Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
PLoS Genet ; 18(8): e1010250, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36026491

RESUMO

The current circulating pandemic El Tor biotype of Vibrio cholerae has persisted for over sixty years and is characterized by its acquisition of two unique genomic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-I and VSP-II). However, the functions of most of the genes on VSP-I and VSP-II are unknown and the advantages realized by El Tor through these two islands are not clear. Recent studies have broadly implicated these two mobile genetic elements with phage defense. Still, protection against phage infection through these islands has not been observed directly in any V. cholerae El Tor biotype. Here we report the isolation of a circulating phage from a cholera patient stool sample and demonstrate that propagation of this phage in its native host is inhibited by elements in both VSP-I and VSP-II, providing direct evidence for the role of these genomic islands in phage defense. Moreover, we show that these defense systems are regulated by quorum sensing and active only at certain cell densities. Finally, we have isolated a naturally occurring phage variant that is resistant to the defense conferred by the VSP islands, illustrating the countermeasures used by phages to evade these defense mechanisms. Together, this work demonstrates a functional role for the VSPs in V. cholerae and highlights the key regulatory and mechanistic insights that can be gained by studying anti-phage systems in their native contexts.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae O1 , Bacteriófagos/genética , Cólera/epidemiologia , Cólera/genética , Ilhas Genômicas/genética , Humanos , Pandemias , Vibrio cholerae O1/genética
2.
PLoS Genet ; 18(3): e1010143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35344548

RESUMO

Despite extensive studies on the curve-shaped bacterium Vibrio cholerae, the causative agent of the diarrheal disease cholera, its virulence-associated regulatory two-component signal transduction system VarS/VarA is not well understood. This pathway, which mainly signals through the downstream protein CsrA, is highly conserved among gamma-proteobacteria, indicating there is likely a broader function of this system beyond virulence regulation. In this study, we investigated the VarA-CsrA signaling pathway and discovered a previously unrecognized link to the shape of the bacterium. We observed that varA-deficient V. cholerae cells showed an abnormal spherical morphology during late-stage growth. Through peptidoglycan (PG) composition analyses, we discovered that these mutant bacteria contained an increased content of disaccharide dipeptides and reduced peptide crosslinks, consistent with the atypical cellular shape. The spherical shape correlated with the CsrA-dependent overproduction of aspartate ammonia lyase (AspA) in varA mutant cells, which likely depleted the cellular aspartate pool; therefore, the synthesis of the PG precursor amino acid meso-diaminopimelic acid was impaired. Importantly, this phenotype, and the overall cell rounding, could be prevented by means of cell wall recycling. Collectively, our data provide new insights into how V. cholerae use the VarA-CsrA signaling system to adjust its morphology upon unidentified external cues in its environment.


Assuntos
Cólera , Vibrio cholerae , Proteínas de Bactérias/metabolismo , Forma Celular , Cólera/genética , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Peptidoglicano/genética , Peptidoglicano/metabolismo , Vibrio cholerae/metabolismo
3.
Environ Microbiol Rep ; 14(3): 376-384, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34668341

RESUMO

The genome of Vibrio cholerae O139 strains has undergone cryptic changes since its first emergence in 1992 in South India. This study aimed to determine the presence of genotypic changes marked in ctxB, tcpA and rstR genes located within the CTX prophages among the strains of V. cholerae O139 isolated from 1999 to 2017 in Odisha. Antibiotic susceptibility test was conducted on 59 V. cholerae O139 strains. A conventional PCR assay was done for ctxB gene typing followed by sequencing along with identification of rstR and tcpA gene. Pulsed-field gel electrophoresis (PFGE) was carried out to reveal clonal variations among the V. cholerae O139 strains. Among V. cholerae O139 isolates more than 60% showed resistance to ampicillin, co-trimoxazole, furazolidone, streptomycin, neomycin and nalidixic acid. The ctxB sequencing and rstR allele-specific PCR assay revealed the presence of three genotypes 1, 3 and 4 with at least one copy of CTX Calc φ in addition to CTX ET and CTX Cl prophages in V. cholerae O139 isolates. PFGE analysis revealed 13 pulsotypes with two clades having 60% similarity among V. cholerae O139 strains. The circulating V. cholerae O139 strains in Odisha showed variation in genotypes with multiple clonal expansions over the years.


