Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33.067
Filtrar
1.
J Transl Med ; 22(1): 526, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822352

RESUMO

BACKGROUND: Neutrophils are granulocytes with essential antimicrobial effector functions and short lifespans. During infection or sterile inflammation, emergency granulopoiesis leads to release of immature neutrophils from the bone marrow, serving to boost circulating neutrophil counts. Steady state and emergency granulopoiesis are incompletely understood, partly due to a lack of genetically amenable models of neutrophil development. METHODS: We optimised a method for ex vivo production of human neutrophils from CD34+ haematopoietic progenitors. Using flow cytometry, we phenotypically compared cultured neutrophils with native neutrophils from donors experiencing emergency granulopoiesis, and steady state neutrophils from non-challenged donors. We carry out functional and proteomic characterisation of cultured neutrophils and establish genome editing of progenitors. RESULTS: We obtain high yields of ex vivo cultured neutrophils, which phenotypically resemble immature neutrophils released into the circulation during emergency granulopoiesis. Cultured neutrophils have similar rates of ROS production and bacterial killing but altered degranulation, cytokine release and antifungal activity compared to mature neutrophils isolated from peripheral blood. These differences are likely due to incomplete synthesis of granule proteins, as demonstrated by proteomic analysis. CONCLUSION: Ex vivo cultured neutrophils are genetically tractable via genome editing of precursors and provide a powerful model system for investigating the properties and behaviour of immature neutrophils.


Assuntos
Antígenos CD34 , Neutrófilos , Humanos , Neutrófilos/metabolismo , Neutrófilos/citologia , Antígenos CD34/metabolismo , Células Cultivadas , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Edição de Genes , Degranulação Celular , Células-Tronco/metabolismo , Células-Tronco/citologia , Citocinas/metabolismo , Fenótipo
2.
J Vis Exp ; (207)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829121

RESUMO

In the realm of regenerative medicine and therapeutic applications, stem cell research is rapidly gaining traction. Dental pulp stem cells (DPSCs), which are present in both deciduous and permanent teeth, have emerged as a vital stem cell source due to their accessibility, adaptability, and innate differentiation capabilities. DPSCs offer a readily available and abundant reservoir of mesenchymal stem cells, showcasing impressive versatility and potential, particularly for regenerative purposes. Despite their promise, the main hurdle lies in effectively isolating and characterizing DPSCs, given their representation as a minute fraction within dental pulp cells. Equally crucial is the proper preservation of this invaluable cellular resource. The two predominant methods for DPSC isolation are enzymatic digestion (ED) and outgrowth from tissue explants (OG), often referred to as spontaneous growth. This protocol concentrates primarily on the enzymatic digestion approach for DPSC isolation, intricately detailing the steps encompassing extraction, in-lab processing, and cell preservation. Beyond extraction and preservation, the protocol delves into the differentiation prowess of DPSCs. Specifically, it outlines the procedures employed to induce these stem cells to differentiate into adipocytes, osteoblasts, and chondrocytes, showcasing their multipotent attributes. Subsequent utilization of colorimetric staining techniques facilitates accurate visualization and confirmation of successful differentiation, thereby validating the caliber and functionality of the isolated DPSCs. This comprehensive protocol functions as a blueprint encompassing the entire spectrum of dental pulp stem cell extraction, cultivation, preservation, and characterization. It underscores the substantial potential harbored by DPSCs, propelling forward stem cell exploration and holding promise for future regenerative and therapeutic breakthroughs.


Assuntos
Polpa Dentária , Células-Tronco , Dente Decíduo , Polpa Dentária/citologia , Humanos , Células-Tronco/citologia , Dente Decíduo/citologia , Dentição Permanente , Técnicas de Cultura de Células/métodos , Diferenciação Celular/fisiologia , Separação Celular/métodos
3.
Mol Biol Rep ; 51(1): 710, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824241

