Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088828

RESUMO

Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo ß-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both ß- and δ1-cells. The transcriptomic analysis of ß-cell regeneration reveals that ß/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of ß-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of ß-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.


Assuntos
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/citologia , Regeneração , Células Secretoras de Somatostatina/citologia , Animais , Cálcio/metabolismo , Diabetes Mellitus/patologia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Análise de Célula Única , Células Secretoras de Somatostatina/metabolismo , Peixe-Zebra
2.
Acta Histochem ; 122(8): 151650, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33161374

RESUMO

Huntingtin-associated protein 1 (HAP1) is a neuronal cytoplasmic protein that is predominantly expressed in the brain and spinal cord. In addition to the central nervous system, HAP1 is also expressed in the peripheral organs including endocrine system. Different types of enteroendocrine cells (EEC) are present in the digestive organs. To date, the characterization of HAP1-immunoreactive (ir) cells remains unreported there. In the present study, the expression of HAP1 in pyloric stomach in adult male rats and its relationships with different chemical markers for EEC [gastrin, marker of gastrin (G) cells; somatostatin, marker of delta (D) cells; 5-HT, marker of enterochromaffin (EC) cells; histamine, marker of enterochromaffin-like (ECL) cells] were examined employing single- or double-labelled immunohistochemistry and with light-, fluorescence- or electron-microscopy. HAP1-ir cells were abundantly expressed in the glandular mucosa but were very few or none in the surface epithelium. Double-labelled immunofluorescence staining for HAP1 and markers for EECs showed that almost all the G-cells expressed HAP1. In contrast, HAP1 was completely lacking in D-cells, EC-cells or ECL-cells. Our current study is the first to clarify that HAP1 is selectively expressed in G-cells in rat pyloric stomach, which probably reflects HAP1's involvement in regulation of the secretion of gastrin.


Assuntos
Células Enterocromafins/metabolismo , Celulas Tipo Enterocromafim/metabolismo , Mucosa Gástrica/metabolismo , Proteínas do Tecido Nervoso/genética , Piloro/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animais , Biomarcadores/metabolismo , Células Enterocromafins/citologia , Celulas Tipo Enterocromafim/citologia , Mucosa Gástrica/citologia , Gastrinas/biossíntese , Expressão Gênica , Histamina/biossíntese , Imuno-Histoquímica , Masculino , Proteínas do Tecido Nervoso/metabolismo , Especificidade de Órgãos , Piloro/citologia , Ratos , Ratos Wistar , Somatostatina/biossíntese , Células Secretoras de Somatostatina/citologia
3.
Development ; 147(12)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32467243

RESUMO

Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse ß cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.


Assuntos
Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Transdução de Sinais , Tretinoína/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Pâncreas/citologia , Receptores do Ácido Retinoico/deficiência , Receptores do Ácido Retinoico/genética , Somatostatina/genética , Somatostatina/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Transativadores/deficiência , Transativadores/genética , Proteínas Wnt/metabolismo
4.
Nat Commun ; 10(1): 3700, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31420552

RESUMO

Little is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions.


Assuntos
Ilhotas Pancreáticas/ultraestrutura , Comunicação Parácrina , Estado Pré-Diabético/patologia , Pseudópodes/ultraestrutura , Células Secretoras de Somatostatina/ultraestrutura , Animais , Glicemia/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Microscopia Intravital , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Imagem Óptica , Optogenética , Estado Pré-Diabético/metabolismo , Pseudópodes/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Acta Histochem ; 121(5): 638-645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31146895

RESUMO

In the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10th to the 40th weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods. During development, the human endocrine pancreas undergoes not only de novo differentiation of endocrine cells and islet formation, but morphogenetic restructuring, which is revealed as a change of the α-, ß- and δ-cell ratio in the islets. In particular, increased proportion of glucagon- and somatostatin-containing cells and decreased proportion of ß-cells were shown in the largest mosaic islets in adults. Our results indicate that the distribution and proportion of α-, ß- and δ-cells depend on the islets size and vascularisation. Studying of the mechanism of such restructuring may contribute to the development of new approaches in the treatment of diabetes mellitus.