Assuntos
Cólera , Vibrio cholerae O139 , Vibrio cholerae O1 , Vibrio cholerae , Alelos , Cólera/genética , Toxina da Cólera/genética , Genômica , Humanos , Prófagos/genética , Vibrio cholerae/genética , Vibrio cholerae O1/genética , Vibrio cholerae O139/genética
4.
Annu Rev Virol ; 8(1): 285-304, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34314595

RESUMO

Bacteriophages or phages-viruses of bacteria-are abundant and considered to be highly diverse. Interestingly, a particular group of lytic Vibrio cholerae-specific phages (vibriophages) of the International Centre for Diarrheal Disease Research, Bangladesh cholera phage 1 (ICP1) lineage show high levels of genome conservation over large spans of time and geography, despite a constant coevolutionary arms race with their host. From a collection of 67 sequenced ICP1 isolates, mostly from clinical samples, we find these phages have mosaic genomes consisting of large, conserved modules disrupted by variable sequences that likely evolve mostly through mobile endonuclease-mediated recombination during coinfection. Several variable regions have been associated with adaptations against antiphage elements in V. cholerae; notably, this includes ICP1's CRISPR-Cas system. The ongoing association of ICP1 and V. cholerae in cholera-endemic regions makes this system a rich source for discovery of novel defense and counterdefense strategies in bacteria-phage conflicts in nature.


Assuntos
Bacteriófagos , Cólera , Vibrio cholerae , Sistemas CRISPR-Cas , Cólera/genética , Humanos , Vibrio cholerae/genética
5.
Int J Infect Dis ; 105: 730-732, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33741484

RESUMO

This study reports variants of the ctxB allele of Vibrio cholerae O1 isolated between 1995 and 2019 in Odisha, India. ctxB1 genotypes dominated from 1995 to 2016. The Haitian variant and El Tor ctxB3 genotypes of V. cholerae O1 emerged in 1999, and were most common in 2018-2019 and 2005-2011, respectively. The ctxB7 genotype of the Haitian variant of V. cholerae O1 was quiescent from 2000 to 2006, but further spread was noted from 2007 to 2019.


Assuntos
Alelos , Cólera/microbiologia , Vibrio cholerae O1/genética , Proteínas de Bactérias/genética , Cólera/epidemiologia , Cólera/genética , Toxina da Cólera/genética , Genes Bacterianos , Genótipo , Haiti , Humanos , Índia/epidemiologia , Prevalência
6.
J Biol Chem ; 295(50): 16960-16974, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-32998953

RESUMO

The bacterial enhancer-binding protein (bEBP) FlrC, controls motility and colonization of Vibrio cholerae by regulating the transcription of class-III flagellar genes in σ54-dependent manner. However, the mechanism by which FlrC regulates transcription is not fully elucidated. Although, most bEBPs require nucleotides to stimulate the oligomerization necessary for function, our previous study showed that the central domain of FlrC (FlrCC) forms heptamer in a nucleotide-independent manner. Furthermore, heptameric FlrCC binds ATP in "cis-mediated" style without any contribution from sensor I motif 285REDXXYR291 of the trans protomer. This atypical ATP binding raises the question of whether heptamerization of FlrC is solely required for transcription regulation, or if it is also critical for ATPase activity. ATPase assays and size exclusion chromatography of the trans-variants FlrCC-Y290A and FlrCC-R291A showed destabilization of heptameric assembly with concomitant abrogation of ATPase activity. Crystal structures showed that in the cis-variant FlrCC-R349A drastic shift of Walker A encroached ATP-binding site, whereas the site remained occupied by ADP in FlrCC-Y290A. We postulated that FlrCC heptamerizes through concentration-dependent cooperativity for maximal ATPase activity and upon heptamerization, packing of trans-acting Tyr290 against cis-acting Arg349 compels Arg349 to maintain proper conformation of Walker A. Finally, a Trp quenching study revealed binding of cyclic-di-GMP with FlrCC Excess cyclic-di-GMP repressed ATPase activity of FlrCC through destabilization of heptameric assembly, especially at low concentration of protein. Systematic phylogenetic analysis allowed us to propose similar regulatory mechanisms for FlrCs of several Vibrio species and a set of monotrichous Gram-negative bacteria.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cólera/microbiologia , GMP Cíclico/análogos & derivados , Flagelos/fisiologia , Vibrio cholerae/fisiologia , Cólera/genética , Cólera/metabolismo , Cristalografia por Raios X/métodos , GMP Cíclico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Filogenia , Estrutura Terciária de Proteína
7.
Proc Natl Acad Sci U S A ; 117(14): 7897-7904, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229557

