Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.620
Filtrar
1.
J Peripher Nerv Syst ; 29(2): 173-184, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887985

RESUMO

Corneal confocal microscopy (CCM) is an ophthalmic imaging technique that enables the identification of corneal nerve fibre degeneration and regeneration. To undertake a systematic review and meta-analysis of studies utilizing CCM to assess for corneal nerve regeneration after pharmacological and surgical interventions in patients with peripheral neuropathy. Databases (EMBASE [Ovid], PubMed, CENTRAL and Web of Science) were searched to summarize the evidence from randomized and non-randomized studies using CCM to detect corneal nerve regeneration after pharmacological and surgical interventions. Data synthesis was undertaken using RevMan web. Eighteen studies including 958 patients were included. CCM identified an early (1-8 months) and longer term (1-5 years) increase in corneal nerve measures in patients with peripheral neuropathy after pharmacological and surgical interventions. This meta-analysis confirms the utility of CCM to identify nerve regeneration following pharmacological and surgical interventions. It could be utilized to show a benefit in clinical trials of disease modifying therapies for peripheral neuropathy.


Assuntos
Córnea , Microscopia Confocal , Regeneração Nervosa , Humanos , Córnea/inervação , Córnea/cirurgia , Córnea/diagnóstico por imagem , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/cirurgia , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem
2.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892258

RESUMO

Diabetic retinopathy (DR) remains the leading cause of blindness in the working-age population. Its progression causes gradual damage to corneal nerves, resulting in decreased corneal sensitivity (CS) and disruption of anterior-eye-surface homeostasis, which is clinically manifested by increased ocular discomfort and dry eye disease (DED). This study included 52 DR patients and 52 sex- and age-matched controls. Ocular Surface Disease Index (OSDI) survey, tear film-related parameters, CS, and in vivo corneal confocal microscopy (IVCM) of the subbasal plexus were performed. Furthermore, all patients underwent tear sampling for neurotrophin and cytokine analysis. OSDI scores were greater in DR patients than in controls (p = 0.00020). No differences in the Schirmer test score, noninvasive tear film-break-up time (NIBUT), tear meniscus or interferometry values, bulbar redness, severity of blepharitis or meibomian gland loss were found. In the DR group, both the CS (p < 0.001), and the scotopic pupil diameter (p = 0.00008) decreased. IVCM revealed reduced corneal nerve parameters in DR patients. The stage of DR was positively correlated with the OSDI (Rs = +0.51, 95% CI: + 0.35-+0.64, p < 0.001) and negatively correlated with IVCM corneal nerve parameters and scotopic pupillometry (Rs = -0.26, 95% CI: -0.44--0.06, p = 0.0097). We found negative correlations between the OSDI and IVCM corneal innervation parameters. The DR group showed lower tear film-brain-derived neurotrophic factor (BDNF) levels (p = 0.0001) and no differences in nerve growth factor (NGF)-ß, neurotrophin (NT)-4, vascular endothelial growth factor (VEGF), interleukin (IL)-1ß, IL-4, IL-5, IL-6, or IL-12 concentrations. Tumor necrosis factor (TNF)-α, IL-2, IL-8, IL-10, granulocyte macrophage colony-stimulating factor (GM-CSF), and interferon (IFN)-γ levels were decreased among patients with DR. Corneal innervation defects have a direct impact on patients' subjective feelings. The evolution of DR appears to be associated with corneal nerve alterations, emphasizing the importance of IVCM.


Assuntos
Córnea , Retinopatia Diabética , Síndromes do Olho Seco , Lágrimas , Humanos , Masculino , Feminino , Córnea/inervação , Córnea/patologia , Córnea/metabolismo , Pessoa de Meia-Idade , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Lágrimas/metabolismo , Síndromes do Olho Seco/etiologia , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Citocinas/metabolismo , Índice de Gravidade de Doença , Adulto , Estudos de Casos e Controles , Idoso , Microscopia Confocal
3.
Sci Rep ; 14(1): 13435, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862650