RESUMO

BACKGROUND: Circular RNA (circRNA) is a key player in regulating the multidirectional differentiation of stem cells. Previous research by our group found that the blue light-emitting diode (LED) had a promoting effect on the osteogenic/odontogenic differentiation of human stem cells from apical papilla (SCAPs). This research aimed to investigate the differential expression of circRNAs during the osteogenic/odontogenic differentiation of SCAPs regulated by blue LED. MATERIALS AND METHODS: SCAPs were divided into the irradiation group (4 J/cm2) and the control group (0 J/cm2), and cultivated in an osteogenic/odontogenic environment. The differentially expressed circRNAs during osteogenic/odontogenic differentiation of SCAPs promoted by blue LED were detected by high-throughput sequencing, and preliminarily verified by qRT-PCR. Functional prediction of these circRNAs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the circRNA-miRNA-mRNA networks were also constructed. RESULTS: It showed 301 circRNAs were differentially expressed. GO and KEGG analyses suggested that these circRNAs were associated with some signaling pathways related to osteogenic/odontogenic differentiation. And the circRNA-miRNA-mRNA networks were also successfully constructed. CONCLUSION: CircRNAs were involved in the osteogenic/odontogenic differentiation of SCAPs promoted by blue LED. In this biological process, circRNA-miRNA-mRNA networks served an important purpose, and circRNAs regulated this process through certain signaling pathways.


Assuntos
Diferenciação Celular , Papila Dentária , Luz , Odontogênese , Osteogênese , RNA Circular , Células-Tronco , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Odontogênese/genética , Papila Dentária/citologia , Papila Dentária/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ontologia Genética , Células Cultivadas , Perfilação da Expressão Gênica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Regulação da Expressão Gênica/efeitos da radiação , Luz Azul
4.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836669

RESUMO

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Durapatita , Odontoblastos , Osteoblastos , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Alicerces Teciduais/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Poliésteres/química , Poliésteres/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
5.
Front Endocrinol (Lausanne) ; 15: 1397783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846497

RESUMO

Objective: Various stem cell-loaded scaffolds have demonstrated promising endometrial regeneration and fertility restoration. This study aimed to evaluate the efficacy of stem cell-loaded scaffolds in treating uterine injury in animal models. Methods: The PubMed, Embase, Scopus, and Web of Science databases were systematically searched. Data were extracted and analyzed using Review Manager version 5.4. Improvements in endometrial thickness, endometrial glands, fibrotic area, and number of gestational sacs/implanted embryos were compared after transplantation in the stem cell-loaded scaffolds and scaffold-only group. The standardized mean difference (SMD) and confidence interval (CI) were calculated using forest plots. Results: Thirteen studies qualified for meta-analysis. Overall, compared to the scaffold groups, stem cell-loaded scaffolds significantly increased endometrial thickness (SMD = 1.99, 95% CI: 1.54 to 2.44, P < 0.00001; I² = 16%) and the number of endometrial glands (SMD = 1.93, 95% CI: 1.45 to 2.41, P < 0.00001; I² = 0). Moreover, stem cell-loaded scaffolds present a prominent effect on improving fibrosis area (SMD = -2.50, 95% CI: -3.07 to -1.93, P < 0.00001; I² = 36%) and fertility (SMD = 3.34, 95% CI: 1.58 to 5.09, P = 0.0002; I² = 83%). Significant heterogeneity among studies was observed, and further subgroup and sensitivity analyses identified the source of heterogeneity. Moreover, stem cell-loaded scaffolds exhibited lower inflammation levels and higher angiogenesis, and cell proliferation after transplantation. Conclusion: The evidence indicates that stem cell-loaded scaffolds were more effective in promoting endometrial repair and restoring fertility than the scaffold-only groups. The limitations of the small sample sizes should be considered when interpreting the results. Thus, larger animal studies and clinical trials are needed for further investigation. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024493132.


Assuntos
Endométrio , Regeneração , Alicerces Teciduais , Feminino , Endométrio/fisiologia , Endométrio/citologia , Regeneração/fisiologia , Alicerces Teciduais/química , Animais , Humanos , Fertilidade/fisiologia , Células-Tronco/citologia , Infertilidade Feminina/terapia , Transplante de Células-Tronco/métodos
6.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832825

RESUMO

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Assuntos
Células Germinativas , Animais , História do Século XXI , Células Germinativas/citologia , História do Século XX , Nicho de Células-Tronco/fisiologia , Drosophila , Humanos , Biologia do Desenvolvimento/história , Células-Tronco/citologia
7.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832826

RESUMO

Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.