RESUMO

The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.


Assuntos
Cólera/microbiologia , Ecossistema , Filogenia , Vibrio cholerae O1/classificação , Ásia/epidemiologia , Cólera/epidemiologia , Cólera/genética , Cólera/patologia , Surtos de Doenças , Genoma Bacteriano/genética , Haiti/epidemiologia , Humanos , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidade , Microbiologia da Água
8.
PLoS Genet ; 15(10): e1008362, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658256

RESUMO

Many bacteria use population density to control gene expression via quorum sensing. In Vibrio cholerae, quorum sensing coordinates virulence, biofilm formation, and DNA uptake by natural competence. The transcription factors AphA and HapR, expressed at low and high cell density respectively, play a key role. In particular, AphA triggers the entire virulence cascade upon host colonisation. In this work we have mapped genome-wide DNA binding by AphA. We show that AphA is versatile, exhibiting distinct modes of DNA binding and promoter regulation. Unexpectedly, whilst HapR is known to induce natural competence, we demonstrate that AphA also intervenes. Most notably, AphA is a direct repressor of tfoX, the master activator of competence. Hence, production of AphA markedly suppressed DNA uptake; an effect largely circumvented by ectopic expression of tfoX. Our observations suggest dual regulation of competence. At low cell density AphA is a master repressor whilst HapR activates the process at high cell density. Thus, we provide deep mechanistic insight into the role of AphA and highlight how V. cholerae utilises this regulator for diverse purposes.


Assuntos
Cólera/genética , Proteínas de Ligação a DNA/genética , Transativadores/genética , Vibrio cholerae/genética , Biofilmes/crescimento & desenvolvimento , Cólera/microbiologia , Regulação Bacteriana da Expressão Gênica/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Regiões Promotoras Genéticas/genética , Percepção de Quorum/genética , Fatores de Transcrição/genética , Vibrio cholerae/patogenicidade
9.
PLoS One ; 14(10): e0223226, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31574121

RESUMO

BACKGROUND: Toxigenic Vibrio cholerae resides in aquatic reservoirs of cholera-endemic areas mostly in a dormant form known as conditionally viable environmental cells (CVEC) in which the bacteria remain embedded in an exopolysaccharide matrix, and fail to grow in routine bacteriological culture. The CVEC can be resuscitated by supplementing culture media with either of two autoinducers CAI-1 and AI-2, which are signal molecules controlling quorum sensing, a regulatory network of bacterial gene expression dependent on cell density. This study investigated possible existence of variant strains that overproduce AIs, sufficient to resuscitate CVEC in environmental waters. METHODS: Environmental V. cholerae isolates and Tn insertion mutants of a V. cholerae strain C6706 were screened for production of AIs using bioluminescent reporter strains. Relevant mutations in environmental strains which overproduced AI-2 were characterized by nucleotide sequencing and genetic complementation studies. Effect of AIs produced in culture supernatants of relevant strains on reactivation of CVEC in water was determined by resuscitation assays. RESULTS: Two of 54 environmental V. cholerae isolates were found to overproduce AI-2. Screening of a Tn-insertion library of V. cholerae strain C6706, identified a mutant which overproduced AI-2, and carried Tn insertion in the cqsS gene. Nucleotide sequencing also revealed mutations inactivating the cqsS gene in environmental isolates which overproduced AI-2, and this property was reversed when complemented with a wild type cqsS gene. Culture of river water samples supplemented with spent medium of these mutants resuscitated dormant V. cholerae cells in water. SIGNIFICANCE: V. cholerae strains with inactivated cqsS gene may offer a convenient source of AI-2 in enhanced assays for monitoring bacteriological quality of water. The results also suggest a potential role of naturally occurring cqsS mutants in the environmental biology of V. cholerae. Furthermore, similar phenomenon may have relevance in the ecology of other waterborne bacterial pathogens beyond V. cholerae.