RESUMO

Diabetic corneal neuropathy (DCN) is a common diabetic ocular complication with limited treatment options. In this study, we investigated the effects of topical and oral fenofibrate, a peroxisome proliferator-activated receptor-α agonist, on the amelioration of DCN using diabetic mice (n = 120). Ocular surface assessments, corneal nerve and cell imaging analysis, tear proteomics and its associated biological pathways, immuno-histochemistry and western blot on PPARα expression, were studied before and 12 weeks after treatment. At 12 weeks, PPARα expression markedly restored after topical and oral fenofibrate. Topical fenofibrate significantly improved corneal nerve fibre density (CNFD) and tortuosity coefficient. Likewise, oral fenofibrate significantly improved CNFD. Both topical and oral forms significantly improved corneal sensitivity. Additionally, topical and oral fenofibrate significantly alleviated diabetic keratopathy, with fenofibrate eye drops demonstrating earlier therapeutic effects. Both topical and oral fenofibrate significantly increased corneal ß-III tubulin expression. Topical fenofibrate reduced neuroinflammation by significantly increasing the levels of nerve growth factor and substance P. It also significantly increased ß-III-tubulin and reduced CDC42 mRNA expression in trigeminal ganglions. Proteomic analysis showed that neurotrophin signalling and anti-inflammation reactions were significantly up-regulated after fenofibrate treatment, whether applied topically or orally. This study concluded that both topical and oral fenofibrate ameliorate DCN, while topical fenofibrate significantly reduces neuroinflammation.


Assuntos
Córnea , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Fenofibrato , PPAR alfa , Animais , PPAR alfa/agonistas , PPAR alfa/metabolismo , Camundongos , Fenofibrato/farmacologia , Fenofibrato/administração & dosagem , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Córnea/metabolismo , Córnea/efeitos dos fármacos , Córnea/inervação , Córnea/patologia , Masculino , Administração Oral , Administração Tópica , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Doenças da Córnea/patologia , Camundongos Endogâmicos C57BL , Proteômica/métodos
4.
Int Ophthalmol ; 44(1): 270, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914919

RESUMO

PURPOSE: To compare, between Alzheimer's disease (AD) patients and healthy individuals, corneal subbasal nerve plexus (CSNP) parameters and corneal sensitivities. METHODS: Twenty-two patients who were followed up with Alzheimer's disease (Alzheimer's group) and 18 age- and gender-matched healthy individuals (control group) were included in this cross-sectional study. CSNP parameters, including nerve fiber length (NFL), nerve fiber density (NFD), and nerve branch density (NBD), were evaluated using in vivo confocal microscopy. Corneal sensitivity was evaluated using a Cochet-Bonnet esthesiometer. The results were compared between the two groups. RESULTS: In the Alzheimer's group, NFL was 12.2 (2.4) mm/mm2, NFD was 12.5 [3.1] fibers/mm2, and NBD was 29.7 [9.37] branches/mm2. In the control group, NFL was 16.5 (2.0) mm/mm2, NFD was 25.0 [3.13] fibers/mm2, and NBD was 37.5 [10.9] branches/mm2. All three parameters were significantly lower in the Alzheimer's group compared to the control group (p < 0.001, p < 0.001, and p = 0.001, respectively). Similarly, corneal sensitivity was significantly lower in the Alzheimer's group (55.0 [5.0] mm) compared to the control group (60.0 [5.0] mm) (p < 0.001). CONCLUSION: We determined that, in AD, corneal sensitivity decreases significantly, in parallel with the decrease in corneal nerves. Changes in the corneal nerve plexus and a decrease in corneal sensitivity may be used in the early diagnosis and follow-up of AD. In addition, ocular surface problems secondary to these changes should also be kept in mind.


Assuntos
Doença de Alzheimer , Córnea , Microscopia Confocal , Fibras Nervosas , Humanos , Feminino , Masculino , Córnea/inervação , Córnea/patologia , Estudos Transversais , Doença de Alzheimer/fisiopatologia , Idoso , Fibras Nervosas/patologia , Pessoa de Meia-Idade , Nervo Oftálmico/patologia , Transtornos de Sensação/etiologia , Transtornos de Sensação/fisiopatologia , Transtornos de Sensação/diagnóstico , Idoso de 80 Anos ou mais
5.
Invest Ophthalmol Vis Sci ; 65(5): 11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709524

RESUMO

Purpose: The corneal epithelium is the most highly innervated structure in the body. Previously, we reported a novel event whereby stromal axons fuse with basal epithelial cells, limiting nerve penetration into the epithelium. Although corneal-epithelial nerves undergo changes in sensitivity and distribution throughout life and in response to an obesogenic diet, it is unknown if neuronal-epithelial cell fusion is altered. Here, we sought to determine if neuronal-epithelial cell fusion frequency correlates with obesogenic diet consumption and age. Methods: Corneas were collected from C57BL/6 mice and evaluated for neuronal-epithelial cell fusion frequency using serial block-face scanning electron microscopy. To assess the correlation between diet-induced obesity and fusion frequency, 6-week-old mice were fed either a normal diet or an obesogenic diet for 10 weeks. To assess changes in fusion frequency between young and adult mice under normal dietary conditions, 9- and 24-week-old mice were used. Results: Mice fed a 10-week obesogenic diet showed 87% of central-cornea stromal nerves engaged in fusion compared with only 54% in age-matched controls (16 weeks old). In 9-week-old normal-diet animals, 48% of central-cornea stromal nerves contained fusing axons and increased to 81% at 24 weeks of age. Corneal sensitivity loss correlated with increased body weight and adiposity regardless of age and diet. Conclusions: Neuronal-epithelial cell fusion positively correlates with age and obesogenic diet consumption, and corneal nerve sensitivity loss correlates with increased body weight and adiposity, regardless of age and diet. As such, neuronal-epithelial cell fusion may play a role in corneal nerve density and sensitivity regulation.