Assuntos
Citocinese , Drosophila melanogaster , Ecdisona , Células Germinativas , Testículo , Animais , Masculino , Ecdisona/metabolismo , Testículo/metabolismo , Feminino , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Células Germinativas/citologia , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Diferenciação Celular , Transdução de Sinais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38843935

RESUMO

Age-related reduction in muscle stem cell (MuSC) regenerative capacity is associated with cell-autonomous and non-cell-autonomous changes caused by alterations in systemic and skeletal muscle environments, ultimately leading to a decline in MuSC number and function. Previous studies demonstrated that STAT3 plays a key role in driving MuSC expansion and differentiation after injury-activated regeneration, by regulating autophagy in activated MuSCs. However, autophagy gradually declines in MuSCs during lifespan and contributes to the impairment of MuSC-mediated regeneration of aged muscles. Here, we show that STAT3 inhibition restores the autophagic process in aged MuSCs, thereby recovering MuSC ability to promote muscle regeneration in geriatric mice. We show that STAT3 inhibition could activate autophagy at the nuclear level, by promoting transcription of autophagy-related genes, and at the cytoplasmic level, by targeting STAT3/PKR phosphorylation of eIF2α. These results point to STAT3 inhibition as a potential intervention to reverse the age-related autophagic block that impairs MuSC ability to regenerate aged muscles. They also reveal that STAT3 regulates MuSC function by both transcription-dependent and transcription-independent regulation of autophagy.


Assuntos
Envelhecimento , Autofagia , Músculo Esquelético , Regeneração , Fator de Transcrição STAT3 , Fator de Transcrição STAT3/metabolismo , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Músculo Esquelético/citologia , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , Células-Tronco/metabolismo , Células-Tronco/citologia , Fosforilação , Masculino , Diferenciação Celular , Transdução de Sinais
9.
J Extracell Vesicles ; 13(6): e12446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844736

RESUMO

Dendritic cells (DCs) are essential orchestrators of immune responses and represent potential targets for immunomodulation in autoimmune diseases. Human amniotic fluid secretome is abundant in immunoregulatory factors, with extracellular vesicles (EVs) being a significant component. However, the impact of these EVs on dendritic cells subsets remain unexplored. In this study, we investigated the interaction between highly purified dendritic cell subsets and EVs derived from amniotic fluid stem cell lines (HAFSC-EVs). Our results suggest that HAFSC-EVs are preferentially taken up by conventional dendritic cell type 2 (cDC2) through CD29 receptor-mediated internalization, resulting in a tolerogenic DC phenotype characterized by reduced expression and production of pro-inflammatory mediators. Furthermore, treatment of cDC2 cells with HAFSC-EVs in coculture systems resulted in a higher proportion of T cells expressing the regulatory T cell marker Foxp3 compared to vehicle-treated control cells. Moreover, transfer of HAFSC-EV-treated cDC2s into an EAE mouse model resulted in the suppression of autoimmune responses and clinical improvement. These results suggest that HAFSC-EVs may serve as a promising tool for reprogramming inflammatory cDC2s towards a tolerogenic phenotype and for controlling autoimmune responses in the central nervous system, representing a potential platform for the study of the effects of EVs in DC subsets.


Assuntos
Líquido Amniótico , Células Dendríticas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Vesículas Extracelulares , Esclerose Múltipla , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos , Líquido Amniótico/citologia , Líquido Amniótico/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Esclerose Múltipla/terapia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Feminino , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL
10.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(5): 496-502, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38845496