Assuntos
Cólera/genética , Homosserina/análogos & derivados , Cetonas , Vibrio cholerae/genética , Biofilmes , Cólera/epidemiologia , Cólera/microbiologia , Microbiologia Ambiental , Regulação Bacteriana da Expressão Gênica/genética , Homosserina/genética , Humanos , Lactonas , Mutação/genética , Percepção de Quorum/genética , Vibrio cholerae/patogenicidade
11.
J Biol Chem ; 294(40): 14499-14511, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31439670

RESUMO

Growth of the cholera bacterium Vibrio cholerae in a biofilm community contributes to both its pathogenicity and survival in aquatic environmental niches. The major components of V. cholerae biofilms include Vibriopolysaccharide (VPS) and the extracellular matrix proteins RbmA, RbmC, and Bap1. To further elucidate the previously observed overlapping roles of Bap1 and RbmC in biofilm architecture and surface attachment, here we investigated the structural and functional properties of Bap1. Soluble expression of Bap1 was possible only after the removal of an internal 57-amino-acid-long hydrophobic insertion sequence. The crystal structure of Bap1 at 1.9 Å resolution revealed a two-domain assembly made up of an eight-bladed ß-propeller interrupted by a ß-prism domain. The structure also revealed metal-binding sites within canonical calcium blade motifs, which appear to have structural rather than functional roles. Contrary to results previously observed with RbmC, the Bap1 ß-prism domain did not exhibit affinity for complex N-glycans, suggesting an altered role of this domain in biofilm-surface adhesion. Native polyacrylamide gel shift analysis did suggest that Bap1 exhibits lectin activity with a preference for anionic or linear polysaccharides. Our results suggest a model for V. cholerae biofilms in which Bap1 and RbmC play dominant but differing adhesive roles in biofilms, allowing bacterial attachment to diverse environmental or host surfaces.


Assuntos
Proteínas de Bactérias/ultraestrutura , Cólera/enzimologia , Proteínas da Matriz Extracelular/ultraestrutura , Conformação Proteica , Vibrio cholerae/enzimologia , Sequência de Aminoácidos/genética , Amiloide/química , Aderência Bacteriana/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biofilmes , Cólera/genética , Cólera/microbiologia , Cristalografia por Raios X , Proteínas da Matriz Extracelular/química , Regulação Bacteriana da Expressão Gênica/genética , Lectinas/química , Metais/química , Polissacarídeos/química , Vibrio cholerae/química , Vibrio cholerae/genética , Vibrio cholerae/patogenicidade , Fatores de Virulência/genética
12.
Mol Genet Genomics ; 294(2): 417-430, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30488322