Assuntos
Substância Própria , Epitélio Corneano , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Obesidade , Animais , Obesidade/patologia , Camundongos , Epitélio Corneano/patologia , Substância Própria/inervação , Substância Própria/patologia , Envelhecimento/fisiologia , Masculino , Modelos Animais de Doenças , Córnea/inervação , Dieta Hiperlipídica/efeitos adversos
6.
Exp Eye Res ; 244: 109926, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754688

RESUMO

There has been a growing application of in vivo confocal microscopy (IVCM) in the examination of corneal microstructure, including different corneal layers and corneal nerve fibers in health and in pathological conditions. Corneal nerves forming the sub-basal nerve plexus (SBNP) beneath the corneal basal epithelial cell layer in particular have been intensively researched in health and disease as a marker for corneal neurophysioanatomical and degenerative changes. One intriguing feature in the SBNP that is found inferior to the corneal apex, is a whorl-like pattern (or vortex) of nerves, which represents an anatomical landmark. Evidence has indicated that the architecture of this 'whorl region' is dynamic, changing with time in healthy individuals but also in disease conditions such as in diabetic neuropathy and keratoconus. This review summarizes the known information regarding the characteristics and significance of the whorl region of nerves in the corneal SBNP, as a potential area of high relevance for future disease monitoring and diagnostics.


Assuntos
Córnea , Microscopia Confocal , Fibras Nervosas , Nervo Oftálmico , Humanos , Córnea/inervação , Fibras Nervosas/patologia , Nervo Oftálmico/patologia , Nervo Oftálmico/anatomia & histologia , Doenças da Córnea/patologia
7.
Sci Rep ; 14(1): 7676, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561433

RESUMO

The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.


Assuntos
MicroRNAs , Fenômenos Fisiológicos do Sistema Nervoso , Camundongos , Masculino , Feminino , Animais , Córnea/inervação , Gânglio Trigeminal/fisiologia , MicroRNAs/genética , Células Mieloides
8.
Ocul Surf ; 33: 80-98, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38688453

RESUMO

Corneal neuropathy involves corneal nerve damage that disrupts ocular surface integrity, negatively impacting quality-of-life from pain and impaired vision. Any ocular or systemic condition that damages the trigeminal nerve can lead to corneal neuropathy. However, the condition currently does not have standardized diagnostic criteria or treatment protocols. The primary aim of this systematic review was to evaluate the efficacy and safety of interventions for treating corneal neuropathy. Randomized controlled trials (RCTs) that investigated corneal neuropathy treatments were eligible if the intervention(s) was compared to a placebo or active comparator. Comprehensive searches were conducted in Ovid MEDLINE, Ovid Embase and clinical trial registries from inception to July 2022. The Cochrane Risk-of-Bias 2 tool was used to assess study methodological quality. Certainty of the body of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Overall, 20 RCTs were included. Evaluated interventions comprised regenerative therapies (n = 6 studies), dietary supplements (n = 4), anti-glycemic agents (n = 3), combination therapy (n = 3), supportive therapies (n = 2) and systemic pain pharmacotherapies (n = 2). Nine RCTs were judged at high risk of bias for most outcomes. Definitions for corneal neuropathy in the populations varied substantially across studies, consistent with lack of consensus on diagnostic criteria. A diverse range of outcomes were quantified, likely reflecting absence of an agreed core outcome set. There was insufficient evidence to draw definitive conclusions on the efficacy or safety of any intervention. There was low or very low certainty evidence for several neuroregenerative agents and dietary supplements for improving corneal nerve fiber length in corneal neuropathy due to dry eye disease and diabetes. Low or very low certainty evidence was found for neuroregenerative therapies and dietary supplements not altering corneal immune cell density. This review identifies a need to standardize the clinical definition of corneal neuropathy and define a minimum set of core outcome measures. Together, this will provide a foundation for improved phenotyping of clinical populations in studies, and improve the capacity to synthesize data to inform evidence-based care. Protocol registration: PROSPERO ID: CRD42022348475.