RESUMO

OBJECTIVE: To analyze the impact of cecal ligation and puncture (CLP)-induced sepsis on the proliferation and differentiation of intestinal epithelial cells. METHODS: (1) Animal experiment: sixteen male C57BL/6 mice were divided into sham operation group (Sham group) and CLP-induced sepsis model group (CLP group) by random number table method, with 8 mice in each group. After 5 days of operation, the jejunal tissues were taken for determination of leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5) and intestinal alkaline phosphatase (IAP) by polymerase chain reaction (PCR). The translation of LGR5 was detected by Western blotting. The expression of proliferating cell nuclear antigen (Ki67) was analyzed by immunohistochemistry. IAP level was detected by modified calcium cobalt staining and colorimetry. Immunofluorescence staining was used to detect the expression of Paneth cell marker molecule lysozyme 1 (LYZ1) and goblet cell marker molecule mucin 2 (MUC2). (2) Cell experiment: IEC6 cells in logarithmic growth stage were divided into blank control group and lipopolysaccharide (LPS) group (LPS 5 µg/mL). Twenty-four hours after treatment, PCR and Western blotting were used to analyze the transcription and translation of LGR5. The proliferation of IEC6 cells were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining. The transcription and translation of IAP were detected by PCR and colorimetric method respectively. RESULTS: (1) Animal experiment: the immunohistochemical results showed that the positive rate of Ki67 staining in the jejunal tissue of CLP group was lower than that of Sham group [(41.7±2.5)% vs. (48.7±1.4)%, P = 0.01]. PCR and Western blotting results showed that there were no statistical differences in the mRNA and protein expressions of LGR5 in the jejunal tissue between the CLP group and Sham group (Lgr5 mRNA: 0.7±0.1 vs. 1.0±0.2, P = 0.11; LGR5/ß-actin: 0.83±0.17 vs. 0.68±0.19, P = 0.24). The mRNA (0.4±0.1 vs. 1.0±0.1, P < 0.01) and protein (U/g: 47.3±6.0 vs. 73.1±15.3, P < 0.01) levels of IAP in the jejunal tissue were lower in CLP group. Immunofluorescence saining analysis showed that the expressions of LYZ1 and MUC2 in the CLP group were lower than those in the Sham group. (2) Cell experiment: PCR and Western blotting results showed that there was no significant difference in the expression of LGR5 between the LPS group and the blank control group (Lgr5 mRNA: 0.9±0.1 vs. 1.0±0.2, P = 0.33; LGR5/ß-actin: 0.71±0.18 vs. 0.69±0.04, P = 0.81). The proliferation rate of IEC6 cells in the LPS group was lower than that in the blank control group, but there was no significant difference [positivity rate of EdU: (40.5±3.8)% vs. (46.5±3.6)%, P = 0.11]. The mRNA (0.5±0.1 vs. 1.0±0.2, P < 0.01) and protein (U/g: 15.0±4.0 vs. 41.2±10.4, P < 0.01) of IAP in the LPS group were lower than those in the blank control group. CONCLUSIONS: CLP-induced sepsis inhibits the proliferation and differentiation of intestinal epithelial cells, impairing the self-renewal ability of intestinal epithelium.


Assuntos
Diferenciação Celular , Proliferação de Células , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Sepse , Células-Tronco , Animais , Masculino , Sepse/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Ceco , Mucosa Intestinal/metabolismo , Ligadura , Mucina-2
11.
Sci Rep ; 14(1): 12750, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830952

RESUMO

The current practice of restoring the anatomical structure in the treatment of pelvic floor dysfunction includes implantation of synthetic sling, which carries potential complications. This study aimed to develop biological substitutes to improve tissue function using scaffolds as a support to the host cells, through formation of new tissue. Human amniotic fluid stem cells (hAFSCs) were seeded on synthetic mesh-scaffold of AlloDerm Regenerative Tissue Matrix (RTM), Poly-DL-lactico-glycolic acid (PLGA) mesh (VICRYL) and Polydioxanone (PDS) meshes. In vitro study evaluates the metabolic activity of hAFSCs seeded mesh-scaffolds. In vivo study involving Sprague-Dawley rats was performed by assigning into 7 groups of sham control with fascia operation, AlloDerm implant, PDS implant, PLGA implant, AlloDerm harvest with hAFSC (AlloDerm-SC), PDS harvest with hAFSC(PDS-SC) and PLGS harvest with hAFSC (PGLA-SC). In vitro study reveals cell viability and proliferation of hAFSC on mesh scaffolds varies between meshes, with AlloDerm growing the fastest. The biomechanical properties of tissue-mesh-complex tension strength declined over time, showing highest tension strength on week-1, deteriorated similar to control group on week-12. All hAFSC-seeded mesh provides higher tension strength, compared to without. This study shed the potential of synthetic mesh as a scaffold for hAFSC for the surgical treatment of pelvic floor dysfunction.