RESUMO

Vibriocholerae, which is autochthonous to estuaries worldwide, can cause human cholera that is still pandemic in developing countries. A number of V. cholerae isolates of clinical and environmental origin worldwide have been subjected to genome sequencing to address their phylogenesis and bacterial pathogenesis, however, little genome information is available for V. cholerae isolates derived from estuaries, particularly in China. In this study, we determined the complete genome sequence of V. cholerae CHN108B (non-O1/O139 serogroup) isolated from the Yangtze River Estuary, China and performed comparative genome analysis between CHN108B and other eight representative V. cholerae isolates. The 4,168,545-bp V. cholerae CHN108B genome (47.2% G+C) consists of two circular chromosomes with 3,691 predicted protein-encoding genes. It has 110 strain-specific genes, the highest number among the eight representative V. cholerae whole genomes from serogroup O1: there are seven clinical isolates linked to cholera pandemics (1937-2010) and one environmental isolate from Brazil. Various mobile genetic elements (such as insertion sequences, prophages, integrative and conjugative elements, and super-integrons) were identified in the nine V. cholerae genomes of clinical and environmental origin, indicating that the bacterium undergoes extensive genetic recombination via lateral gene transfer. Comparative genomics also revealed different virulence and antimicrobial resistance gene patterns among the V. cholerae isolates, suggesting some potential virulence factors and the rising development of resistance among pathogenic V. cholerae. Additionally, draft genome sequences of multiple V. cholerae isolates recovered from the Yangtze River Estuary were also determined, and comparative genomics revealed many genes involved in specific metabolism pathways, which are likely shaped by the unique estuary environment. These results provide additional evidence of V. cholerae genome plasticity and will facilitate better understanding of the genome evolution and pathogenesis of this severe water-borne pathogen worldwide.


Assuntos
Cólera/genética , Genoma Bacteriano/genética , Vibrio cholerae O1/genética , Vibrio cholerae não O1/genética , Brasil , China , Cólera/microbiologia , Elementos de DNA Transponíveis/genética , Estuários , Transferência Genética Horizontal/genética , Variação Genética , Genômica , Humanos , Anotação de Sequência Molecular , Filogenia , Rios , Sorogrupo , Vibrio cholerae O1/patogenicidade , Vibrio cholerae não O1/patogenicidade , Virulência/genética
13.
PLoS Pathog ; 14(10): e1007413, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30376582

RESUMO

Bacterial pathogens are highly adaptable organisms, a quality that enables them to overcome changing hostile environments. For example, Vibrio cholerae, the causative agent of cholera, is able to colonize host small intestines and combat host-produced reactive oxygen species (ROS) during infection. To dissect the molecular mechanisms utilized by V. cholerae to overcome ROS in vivo, we performed a whole-genome transposon sequencing analysis (Tn-seq) by comparing gene requirements for colonization using adult mice with and without the treatment of the antioxidant, N-acetyl cysteine. We found that mutants of the methyl-directed mismatch repair (MMR) system, such as MutS, displayed significant colonization advantages in untreated, ROS-rich mice, but not in NAC-treated mice. Further analyses suggest that the accumulation of both catalase-overproducing mutants and rugose colony variants in NAC- mice was the leading cause of mutS mutant enrichment caused by oxidative stress during infection. We also found that rugose variants could revert back to smooth colonies upon aerobic, in vitro culture. Additionally, the mutation rate of wildtype colonized in NAC- mice was significantly higher than that in NAC+ mice. Taken together, these findings support a paradigm in which V. cholerae employs a temporal adaptive strategy to battle ROS during infection, resulting in enriched phenotypes. Moreover, ΔmutS passage and complementation can be used to model hypermuation in diverse pathogens to identify novel stress resistance mechanisms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Cólera/microbiologia , Interações Hospedeiro-Patógeno , Intestinos/microbiologia , Mutação , Estresse Oxidativo , Vibrio cholerae/genética , Adaptação Fisiológica , Animais , Catalase/metabolismo , Cólera/genética , Cólera/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Virulência
14.
Proc Natl Acad Sci U S A ; 115(27): 7099-7104, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915049

RESUMO

While the structure and regulatory networks that govern type-six secretion system (T6SS) activity of Vibrio cholerae are becoming increasingly clear, we know less about the role of T6SS in disease. Under laboratory conditions, V. cholerae uses T6SS to outcompete many Gram-negative species, including other V. cholerae strains and human commensal bacteria. However, the role of these interactions has not been resolved in an in vivo setting. We used the Drosophila melanogaster model of cholera to define the contribution of T6SS to V. cholerae pathogenesis. Here, we demonstrate that interactions between T6SS and host commensals impact pathogenesis. Inactivation of T6SS, or removal of commensal bacteria, attenuates disease severity. Reintroduction of the commensal, Acetobacter pasteurianus, into a germ-free host is sufficient to restore T6SS-dependent pathogenesis in which T6SS and host immune responses regulate viability. Together, our data demonstrate that T6SS acts on commensal bacteria to promote the pathogenesis of V. cholerae.