Assuntos
Córnea , Humanos , Córnea/patologia , Córnea/inervação , Doenças da Córnea/terapia , Doenças da Córnea/diagnóstico , Ensaios Clínicos Controlados Aleatórios como Assunto , Doenças do Nervo Trigêmeo/terapia , Doenças do Nervo Trigêmeo/diagnóstico , Qualidade de Vida
9.
J Ocul Pharmacol Ther ; 40(5): 281-292, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648544

RESUMO

Blood-derived preparations, including autologous or allogenic serum, umbilical cord serum/plasma, and platelet-rich plasma eye drops, contain various growth factors, cytokines, and immunoglobulins that resemble natural tears. These components play important roles in corneal cell migration, proliferation, and wound healing. Blood-derived eye drops have demonstrated clinical effectiveness across a spectrum of ocular surface conditions, encompassing dry eye disease, Sjögren's syndrome, graft-versus-host disease, and neuropathic corneal pain (NCP). Currently, management of NCP remains challenging. The emergence of blood-derived eye drops represents a promising therapeutic approach. In this review, we discuss the benefits and limitations of different blood-derived eye drops, their mechanisms of action, and treatment efficacy in patients with NCP. Several studies have demonstrated the clinical efficacy of autologous serum eye drops in relieving pain and pain-like symptoms, such as allodynia and photoallodynia. Corneal nerve parameters were also significantly improved, as evidenced by increased nerve fiber density, length, nerve reflectivity, and tortuosity, as well as a decreased occurrence of beading and neuromas after the treatment. The extent of nerve regeneration correlated with improvement in patient-reported photoallodynia. Cord plasma eye drops also show potential for symptom alleviation and corneal nerve regeneration. Future directions for clinical practice and research involve standardizing preparation protocols, establishing treatment guidelines, elucidating underlying mechanisms, conducting long-term clinical trials, and implementing cost-effective measures such as scaling up manufacturing. With ongoing advancements, blood-derived eye drops hold promise as a valuable therapeutic option for patients suffering from NCP.


Assuntos
Neuralgia , Soluções Oftálmicas , Humanos , Soluções Oftálmicas/administração & dosagem , Soluções Oftálmicas/uso terapêutico , Neuralgia/tratamento farmacológico , Doenças da Córnea/tratamento farmacológico , Córnea/inervação , Soro , Plasma Rico em Plaquetas , Animais
10.
J Neurol ; 271(6): 3370-3377, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38498118

RESUMO

OBJECTIVES: Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disorder. Diagnosis is challenging due to its clinical heterogeneity and the absence of definitive diagnostic tools, leading to delays averaging between 9.1 and 27 months. In vivo corneal confocal microscopy, assessing the sub-basal nerve plexus of the cornea, has been proposed as a potential biomarker for ALS. We aimed to determine whether the assessment of corneal nerves using in vivo confocal microscopy can serve as an imaging biomarker for ALS. METHODS: A single-centre prospective case-control study was conducted in France from September 2021 to March 2023 including patients with ALS according to the revised EI Escorial criteria. The corneal sub-basal nerve plexus was analysed using in vivo confocal microscopy. An automated algorithm (ACCMetrics) was used to evaluate corneal parameters: nerve fibre density, nerve branch density, nerve fibre length, nerve fibre area, nerve total branch density, nerve fibre width, and nerve fractal dimension. RESULTS: Twenty-two patients with ALS and 30 controls were included. No significant differences were found between ALS and control groups for all corneal parameters (p > 0.05). Corneal sensitivity did not differ between groups, and no correlation was identified between corneal nerve parameters and ALS disease duration, severity and rate of progression (p > 0.05). CONCLUSIONS: The present study does not support the use of in vivo corneal confocal microscopy as an early diagnostic or prognostic tool for ALS. Further research, especially longitudinal investigations, is needed to understand any potential corneal innervation changes as ALS progresses.


Assuntos
Esclerose Lateral Amiotrófica , Córnea , Microscopia Confocal , Humanos , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Masculino , Córnea/inervação , Córnea/diagnóstico por imagem , Córnea/patologia , Feminino , Pessoa de Meia-Idade , Idoso , Estudos de Casos e Controles , Estudos Prospectivos , Fibras Nervosas/patologia , Adulto
11.
Eye Contact Lens ; 50(5): 200-207, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350094

RESUMO

ABSTRACT: Sjögren syndrome (SS) is a chronic inflammatory autoimmune disease characterized by destruction of mucosal glands resulting in dry eye and dry mouth. Ocular presentations can be heterogenous in SS with corneal nerves abnormalities that are structural, functional, or both. Some individuals present with corneal hyposensitivity, with a phenotype of decreased tear production and epithelial disruption. Others present with corneal hypersensitivity, with a phenotype of neuropathic pain including light sensitivity and pain out of proportion to signs of tear dysfunction. A similar correlate can be found outside the eye, with dry mouth predominating in some individuals while pain conditions predominate in others. Understanding how nerve status affects SS phenotype is an important first step to improving disease management by targeting nerve abnormalities, as well as inflammation.


