpha-cell may be therapeutically useful in the context of diabetes.


Assuntos
Células Secretoras de Glucagon/enzimologia , Células Secretoras de Glucagon/transplante , Glucose/metabolismo , Proglucagon/metabolismo , Pró-Proteína Convertase 1/genética , Pró-Proteína Convertase 2/genética , Animais , Sobrevivência Celular , Diabetes Mellitus Experimental/terapia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células Secretoras de Glucagon/metabolismo , Teste de Tolerância a Glucose , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 2/deficiência , Receptores de Glucagon/deficiência
15.
Biochimie ; 89(11): 1366-71, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17614191

RESUMO

Glutamatergic signalling plays an important role in the coordination of hormone secretion from the endocrine pancreas. Thus, glutamate production must be a process exquisitely regulated to ensure a proper transmitter function. Recently we have reported that the endocrine pancreas co-expresses two isoforms of the protein glutaminase (GA), denoted as kidney-type (KGA) and liver-type (LGA). However, how GA activity, and therefore glutamate production, is regulated in the islets represents a critical issue that remains unresolved. Since the purification of these enzymes from rat islets is a daunting task, in order to characterize each isoform we have taken advantage of the spatial segregation of these isoenzymes in pancreas. To assist us with this goal, we have developed a new procedure that enables us to assay GA activity in situ. The assay is highly specific for GA as indicated by its dependence on glutamine and orthophosphate. Surprisingly, LGA, which is abundantly expressed by beta-cells, did not show detectable activity under the assay conditions. All the GA activity detected in pancreatic islets was attributed to KGA and was confined to the mantle of the islets. Double labelling analyses strongly suggested that alpha-cells should be regarded as the site of glutamate production in the endocrine pancreas.


Assuntos
Glutaminase/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/enzimologia , Animais , Células Secretoras de Glucagon/enzimologia , Células Secretoras de Insulina/enzimologia , Isoenzimas/metabolismo , Rim/enzimologia , Fígado/enzimologia , Masculino , Ratos , Ratos Wistar
16.
Histochem Cell Biol ; 127(2): 227-32, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17102991

RESUMO

The pancreatic islet beta cells are very sensitive to oxidative stress, probably due to the extremely low level of anti-oxidant enzymes, particularly catalase. In contrast to beta cells, pancreatic alpha cells are significantly more resistant to diabetogenic toxins. However, whether alpha cells express a different level of catalase is not known. The aim of this study was to evaluate catalase expression in alpha cells of diabetic and non-diabetic mice. Diabetes was induced by a single injection of streptozotocin. After 3 weeks of persistent hyperglycemia, pancreatic tissues were collected. Catalase localization in alpha cells was identified by a dual-immunofluorescence staining with anti-glucagon and anti-catalase antibodies. In intact mice, intensive catalase and glucagon immunostaining was found in the peripheral area of islets. Merged images of glucagon and catalase show their localization in the same cell type, namely, alpha cells. Confocal microscopy indicated that the glucagon and catalase staining was distributed throughout the cytoplasm. Similar co-expression of catalase and glucagon was found in the alpha cells of diabetic animals. The results of this study show the intensive catalase expression in alpha cells of diabetic and non-diabetic mice. This knowledge may be useful to better understand the defense mechanisms of pancreatic alpha cells against oxidative stress.


Assuntos
Catalase/metabolismo , Diabetes Mellitus Experimental/enzimologia , Células Secretoras de Glucagon/enzimologia , Ilhotas Pancreáticas/enzimologia , Animais , Catalase/isolamento & purificação , Diabetes Mellitus Experimental/metabolismo , Imunofluorescência , Glucagon/isolamento & purificação , Glucagon/metabolismo , Células Secretoras de Glucagon/citologia , Imuno-Histoquímica , Insulina/isolamento & purificação , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , Microscopia Confocal , Estresse Oxidativo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...