Assuntos
Acetobacter/metabolismo , Proteínas de Bactérias/metabolismo , Cólera/metabolismo , Sistemas de Secreção Tipo VI/metabolismo , Vibrio cholerae/metabolismo , Acetobacter/genética , Animais , Proteínas de Bactérias/genética , Cólera/genética , Cólera/microbiologia , Modelos Animais de Doenças , Drosophila melanogaster , Sistemas de Secreção Tipo VI/genética , Vibrio cholerae/genética
15.
J Biol Chem ; 293(33): 12949-12959, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29903911

RESUMO

The World Health Organization(WHO) has reported a worldwide surge in cases of cholera caused by the intestinal pathogen Vibrio cholerae, and, combined, such surges have claimed several million lives, mostly in early childhood. Elevated cAMP production in intestinal epithelial cells challenged with cholera toxin (CTX) results in diarrhea due to chloride transport by a cAMP-activated channel, the cystic fibrosis transmembrane conductance regulator (CFTR). However, the identity of the main cAMP-producing proteins that regulate CFTR in the intestine and may be relevant for secretory diarrhea is unclear. Here, using RNA-Seq to identify the predominant AC isoform in mouse and human cells and extensive biochemical analyses for further characterization, we found that the cAMP-generating enzyme adenylate cyclase 6 (AC6) physically and functionally associates with CFTR at the apical surface of intestinal epithelial cells. We generated epithelium-specific AC6 knockout mice and demonstrated that CFTR-dependent fluid secretion is nearly abolished in AC6 knockout mice upon CTX challenge in ligated ileal loops. Furthermore, loss of AC6 function dramatically impaired CTX-induced CFTR activation in human and mouse intestinal spheroids. Our finding that the CFTR-AC6 protein complex is the key mediator of CTX-associated diarrhea may facilitate development of antidiarrheal agents to manage cholera symptoms and improve outcomes.


Assuntos
Adenilil Ciclases/metabolismo , Cólera/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Complexos Multiproteicos/metabolismo , Vibrio cholerae/metabolismo , Adenilil Ciclases/genética , Animais , Linhagem Celular , Cólera/genética , Cólera/patologia , Toxina da Cólera/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Diarreia/genética , Diarreia/metabolismo , Diarreia/patologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Vibrio cholerae/patogenicidade
16.
Indian J Med Res ; 147(2): 133-141, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29806601

RESUMO

Cholera, caused by the Gram-negative bacterium Vibrio cholerae, has ravaged humanity from time immemorial. Although the disease can be treated using antibiotics along with administration of oral rehydration salts and controlled by good sanitation, cholera is known to have produced mayhems in ancient times when little was known about the pathogen. By the 21st century, ample information about the pathogen, its epidemiology, genetics, treatment and control strategies was revealed. However, there is still fear of cholera outbreaks in developing countries, especially in the wake of natural calamities. Studies have proved that the bacterium is mutating and evolving, out-competing all our efforts to treat the disease with previously used antibiotics and control with existing vaccines. In this review, the major scientific insights of cholera research are discussed. Considering the important role of biofilm formation in the V. cholerae life cycle, the vast availability of next-generation sequencing data of the pathogen and multi-omic approach, the review thrusts on the identification of suitable biofilm-inhibiting targets and the discovery of anti-biofilm drugs from nature to control the disease.