Assuntos
Córnea , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/fisiopatologia , Síndrome de Sjogren/imunologia , Córnea/inervação , Córnea/patologia , Inflamação/fisiopatologia , Lágrimas/metabolismo , Lágrimas/fisiologia , Síndromes do Olho Seco/fisiopatologia , Síndromes do Olho Seco/etiologia
12.
Neurophysiol Clin ; 54(4): 102955, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38422588

RESUMO

OBJECTIVES: Corneal confocal microscopy (CCM) is a non-invasive technique that examines the corneal cellular structure. Its use in the detection of small fiber neuropathy is being researched. In our study, we examined the role of CCM in the detection of small fiber neuropathy in diabetic patients, as well as the differences between CCM findings in diabetic patients with and without overt polyneuropathy with neuropathic symptoms. METHODS: 56 Diabetes Mellitus (DM) patients and 18 healthy controls were included in the study. The individuals included in the study were divided into three groups. Patients with diabetes who were found to have polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 1, patients with diabetes and neuropathic symptoms without overt polyneuropathy according to electrophysiological diagnostic criteria were classified as Group 2, and healthy individuals were classified as Group 3. Electrophysiological examination and corneal imaging with CCM were performed in all groups. RESULTS: The CNFD and CNFL values of individuals in the diabetic group were discovered to be lower. CNFD values differ statistically between the groups (p = 0.047). Group 1-Group 3 differs from Group 2-Group 3 (respectively; p = 0.018, p = 0.048). CONCLUSION: Our study demonstrates that CCM can be used in patients with neuropathic symptoms and no polyneuropathy detected in EMG and thought to have small fiber neuropathy. CCM provides an opportunity for early diagnosis in small fiber neuropathy.


Assuntos
Córnea , Neuropatias Diabéticas , Microscopia Confocal , Neuropatia de Pequenas Fibras , Humanos , Microscopia Confocal/métodos , Masculino , Córnea/diagnóstico por imagem , Córnea/patologia , Córnea/inervação , Feminino , Pessoa de Meia-Idade , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/diagnóstico por imagem , Neuropatias Diabéticas/fisiopatologia , Neuropatia de Pequenas Fibras/diagnóstico , Neuropatia de Pequenas Fibras/fisiopatologia , Adulto , Idoso , Diabetes Mellitus/fisiopatologia
13.
Ocul Surf ; 32: 60-70, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242319

RESUMO

PURPOSE: Sensory nerve terminals are highly distributed in the cornea, and regulate ocular surface sensation and homeostasis in response to various endogenous and exogenous stimuli. However, little is known about mediators regulating the physiological and pathophysiological activities of corneal sensory nerves. The aim of this study was to investigate the presence of cholinergic regulation in sensory nerves in the cornea. METHODS: Localization of choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (vAChT) was evaluated using western blotting and immunohistochemical analysis. The synthesis and liberation of acetylcholine from the cornea were assessed using corneal segments pre-incubated with [3H]choline. The responsiveness of corneal neurons and nerves to cholinergic drugs was explored using calcium imaging with primary cultures of trigeminal ganglion neurons and extracellular recording from corneal preparations in guinea pigs. RESULTS: ChAT, but not vAChT, was highly distributed in the corneal epithelium. In corneal segments, [3H] acetylcholine was synthesized from [3H]choline, and was also released in response to electrical stimuli. In cultured corneal neurons, the population sensitive to a transient receptor potential melastatin 8 (TRPM8) agonist exhibited high probability of responding to nicotine in a calcium imaging experiment. The firing frequency of cold-sensitive corneal nerves was increased by the application of nicotine, but diminished by an α4 nicotinic acetylcholine receptor antagonist. CONCLUSIONS: The corneal epithelium can synthesize and release acetylcholine. Corneal acetylcholine can excite sensory nerves via nicotinic receptors containing the α4 subunit. Therefore, corneal acetylcholine may be one of the important regulators of corneal nerve activity arranging ocular surface condition and sensation.