Assuntos
Líquido Amniótico , Ratos Sprague-Dawley , Células-Tronco , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Humanos , Líquido Amniótico/citologia , Ratos , Células-Tronco/citologia , Feminino , Procedimentos de Cirurgia Plástica/métodos , Engenharia Tecidual/métodos , Telas Cirúrgicas , Proliferação de Células , Diafragma da Pelve/cirurgia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
12.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719882

RESUMO

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Assuntos
Envelhecimento , MicroRNAs , Neuroglia , Fatores de Transcrição , Humanos , Neuroglia/metabolismo , Neuroglia/citologia , Envelhecimento/genética , Envelhecimento/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Senescência Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Perfilação da Expressão Gênica
13.
Stem Cell Res Ther ; 15(1): 136, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715083

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT: Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidß (Aß) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION: Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.


Assuntos
Doença de Alzheimer , Transplante de Células-Tronco , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Transplante de Células-Tronco/métodos , Animais , Células-Tronco/metabolismo , Células-Tronco/citologia
14.
J Nanobiotechnology ; 22(1): 219, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698419

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) represent the most advantageous choice for soft tissue regeneration. Studies proved the recruitment of ASCs post tissue injury was mediated by chemokine CXCL12, but the mechanism by which CXCL12 is generated after tissue injury remains unclear. Migrasomes are newly discovered membrane-bound organelles that could deliver CXCL12 spatially and temporally in vivo. In this study, we sought to investigate whether migrasomes participate ASC-mediated tissue regeneration. METHODS: Discrepant and asymmetrical soft tissue regeneration mice model were established, in which HE staining, immunofluorescent staining, western blot and qPCR were conducted to confirm the role of CXCL12 and migrasomes in ASC-mediated tissue regeneration. Characterization of ASC-derived migrasomes were carried out by confocal microscopy, scanning electron microscopy, transmission electron microscopy as well as western blot analysis. The function and mechanism of migrasomes were further testified by assisting tissue regeneration with isolated migrasomes in vivo and by in vitro transwell combined with co-culture system. RESULTS: Here, we show for the first time that migrasomes participate in soft tissue regeneration. ASCs generate migrasomes enriched with CXCL12 to mediate tissue regeneration. Migrasomes from ASCs could promote stem cells migration by activating CXCR4/RhoA signaling in vivo and in vitro. Chemoattracted ASCs facilitate regeneration, as demonstrated by the upregulation of an adipogenesis-associated protein. This positive feed-back-loop creates a favorable microenvironment for soft tissue regeneration. Thus, migrasomes represent a new therapeutic target for ASC-mediated tissue regeneration. CONCLUSIONS: Our findings reveal a previously unknown function of ASCs in mediating tissue regeneration by generating migrasomes. The ASC-derived migrasomes can restore tissue regeneration by recruiting stem cells, which highlighting the potential application of ASC-derived migrasomes in regenerative medicine.


Assuntos
Tecido Adiposo , Quimiocina CXCL12 , Receptores CXCR4 , Regeneração , Células-Tronco , Proteína rhoA de Ligação ao GTP , Quimiocina CXCL12/metabolismo , Animais , Receptores CXCR4/metabolismo , Camundongos , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Camundongos Endogâmicos C57BL , Retroalimentação Fisiológica , Movimento Celular , Células Cultivadas , Masculino , Transdução de Sinais
15.
J Nanobiotechnology ; 22(1): 215, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693585

RESUMO

Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Vesículas Extracelulares , Células-Tronco , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células/métodos
16.
FASEB J ; 38(10): e23626, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38739537

RESUMO

Transplantation of adipose-derived stem cells (ASCs) is a promising option in the field of chronic wounds treatment. However, the effectiveness of ASCs therapies has been hampered by highly inflammatory environment in chronic wound areas. These problems could be partially circumvented using efficient approaches that boost the survival and anti-inflammatory capacity of transplanted ASCs. Here, by application of mechanical stretch (MS), we show that ASCs exhibits increased survival and immunoregulatory properties in vitro. MS triggers the secretion of macrophage colony stimulating factor (M-CSF) from ASCs, a chemokine that is linked to anti-inflammatory M2-like macrophages polarization. When the MS-ASCs were transplanted to chronic wounds, the wound area yields significantly faster closure rate and lower inflammatory mediators, largely due to macrophages polarization driven by transplanted MS-ASCs. Thus, our work shows that mechanical stretch can be harnessed to enhance ASCs transplantation efficiency in chronic wounds treatment.