Assuntos
Cólera/epidemiologia , Cólera/terapia , Vibrio cholerae O1/patogenicidade , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Cólera/genética , Cólera/microbiologia , Surtos de Doenças , Humanos
17.
Indian J Med Res ; 146(Supplement): S53-S58, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29205196

RESUMO

BACKGROUND & OBJECTIVES: Aeromonas species have been reported to cause various illnesses in humans such as wound infections, septicaemia, peritonitis and pneumonia. Their role in causation of cholera-like illness is also being increasingly recognized. This retrospective study was done to know the presence of Aeromonas as a cause of acute diarrhoea in a tertiary care hospital and to find the common species of Aeromonas causing diarrhoea and their antibiotic susceptibility patterns. METHODS: Fifty isolates of Aeromonas were obtained over a period of 15 yr from 2000 to 2014 from patients of suspected acute gastroenteritis resembling cholera. Biotyping was done for 35 of these isolates available in culture collection, based on a panel of 13 biochemical reactions. Antibiogram was put up for all of these isolates by disk diffusion methods and interpreted according to the Clinical and Laboratory Standards Institute guidelines. RESULTS: Of the 50 patients of Aeromonas-related acute gastroenteritis, 13 (26%) had typical features of cholera with rice water stools and severe dehydration. Eight patients (16%) had dysentery-like picture. One patient died of severe dehydration and septicaemia. The most common species were found to be Aeromonas caviae (34%) followed by Aeromonas veronii biovar veronii (29%), Aeromonas veronii biovar sobria (26%) and Aeromonas hydrophila (9%). All tested isolates were uniformly susceptible to cefepime, amikacin, azithromycin and meropenem; 14 per cent were susceptible to amoxicillin, 32 per cent to nalidixic acid, 60 per cent to co-trimoxazole, 54 per cent to ciprofloxacin, 60 per cent to ofloxacin, 74 per cent to chloramphenicol, 76 per cent to ceftriaxone, 74 per cent to cefotaxime, 88 per cent to gentamicin and 86 per cent to furoxone. INTERPRETATION & CONCLUSIONS: Aeromonas is an important, often neglected pathogen capable of causing a variety of gastrointestinal tract symptoms such as acute diarrhoea and dysentery and may even mimic cholera. It is, therefore, pertinent to recognize this pathogen as an important agent in the causation of severe diarrhoea.


Assuntos
Aeromonas/efeitos dos fármacos , Cólera/tratamento farmacológico , Diarreia/tratamento farmacológico , Resistência Microbiana a Medicamentos/genética , Adolescente , Adulto , Aeromonas/genética , Aeromonas/patogenicidade , Cefotaxima/uso terapêutico , Criança , Pré-Escolar , Cólera/epidemiologia , Cólera/genética , Cólera/microbiologia , Ciprofloxacina/uso terapêutico , Diarreia/epidemiologia , Diarreia/genética , Diarreia/microbiologia , Feminino , Humanos , Índia/epidemiologia , Lactente , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Ácido Nalidíxico/uso terapêutico , Estudos Retrospectivos , Centros de Atenção Terciária , Adulto Jovem
18.
Microb Pathog ; 112: 89-94, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28923607

RESUMO

The objective of the present study was to investigate the genomic arrangement of CTX/RS1 prophages in 30 Vibrio cholerae strains obtained from 2 consecutive years of cholera outbreak and to compare the role of different CTX/RS1 arrangements in cholera toxin expression among the El Tor strains. Profile A with TLC-RS1-CTX-RTX arrangement was observed in 46.7% of the isolates with RS1 phage locating adjacent to TLC element. About 50% of the isolates showed Profile B with TLC-CTX-RS1-RTX arrangement and one single isolate (3.3%) revealed TLC-CTX-RS1-RS1-RTX arrangement (Profile C). No RS1 element was detected to be adjacent to TLC element in B and C profiles. No truncated CTX phage genome was detected among the isolates of 2 years. Different CTX-RS1 arrangement profiles (A, B, and C) with different RS1 copy numbers and locations uniformly showed low level of cholera toxin production in El Tor strains with no significant difference, revealing that different RS1 copy numbers and locations have no effect on cholera toxin production level (p-value >0.05). However, increased cholera toxin expression was observed for control V. cholerae classical biotype strain. In conclusion, variations in RS1 prophage did not affect CT expression level in related El Tor V. cholerae strains. CTX genotyping establishes a more valuable database for epidemiologic, pathogenesis, and source tracking purposes.