Assuntos
Acetilcolina , Córnea , Receptores Nicotínicos , Animais , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Córnea/inervação , Córnea/metabolismo , Cobaias , Receptores Nicotínicos/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Western Blotting , Células Cultivadas , Masculino , Gânglio Trigeminal/metabolismo , Imuno-Histoquímica , Colina O-Acetiltransferase/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
14.
Anesth Analg ; 139(1): 226-234, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38236765

RESUMO

BACKGROUND: The trigeminal ganglion (TG) collects afferent sensory information from various tissues. Recent large-scale RNA sequencing of neurons of the TG and dorsal root ganglion has revealed a variety of functionally distinct neuronal subpopulations, but organ-specific information is lacking. METHODS: To link transcriptomic and tissue-specific information, we labeled small-diameter neurons of 3 specific subpopulations of the TG by local application of lipophilic carbocyanine dyes to their innervation site in the dental pulp, cornea, and meninges (dura mater). We then collected mRNA-sequencing data from fluorescent neurons. Differentially expressed genes (DEGs) were analyzed and subjected to downstream gene set enrichment analysis (GSEA), and ion channel profiling was performed. RESULTS: A total of 10,903 genes were mapped to the mouse genome (>500 reads). DEG analysis revealed 18 and 81 genes with differential expression (log 2 fold change > 2, Padj < .05) in primary afferent neurons innervating the dental pulp (dental primary afferent neurons [DPAN]) compared to those innervating the meninges (meningeal primary afferent neurons [MPAN]) and the cornea (corneal primary afferent neurons [CPAN]). We found 250 and 292 genes differentially expressed in MPAN as compared to DPAN and to CPAN, and 21 and 12 in CPAN as compared to DPAN and MPAN. Scn2b had the highest log 2 fold change when comparing DPAN versus MPAN and Mmp12 was the most prominent DEG when comparing DPAN versus CPAN and, CPAN versus MPAN. GSEA revealed genes of the immune and mitochondrial oxidative phosphorylation system for the DPAN versus MPAN comparison, cilium- and ribosome-related genes for the CPAN versus DPAN comparison, and respirasome, immune cell- and ribosome-related gene sets for the CPAN versus MPAN comparison. DEG analysis for ion channels revealed no significant differences between the neurons set except for the sodium voltage-gated channel beta subunit 2, Scn2b . However, in each tissue a few ion channels turned up with robust number of reads. In DPAN, these were Cacna1b , Trpv2 , Cnga4 , Hcn1 , and Hcn3 , in CPAN Trpa1 , Trpv1 , Cacna1a , and Kcnk13 and in MPAN Trpv2 and Scn11a . CONCLUSIONS: Our study uncovers previously unknown differences in gene expression between sensory neuron subpopulations from the dental pulp, cornea, and dura mater and provides the basis for functional studies, including the investigation of ion channel function and their suitability as targets for tissue-specific analgesia.


Assuntos
Córnea , Meninges , Nociceptores , Transcriptoma , Gânglio Trigeminal , Animais , Córnea/inervação , Córnea/metabolismo , Meninges/metabolismo , Nociceptores/metabolismo , Camundongos , Gânglio Trigeminal/metabolismo , Dente Molar/inervação , Dente Molar/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Perfilação da Expressão Gênica/métodos , Polpa Dentária/inervação , Polpa Dentária/metabolismo
15.
Curr Eye Res ; 49(4): 354-361, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38165267

RESUMO

PURPOSE: Optic neuritis (ON), a demyelinating disease of the central nervous system, is often a precursor manifestation of neuromyelitis optica spectrum disorders (NMOSD) or multiple sclerosis (MS). Reduced corneal nerve fiber counts have been found in patients with NMOSD or MS. This study aimed to observe and compare the corneal subbasal nerve plexus in patients with three types of ON and controls without ON using in vivo corneal confocal microscopy (IVCM). METHODS: Data were analyzed for 77 eyes of 48 patients with ON, grouped according to seropositivity for anti-aquaporin-4 IgG, myelin oligodendrocyte glycoprotein antibody, or no seropositivity, and 35 healthy eyes in the control group. Corneal parameters were quantified based on IVCM images. Visual function indicators were recorded, following which their correlations with IVCM parameters were analyzed. RESULTS: Significant differences in IVCM parameters were detected among the different groups. Reductions in corneal nerve fiber counts were negatively correlated with visual acuity. Corneal nerve fibers were significantly more damaged in the affected eye than in the unaffected eye in patients with ON. CONCLUSION: IVCM revealed corneal nerve fiber loss of varying degrees, depending on the type of ON. This indicates that, although ON primarily affects the central nervous system, peripheral nerves, such as the trigeminal nerve, which innervates the corneal subbasal nerve plexus may also be damaged in affected patients.