Assuntos
Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Pâncreas/citologia , Células Secretoras de Somatostatina/citologia , Desenvolvimento Embrionário , Humanos
6.
Diabetes ; 68(6): 1230-1239, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30936150

RESUMO

Pancreatic ß-cells play a pivotal role in maintaining normoglycemia. Recent studies have revealed that the ß-cell is not a homogeneous cell population but, rather, is heterogeneous in a number of properties such as electrical activity, gene expression, and cell surface markers. Identification of specific ß-cell subpopulations altered in diabetic conditions would open a new avenue to develop targeted therapeutic interventions. As intense studies of ß-cell heterogeneity are anticipated in the next decade, it is important that heterogeneity of the islet be recognized. Many studies in the past were undertaken with a small sample of islets, which might overlook important individual variance. In this study, by systematic analyses of the human islet in two and three dimensions, we demonstrate islet heterogeneity in size, number, architecture, cellular composition, and capillary density. There is no stereotypic human islet, and thus, a sufficient number of islets should be examined to ensure study reproducibility.


Assuntos
Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Células Secretoras de Somatostatina/citologia , Adolescente , Adulto , Idoso , Animais , Células Endócrinas/citologia , Células Endócrinas/metabolismo , Feminino , Células Secretoras de Glucagon/metabolismo , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Microscopia Confocal , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Células Secretoras de Somatostatina/metabolismo , Adulto Jovem
7.
Eur J Histochem ; 63(1)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30827082

RESUMO

The Lake Van fish (Alburnus tarichi) is a species that is endemic to Turkey's Lake Van basin. In this study, the regional distribution, volume density, and relative frequency of some pancreatic endocrine cells in Lake Van fish were investigated via immunohistochemistry using specific mammalian antibodies. The pancreatic tissue was observed to be surrounded by adipose tissue, which was adjacent to the gall bladder or extrahepatic bile duct, or dispersed in the adipose tissue ranked among coils of post-esophageal swelling and intestine. The pancreatic endocrine cells were examined, including the islets, exocrine pancreas, and pancreatic ducts. According to the modified aldehyde fuchsin staining and immunohistochemistry, insulin-secreting beta cells were observed to localize throughout the islets. Glucagon immune-reactive (IR) cells were observed to be situated moderately on the islet periphery, and were rarely determined in the islet central region. A small number of somatostatin-IR cells were observed in the islet centers and peripheries. Similar distributions of those 3 endocrine cells were also determined in the secondary islets. Additionally, the endocrine cell percentages did not differ between the primary and secondary islets; insulin-, glucagon- and somatostatin-IR cells comprised approximately 54%, 29%, and 11% of the endocrine cells in the principal islets, whereas they comprised 52%, 27%, and 14% in the secondary islets, respectively. Insulin-, glucagon- and somatostatin-IR cells were also determined among the epithelium and subepithelial connective tissue in the pancreatic ducts or exocrine areas of the pancreas. With this study, the existence, regional distribution, and relative frequency of the insulin-, glucagon- and somatostatin-IR cells were first investigated in the pancreatic tissue of Lake Van fish and the results were discussed.


Assuntos
Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/anatomia & histologia , Células Secretoras de Somatostatina/citologia , Animais , Cyprinidae , Imuno-Histoquímica , Pâncreas Exócrino/anatomia & histologia , Pâncreas Exócrino/citologia , Turquia
8.
Bioessays ; 40(11): e1800119, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30264410

RESUMO

We recently discovered a novel subset of beta cells that resemble immature beta cells during pancreas development. We named these "virgin" beta cells as they do not stem from existing mature beta cells. Virgin beta cells are found exclusively at the islet periphery in areas that we therefore designated as the "neogenic niche." As beta cells are our only source of insulin, their loss leads to diabetes. Islets also contain glucagon-producing alpha cells and somatostatin-producing delta cells, that are important for glucose homeostasis and form a mantle surrounding the beta cell core. This 3D architecture is important and determines access to blood flow and innervation. We propose that the distinctive islet architecture may also play an important, but hitherto unappreciated role in generation of new endocrine cells, including beta cells. We discuss several predictions to further test the contribution of the neogenic niche to beta cell regeneration.


Assuntos
Transdiferenciação Celular/fisiologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Células Secretoras de Somatostatina/citologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Glucagon/metabolismo , Humanos , Células Secretoras de Insulina/classificação , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Somatostatina/metabolismo
9.
Purinergic Signal ; 14(3): 285-298, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29974392

RESUMO

With immunohistochemical and Western blot techniques, P2X1 receptors were detected in the whole mouse gastrointestinal tract and pancreatic islets of mouse and human. (1) δ Cells containing somatostatin (SOM) in the stomach corpus, small intestines, distal colon, pancreatic islets of both mouse and human express P2X1 receptors; (2) strong immunofluorescence of P2X1 receptors was detected in smooth muscle fibers and capillary networks of the villus core of mouse intestine; and (3) P2X1 receptor-immunoreactive neurons were also detected widely in both mouse myenteric and submucosal plexuses, all of which express SOM. The present data implies that ATP via P2X1 receptors is involved in SOM release from pancreatic δ cells, enteric neurons, and capillary networks in villi.