Assuntos
Tecido Adiposo , Macrófagos , Cicatrização , Cicatrização/fisiologia , Macrófagos/metabolismo , Animais , Tecido Adiposo/citologia , Humanos , Camundongos , Estresse Mecânico , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Cultivadas , Masculino , Fator Estimulador de Colônias de Macrófagos/metabolismo , Transplante de Células-Tronco/métodos , Inflamação/terapia , Camundongos Endogâmicos C57BL
17.
Biosensors (Basel) ; 14(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785730

RESUMO

Intracellular delivery, the process of transporting substances into cells, is crucial for various applications, such as drug delivery, gene therapy, cell imaging, and regenerative medicine. Among the different approaches of intracellular delivery, mechanoporation stands out by utilizing mechanical forces to create temporary pores on cell membranes, enabling the entry of substances into cells. This method is promising due to its minimal contamination and is especially vital for stem cells intended for clinical therapy. In this review, we explore various mechanoporation technologies, including microinjection, micro-nano needle arrays, cell squeezing through physical confinement, and cell squeezing using hydrodynamic forces. Additionally, we highlight recent research efforts utilizing mechanoporation for stem cell studies. Furthermore, we discuss the integration of mechanoporation techniques into microfluidic platforms for high-throughput intracellular delivery with enhanced transfection efficiency. This advancement holds potential in addressing the challenge of low transfection efficiency, benefiting both basic research and clinical applications of stem cells. Ultimately, the combination of microfluidics and mechanoporation presents new opportunities for creating comprehensive systems for stem cell processing.


Assuntos
Microfluídica , Células-Tronco , Células-Tronco/citologia , Humanos , Animais , Sistemas de Liberação de Medicamentos
18.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786058

RESUMO

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Assuntos
Colágeno , Polpa Dentária , Fibroblastos , Inflamassomos , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Colágeno/metabolismo , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Derme/citologia , Derme/metabolismo , Interleucina-1beta/metabolismo
19.
Cells ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38786069

RESUMO

In recent years, there has been a surge in demand for and research focus on cell therapy, driven by the tissue-regenerative and disease-treating potentials of stem cells. Among the candidates, dental pulp stem cells (DPSCs) or human exfoliated deciduous teeth (SHED) have garnered significant attention due to their easy accessibility (non-invasive), multi-lineage differentiation capability (especially neurogenesis), and low immunogenicity. Utilizing these stem cells for clinical purposes requires careful culture techniques such as excluding animal-derived supplements. Human platelet lysate (hPL) has emerged as a safer alternative to fetal bovine serum (FBS) for cell culture. In our study, we assessed the impact of hPL as a growth factor supplement for culture medium, also conducting a characterization of SHED cultured in hPL-supplemented medium (hPL-SHED). The results showed that hPL has effects in enhancing cell proliferation and migration and increasing cell survivability in oxidative stress conditions induced by H2O2. The morphology of hPL-SHED exhibited reduced size and elongation, with a differentiation capacity comparable to or even exceeding that of SHED cultured in a medium supplemented with fetal bovine serum (FBS-SHED). Moreover, no evidence of chromosome abnormalities or tumor formation was detected. In conclusion, hPL-SHED emerges as a promising candidate for cell therapy, exhibiting considerable potential for clinical investigation.


Assuntos
Plaquetas , Diferenciação Celular , Proliferação de Células , Células-Tronco , Dente Decíduo , Humanos , Dente Decíduo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Plaquetas/metabolismo , Bovinos , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Polpa Dentária/citologia , Movimento Celular/efeitos dos fármacos , Meios de Cultura/farmacologia , Células Cultivadas , Extratos Celulares/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
20.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710919

RESUMO

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA , Fatores de Transcrição , Trofoblastos , Via de Sinalização Wnt , Trofoblastos/metabolismo , Trofoblastos/citologia , Animais , Camundongos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição AP-2/metabolismo , Fator de Transcrição AP-2/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Histonas/metabolismo , Histonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...