Assuntos
Esclerose Múltipla , Neurite Óptica , Humanos , Estudos Transversais , Córnea/inervação , Fibras Nervosas , Neurite Óptica/diagnóstico , Microscopia Confocal/métodos
16.
Pain ; 165(6): 1391-1403, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227559

RESUMO

ABSTRACT: Neuropathic corneal pain (NCP) is a new and ill-defined disease characterized by pain, discomfort, aching, burning sensation, irritation, dryness, and grittiness. However, the mechanism underlying NCP remain unclear. Here, we reported a novel rat model of primary NCP induced by long ciliary nerve (LCN) ligation. After sustained LCN ligation, the rats developed increased corneal mechanical and chemical sensitivity, spontaneous blinking, and photophobia, which were ameliorated by intraperitoneal injection of morphine or gabapentin. However, neither tear reduction nor corneal injury was observed in LCN-ligated rats. Furthermore, after LCN ligation, the rats displayed a significant reduction in corneal nerve density, as well as increased tortuosity and beading nerve ending. Long ciliary nerve ligation also notably elevated corneal responsiveness under resting or menthol-stimulated conditions. At a cellular level, we observed that LCN ligation increased calcitonin gene-related peptide (neuropeptide)-positive cells in the trigeminal ganglion (TG). At a molecular level, upregulated mRNA levels of ion channels Piezo2, TRPM8, and TRPV1, as well as inflammatory factors TNF-α, IL-1ß, and IL-6, were also detected in the TG after LCN ligation. Meanwhile, consecutive oral gabapentin attenuated LCN ligation-induced corneal hyperalgesia and increased levels of ion channels and inflammation factors in TG. This study provides a reliable primary NCP model induced by LCN ligation in rats using a simple, minimally invasive surgery technique, which may help shed light on the underlying cellular and molecular bases of NCP and aid in developing a new treatment for the disease.


Assuntos
Córnea , Modelos Animais de Doenças , Gabapentina , Neuralgia , Ratos Sprague-Dawley , Animais , Neuralgia/etiologia , Masculino , Ratos , Gabapentina/farmacologia , Gabapentina/uso terapêutico , Ligadura , Córnea/inervação , Gânglio Trigeminal/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Ácido gama-Aminobutírico/metabolismo , Ácidos Cicloexanocarboxílicos/farmacologia , Ácidos Cicloexanocarboxílicos/uso terapêutico , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Aminas/farmacologia , Aminas/uso terapêutico , Morfina/farmacologia , Morfina/uso terapêutico , Dor Ocular/etiologia , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia
17.
Invest Ophthalmol Vis Sci ; 65(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165707

RESUMO

Purpose: Diabetic keratopathy (DK) is a vision-threatening disease that occurs in people with diabetes. Mounting evidence indicates that microRNAs (miRNAs) are indispensable in nerve regeneration within DK. Herein, the role of miRNAs associated with DK, especially focusing on autophagy and apoptosis regulation, was investigated. Methods: To identify differentially expressed miRNAs, we performed miRNA sequencing on trigeminal ganglion (TG) tissues derived from streptozotocin-induced type 1 diabetic mellitus (T1DM) and normal mice. MiR-144-3p was chosen for the subsequent experiments. To explore the regulatory role of miR-144-3p in DK, miRNA antagomir was utilized to inhibit miR-144-3p expression. Bioinformatic tools were used to predict the target genes of miR-144-3p, and a dual-luciferase reporter assay was then applied for validation. Autophagy and apoptosis activities were measured utilizing TUNEL staining, immunofluorescence staining, and Western blotting. Results: Overall, 56 differentially expressed miRNAs were detected in diabetic versus control mice. In the diabetic mouse TG tissue, miR-144-3p expression was aberrantly enhanced, whereas decreasing its expression contributed to improved diabetic corneal re-epithelialization and nerve regeneration. Fork-head Box O1 (FOXO1) was validated as a target gene of miR-144-3p. Overexpression of FOXO1 could prevent both inadequate autophagy and excessive apoptosis in DK. Consistently, a specific miR-144-3p inhibition enhanced autophagy and prevented apoptosis in DK. Conclusions: In this study, our research confirmed the target binding relationship between miR-144-3p and FOXO1. Inhibiting miR-144-3p might modulate autophagy and apoptosis, which could generate positive outcomes for corneal nerves via targeting FOXO1 in DK.


Assuntos
Córnea , Complicações do Diabetes , MicroRNAs , Complicações do Diabetes/metabolismo , Complicações do Diabetes/patologia , Córnea/inervação , Córnea/patologia , Animais , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Regeneração Nervosa , Hiperglicemia/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Autofagia , Apoptose , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/patologia
18.
Cornea ; 43(4): 409-418, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37643477