Assuntos
Trato Gastrointestinal/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Células Secretoras de Somatostatina/metabolismo , Animais , Trato Gastrointestinal/citologia , Humanos , Ilhotas Pancreáticas/citologia , Camundongos , Plexo Mientérico/citologia , Plexo Mientérico/metabolismo , Células Secretoras de Somatostatina/citologia
10.
J Physiol ; 596(2): 197-215, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28975620

RESUMO

KEY POINTS: We used a mouse expressing a light-sensitive ion channel in ß-cells to understand how α-cell activity is regulated by ß-cells. Light activation of ß-cells triggered a suppression of α-cell activity via gap junction-dependent activation of δ-cells. Mathematical modelling of human islets suggests that 23% of the inhibitory effect of glucose on glucagon secretion is mediated by ß-cells via gap junction-dependent activation of δ-cells/somatostatin secretion. ABSTRACT: Glucagon, the body's principal hyperglycaemic hormone, is released from α-cells of the pancreatic islet. Secretion of this hormone is dysregulated in type 2 diabetes mellitus but the mechanisms controlling secretion are not well understood. Regulation of glucagon secretion by factors secreted by neighbouring ß- and δ-cells (paracrine regulation) have been proposed to be important. In this study, we explored the importance of paracrine regulation by using an optogenetic strategy. Specific light-induced activation of ß-cells in mouse islets expressing the light-gated channelrhodopsin-2 resulted in stimulation of electrical activity in δ-cells but suppression of α-cell activity. Activation of the δ-cells was rapid and sensitive to the gap junction inhibitor carbenoxolone, whereas the effect on electrical activity in α-cells was blocked by CYN 154806, an antagonist of the somatostatin-2 receptor. These observations indicate that optogenetic activation of the ß-cells propagates to the δ-cells via gap junctions, and the consequential stimulation of somatostatin secretion inhibits α-cell electrical activity by a paracrine mechanism. To explore whether this pathway is important for regulating α-cell activity and glucagon secretion in human islets, we constructed computational models of human islets. These models had detailed architectures based on human islets and consisted of a collection of >500 α-, ß- and δ-cells. Simulations of these models revealed that this gap junctional/paracrine mechanism accounts for up to 23% of the suppression of glucagon secretion by high glucose.


Assuntos
Simulação por Computador , Junções Comunicantes/fisiologia , Células Secretoras de Glucagon/fisiologia , Células Secretoras de Insulina/fisiologia , Células Secretoras de Somatostatina/fisiologia , Animais , Cálcio/metabolismo , Comunicação Celular , Células Cultivadas , Feminino , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Somatostatina/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo
11.
Sci Rep ; 7(1): 16398, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-29180621

RESUMO

Pancreatic beta-cell mass is a critical determinant of the progression of diabetes. The loss of beta-cells in various types of diabetes has been documented in comparison to age, sex and body mass index (BMI) matched control subjects. However, the underlying heterogeneity of beta-cell mass in healthy individuals has not been considered. In this study, the inter-individual heterogeneity in beta-cell/islet mass was examined among 10 cases of age-matched non-diabetic male subjects in relation to BMI, pancreas weight, and the percent ratio, volume and number of islets in the whole pancreas. Beta-cell/islet mass was measured using a large-scale unbiased quantification method. In contrast to previous studies, we found no clinically relevant correlation between beta-cell/islet mass and age, BMI or pancreas weight, with large differences in beta-cell/islet mass and islet number among the individuals. Our method extracts the comprehensive information out of individual pancreas providing multifaceted parameters to study the intrinsic heterogeneity of the human pancreas.