Assuntos
Bacteriófagos/genética , Toxina da Cólera/biossíntese , Genes Virais/fisiologia , Variação Genética/genética , Genoma Viral/genética , Vibrio cholerae O1/virologia , Cólera/epidemiologia , Cólera/genética , Cólera/microbiologia , Toxina da Cólera/genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Surtos de Doenças , Dosagem de Genes/genética , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Genoma Bacteriano , Humanos , Irã (Geográfico) , Família Multigênica , Prófagos/genética , Vibrio cholerae O1/classificação , Vibrio cholerae O1/isolamento & purificação
19.
PLoS Genet ; 13(7): e1006877, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683122

RESUMO

Chitin utilization by the cholera pathogen Vibrio cholerae is required for its persistence and evolution via horizontal gene transfer in the marine environment. Genes involved in the uptake and catabolism of the chitin disaccharide chitobiose are encoded by the chb operon. The orphan sensor kinase ChiS is critical for regulation of this locus, however, the mechanisms downstream of ChiS activation that result in expression of the chb operon are poorly understood. Using an unbiased transposon mutant screen, we uncover that the nucleoid occlusion protein SlmA is a regulator of the chb operon. SlmA has not previously been implicated in gene regulation. Also, SlmA is a member of the TetR family of proteins, which are generally transcriptional repressors. In vitro, we find that SlmA binds directly to the chb operon promoter, and in vivo, we show that this interaction is required for transcriptional activation of this locus and for chitobiose utilization. Using point mutations that disrupt distinct functions of SlmA, we find that DNA-binding, but not nucleoid occlusion, is critical for transcriptional activation. This study identifies a novel role for SlmA as a transcriptional regulator in V. cholerae in addition to its established role as a cell division licensing factor.


Assuntos
Proteínas de Bactérias/genética , Cólera/genética , Dissacarídeos/genética , Óperon/genética , Ativação Transcricional/genética , Vibrio cholerae/genética , Sítios de Ligação , Quitina/metabolismo , Cólera/microbiologia , Proteínas de Ligação a DNA/genética , Dissacarídeos/biossíntese , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Transferência Genética Horizontal/genética , Humanos , Mutação Puntual , Regiões Promotoras Genéticas , Vibrio cholerae/patogenicidade
20.
Biochemistry ; 56(29): 3840-3849, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28640592

RESUMO

AphB is a LysR-type transcriptional regulator (LTTR) that cooperates with a second transcriptional activator, AphA, at the tcpPH promoter to initiate expression of the virulence cascade in Vibrio cholerae. Because it is not yet known whether AphB responds to a natural ligand in V. cholerae that influences its ability to activate transcription, we used a computational approach to identify small molecules that influence its activity. In silico docking was used to identify potential ligands for AphB, and saturation transfer difference nuclear magnetic resonance was subsequently employed to access the validity of promising targets. We identified a small molecule, BP-15, that specifically binds the C-terminal regulatory domain of AphB and increases its activity. Interestingly, molecular docking predicts that BP-15 does not bind in the putative primary effector-binding pocket located at the interface of RD-I and RD-II as in other LTTRs, but rather at the dimerization interface. The information gained in this study helps us to further understand the mechanism by which transcriptional activation by AphB is regulated by suggesting that AphB has a secondary ligand binding site, as observed in other LTTRs. This study also lays the groundwork for the future design of inhibitory molecules to block the V. cholerae virulence cascade, thereby preventing the devastating symptoms of cholera infection.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Multimerização Proteica , Transativadores/química , Vibrio cholerae/química , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cólera/tratamento farmacológico , Cólera/genética , Ligantes , Domínios Proteicos , Estrutura Quaternária de Proteína , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/genética , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...