Assuntos
Variação Biológica Individual , Contagem de Células , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Adulto , Diabetes Mellitus Tipo 2/patologia , Feminino , Células Secretoras de Glucagon/citologia , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Tamanho do Órgão , Células Secretoras de Somatostatina/citologia
12.
J Cell Biol ; 216(12): 4299-4311, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29025873

RESUMO

The recent demonstration that pancreatic α cells can be continuously regenerated and converted into ß-like cells upon ectopic expression of Pax4 opened new avenues of research in the endocrine cell differentiation and diabetes fields. To determine whether such plasticity was also shared by δ cells, we generated and characterized transgenic animals that express Pax4 specifically in somatostatin-expressing cells. We demonstrate that the ectopic expression of Pax4 in δ cells is sufficient to induce their conversion into functional ß-like cells. Importantly, this conversion induces compensatory mechanisms involving the reactivation of endocrine developmental processes that result in dramatic ß-like cell hyperplasia. Importantly, these ß-like cells are functional and can partly reverse the consequences of chemically induced diabetes.


Assuntos
Diabetes Mellitus Experimental/genética , Expressão Ectópica do Gene , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Box Pareados/genética , Células Secretoras de Somatostatina/metabolismo , Animais , Proliferação de Células , Transdiferenciação Celular/genética , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/terapia , Terapia Genética/métodos , Glucagon/biossíntese , Glucagon/genética , Proteínas de Homeodomínio/metabolismo , Insulina/biossíntese , Insulina/genética , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Transgênicos , Fatores de Transcrição Box Pareados/metabolismo , Somatostatina/biossíntese , Somatostatina/genética , Células Secretoras de Somatostatina/citologia , Estreptozocina
13.
Diabetes Obes Metab ; 19 Suppl 1: 124-136, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28880471

RESUMO

The progressive loss of pancreatic ß-cell mass that occurs in both type 1 and type 2 diabetes is a primary factor driving efforts to identify strategies for effectively increasing, enhancing or restoring ß-cell mass. While factors that seem to influence ß-cell proliferation in specific contexts have been described, reliable stimulation of human ß-cell proliferation has remained a challenge. Importantly, ß-cells exist in the context of a complex, integrated pancreatic islet microenvironment where they interact with other endocrine cells, vascular endothelial cells, extracellular matrix, neuronal projections and islet macrophages. This review highlights different components of the pancreatic microenvironment, and reviews what is known about how signaling that occurs between ß-cells and these other components influences ß-cell proliferation. Future efforts to further define the role of the pancreatic islet microenvironment on ß-cell proliferation may lead to the development of successful approaches to increase or restore ß-cell mass in diabetes.


Assuntos
Comunicação Celular , Proliferação de Células , Microambiente Celular , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Modelos Biológicos , Animais , Apoptose , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/imunologia , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/inervação , Ilhotas Pancreáticas/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/imunologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Células Secretoras de Polipeptídeo Pancreático/patologia , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/imunologia , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Somatostatina/patologia , Especificidade da Espécie
14.
J Clin Invest ; 127(7): 2631-2646, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28604389

RESUMO

Somatostatin secreted by pancreatic δ cells mediates important paracrine interactions in Langerhans islets, including maintenance of glucose metabolism through the control of reciprocal insulin and glucagon secretion. Disruption of this circuit contributes to the development of diabetes. However, the precise mechanisms that control somatostatin secretion from islets remain elusive. Here, we found that a super-complex comprising the cullin 4B-RING E3 ligase (CRL4B) and polycomb repressive complex 2 (PRC2) epigenetically regulates somatostatin secretion in islets. Constitutive ablation of CUL4B, the core component of the CRL4B-PRC2 complex, in δ cells impaired glucose tolerance and decreased insulin secretion through enhanced somatostatin release. Moreover, mechanistic studies showed that the CRL4B-PRC2 complex, under the control of the δ cell-specific transcription factor hematopoietically expressed homeobox (HHEX), determines the levels of intracellular calcium and cAMP through histone posttranslational modifications, thereby altering expression of the Cav1.2 calcium channel and adenylyl cyclase 6 (AC6) and modulating somatostatin secretion. In response to high glucose levels or urocortin 3 (UCN3) stimulation, increased expression of cullin 4B (CUL4B) and the PRC2 subunit histone-lysine N-methyltransferase EZH2 and reciprocal decreases in Cav1.2 and AC6 expression were found to regulate somatostatin secretion. Our results reveal an epigenetic regulatory mechanism of δ cell paracrine interactions in which CRL4B-PRC2 complexes, Cav1.2, and AC6 expression fine-tune somatostatin secretion and facilitate glucose homeostasis in pancreatic islets.


Assuntos
Proteínas Culina/metabolismo , Insulina/metabolismo , Complexos Multienzimáticos/metabolismo , Comunicação Parácrina , Células Secretoras de Somatostatina/metabolismo , Somatostatina/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteínas Culina/genética , AMP Cíclico/metabolismo , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Secreção de Insulina , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/genética , Somatostatina/genética , Células Secretoras de Somatostatina/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Sci Rep ; 7(1): 90, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28273890

RESUMO

Glucagon is the main counterregulatory hormone in the body. Still, the mechanism involved in the regulation of glucagon secretion from pancreatic alpha cells remains elusive. Dysregulated glucagon secretion is common in patients with Cystic Fibrosis (CF) that develop CF related diabetes (CFRD). CF is caused by a mutation in the Cl- channel Cystic fibrosis transmembrane conductance regulator (CFTR), but whether CFTR is present in human alpha cells and regulate glucagon secretion has not been investigated in detail. Here, both human and mouse alpha cells showed CFTR protein expression, whereas CFTR was absent in somatostatin secreting delta cells. CFTR-current activity induced by cAMP was measured in single alpha cells. Glucagon secretion at different glucose levels and in the presence of forskolin was increased by CFTR-inhibition in human islets, whereas depolarization-induced glucagon secretion was unaffected. CFTR is suggested to mainly regulate the membrane potential through an intrinsic alpha cell effect, as supported by a mathematical model of alpha cell electrophysiology. In conclusion, CFTR channels are present in alpha cells and act as important negative regulators of cAMP-enhanced glucagon secretion through effects on alpha cell membrane potential. Our data support that loss-of-function mutations in CFTR contributes to dysregulated glucagon secretion in CFRD.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Secretoras de Glucagon/citologia , Glucagon/metabolismo , Animais , Células Cultivadas , Colforsina/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Glucose/farmacologia , Humanos , Masculino , Potenciais da Membrana , Camundongos , Pessoa de Meia-Idade , Mutação , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/efeitos dos fármacos , Células Secretoras de Somatostatina/metabolismo
16.
Int J Biochem Cell Biol ; 88: 226-235, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28119131

RESUMO

In addition to ß-cells, pancreatic islets contain α- and δ-cells, which respectively produce glucagon and somatostatin. The reprogramming of these two endocrine cell types into insulin producers, as observed after a massive ß-cell ablation in mice, may help restoring a functional ß-cell mass in type 1 diabetes. Yet, the spontaneous α-to-ß and δ-to-ß conversion processes are relatively inefficient in adult animals and the underlying epigenetic mechanisms remain unclear. Several studies indicate that the conserved chromatin modifiers DNA methyltransferase 1 (Dnmt1) and Enhancer of zeste homolog 2 (Ezh2) are important for pancreas development and restrict islet cell plasticity. Here, to investigate the role of these two enzymes in α- and δ-cell development and fate maintenance, we genetically inactivated them in each of these two cell types. We found that loss of Dnmt1 does not enhance the conversion of α- or δ-cells toward a ß-like fate. In addition, while Dnmt1 was dispensable for the development of these two cell types, we noticed a gradual loss of α-, but not δ-cells in adult mice. Finally, we found that Ezh2 inactivation does not enhance α-cell plasticity, and, contrary to what is observed in ß-cells, does not impair α-cell proliferation. Our results indicate that both Dnmt1 and Ezh2 play distinct roles in the different islet cell types.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Células Secretoras de Glucagon/metabolismo , Homeostase , Células Secretoras de Somatostatina/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/deficiência , Proteína Potenciadora do Homólogo 2 de Zeste/deficiência , Ativação Enzimática , Células Secretoras de Glucagon/citologia , Camundongos , Células Secretoras de Somatostatina/citologia
17.
Diabetes Obes Metab ; 18 Suppl 1: 10-22, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27615127

RESUMO

During embryonic development, endocrine cells of the pancreas are specified from multipotent progenitors. The transcription factor Neurogenin 3 (NEUROG3) is critical for this development and it has been shown that all endocrine cells of the pancreas arise from endocrine progenitors expressing NEUROG3. A thorough understanding of the role of NEUROG3 during development, directed differentiation of pluripotent stem cells and in models of cellular reprogramming, will guide future efforts directed at finding novel sources of ß-cells for cell replacement therapies. In this article, we review the expression and function of NEUROG3 in both mouse and human and present the further characterization of a monoclonal antibody directed against NEUROG3. This antibody has been previously been used for detection of both mouse and human NEUROG3. However, our results suggest that the epitope recognized by this antibody is specific to mouse NEUROG3. Thus, we have also generated a monoclonal antibody specifically recognizing human NEUROG3 and present the characterization of this antibody here. Together, these antibodies will provide useful tools for future studies of NEUROG3 expression, and the data presented in this article suggest that recently described expression patterns of NEUROG3 in human foetal and adult pancreas should be re-examined.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/genética , Animais , Anticorpos Monoclonais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Reprogramação Celular , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Humanos , Imuno-Histoquímica , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo
18.
J Diabetes Res ; 2016: 4930741, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504459

RESUMO

Small and big mouse islets were compared with special reference to their content of glucagon-producing α-cells and somatostatin-producing δ-cells. Areas stained for glucagon and somatostatin were measured in the largest cross section of small (diameter < 60 µm) and big (diameter > 100 µm) islets. Comparison of the areas indicated proportionally more δ- than α-cells in the small islets. After isolation with collagenase these islets were practically devoid of α-cells. We evaluated the functional importance of the islet size by measuring the Ca(2+) signal for insulin release. A majority of the small islets responded to the hyperpolarization action of somatostatin with periodic decrease of cytoplasmic Ca(2+) when glucose was elevated after tolbutamide blockade of the KATP channels.


Assuntos
Células Secretoras de Glucagon/citologia , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Células Secretoras de Somatostatina/citologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Imuno-Histoquímica , Técnicas In Vitro , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Tamanho do Órgão , Somatostatina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Tolbutamida/farmacologia
19.
Dev Growth Differ ; 58(8): 635-640, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27530443

RESUMO

Human pancreatic islets show unique architecture in which α and δ cells are mostly at the peripheral and perivascular areas. It has remained unknown how such prototype is realized in every islet. Here, I report that fetal islets develop first in two distinct types consisting of ß or α/δ cells, respectively. The α/δ islets are variable in shape, composed of α and δ cells evenly intermixed. They are vascularized better but encapsulated poorer than ß islets in general. During the development, the ß and α/δ islets adjoin and fuse with each other in such a way that α and δ cells form a crescent on ß cells and, then, progress to encompass and encroach into ß cells. Most mature-form islets appear to develop through the fusion. Islets at various stages of fusion are present concurrently until late gestation, suggesting that the islet fusion is an ongoing developmental process. The α/δ islets appear to play a primary role for the process, approaching toward the fusion partner actively. Direct connection is present between the α/δ islets and neural ganglia undergoing active neurogenesis, suggesting an organ-wide neuroendocrine network development. The fusion of precursor islets appears to be a principle of human pancreatic development providing the prototype of mature islets. The complex development might be a reference for in vitro reproduction of biologically competent islets.


Assuntos
Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Somatostatina/metabolismo , Fusão Celular , Células Secretoras de Glucagon/citologia , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Somatostatina/citologia
20.
J Endocrinol ; 229(2): 123-32, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26931137

RESUMO

The aim of this study was to evaluate the location of PP and δ cells in relation to the vascularization within human pancreatic islets. To this end, pancreas sections were analysed by immunofluorescence using antibodies against endocrine islet and endothelial cells. Staining in different islet areas corresponding to islet cells adjacent or not to peripheral or central vascular channels was quantified by computerized morphometry. As results, α, PP and δ cells were preferentially found adjacent to vessels. In contrast to α cells, which were evenly distributed between islet periphery and intraislet vascular channels, PP and δ cells had asymmetric and opposite distributions: PP staining was higher and somatostatin staining was lower in the islet periphery than in the area around intraislet vascular channels. Additionally, frequencies of PP and δ cells were negatively correlated in the islets. No difference was observed between islets from the head and the tail of the pancreas, and from type 2 diabetic and non-diabetic donors. In conclusion, the distribution of δ cells differs from that of PP cells in human islets, suggesting that vessels at the periphery and at the centre of islets drain different hormonal cocktails.


Assuntos
Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Células Secretoras de Somatostatina/citologia , Células Secretoras de Somatostatina/metabolismo , Adolescente , Adulto , Idoso , Imunofluorescência , Humanos , Pessoa de Meia-Idade , Polipeptídeo Pancreático/metabolismo , Somatostatina/metabolismo , Distribuição Tecidual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...