RESUMO

PURPOSE: The aim of this study was to investigate age-related changes in corneal nerves and corneal epithelial cell parameters and to establish age-adjusted reference values. METHODS: A total of 7025 corneal nerve images and 4215 corneal epithelial images obtained using in vivo confocal microscopy from 281 eyes of 143 healthy participants were included. Seven corneal nerve parameters and 3 corneal epithelial cell parameters were quantified using 2 automatic analytic software and analyzed across 6 age groups ranging from 21 to 80 years. RESULTS: There was a declining trend in all 7 nerve parameters with advancing age. In particular, corneal nerve fiber length and corneal nerve fiber density demonstrated a significant decrease in subjects aged 65 years or older compared with subjects younger than 65 years (10.8 ± 2.6 mm/mm 2 vs. 9.9 ± 2.0 mm/mm 2 , P = 0.011 in corneal nerve fiber length; 15.8 ± 5.2 fibers/mm 2 vs. 14.4 ± 4.3 fibers/mm 2 , P = 0.046 in corneal nerve fiber density), whereas corneal nerve fractal dimension demonstrated a borderline significant decrease ( P = 0.057). Similarly, there was a general declining trend in all epithelial cell parameters with advancing age. Corneal epithelial cell circularity was significantly lower in subjects aged 65 years and older as compared to subjects younger than 65 years (0.722 ± 0.021 µm 2 vs. 0.714 ± 0.021 µm 2 ; P = 0.011). CONCLUSIONS: Advancing age results in reduced corneal nerve metrics and alteration of corneal cell morphology. Aging effects should be considered when evaluating patients with corneal neuropathy.


Assuntos
Córnea , Fibras Nervosas , Adulto , Humanos , Córnea/inervação , Células Epiteliais , Microscopia Confocal/métodos , Contagem de Células
19.
Clin Exp Optom ; 107(1): 14-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37019837

RESUMO

CLINICAL RELEVANCE: Corneal sensitivity represents an important indicator for corneal health, its innervation and hence also for ocular disease. It is therefore of great interest from a clinical and research perspective to quantify ocular surface sensation. BACKGROUND: The aim of this prospective cross-sectional cohort study was to clinically test the within-day and day-to-day repeatability of the new Swiss Liquid Jet Aesthesiometer, employing small droplets of isotonic saline solution for repeatability, and correlate with the Cochet-Bonnet aesthesiometer in a cohort of participants of two different age groups, based on participant feedback (psychophysical method). METHODS: Participants were recruited from two equally, large age groups: group A (18-30 years) and group B (50-70 years). The inclusion criteria were healthy eyes, Ocular Surface Disease Index (OSDI) ≤ 13, and no contact lens wear. Mechanical corneal sensitivity threshold measurements with means of liquid jet and Cochet-Bonnet methods were carried out twice during two visits (a total of four measurements), with a stimulus temperature equal to or slightly above the ocular surface temperature. RESULTS: Ninety participants completed the study (n = 45 per age group, average age in group A: 24.2 ± 2.94 years, group B: 58.5 ± 5.71 years). The coefficient of repeatability for the liquid jet method was 2.56 dB within visits and 3.61 between visits. For the Cochet-Bonnet method, it was 2.27 dB within visits and 4.42 dB between visits (Bland Altman with bootstrap analysis). Moderate correlation was observed between the liquid jet and the Cochet-Bonnet method (r = 0.540, p < .001, robust linear regression). CONCLUSIONS: Swiss liquid jet aesthesiometry offers a new examiner independent method for corneal sensitivity measurement with acceptable repeatability and moderate correlation with the Cochet-Bonnet aesthesiometer. It offers a large stimulus pressure range of 100-1500 mbar and a precision of 1 mbar. Stimulus intensity can be tuned more precisely and much smaller sensitivity fluctuations may be potentially detected.


Assuntos
Córnea , Sensação , Humanos , Adulto Jovem , Adulto , Adolescente , Pessoa de Meia-Idade , Estudos Transversais , Estudos Prospectivos , Suíça , Córnea/inervação
20.
Muscle Nerve ; 69(1): 78-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983951

RESUMO

INTRODUCTION/AIMS: In patients with amyotrophic lateral sclerosis (ALS), axonal spheroids in motor axons have been identified in post-mortem studies. In this study, axonal spheroids and swellings on C-fibers of ALS patients were investigated using corneal confocal microscopy (CCM) and skin biopsy, respectively. METHODS: Thirty-one ALS patients and 20 healthy subjects were evaluated with CCM to assess corneal nerve-fiber length (CNFL), -fiber density (CNFD), -branch density (CNBD), dendritic cell (DC) density, and axonal spheroids originating from C-fibers (>100 µm2 ). In addition, intraepidermal nerve fiber density (IENFD) and axonal swellings (>1.5 µm) were assessed in skin biopsies obtained from the arms and legs of 22 patients and 17 controls. RESULTS: In ALS patients, IENFD, CNFD, CNFL, and CNBD were not different from controls. The density of DCs and the number of patients with increased DC density were higher in ALS patients than controls (p = .0005 and p = .008). The number of patients with axonal spheroids was higher than controls (p = .03). DISCUSSION: Evaluation of DCs and axonal bulbs in C-fibers of ALS patients could provide insights into pathophysiology or potentially serve as biomarkers in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/patologia , Axônios/patologia , Córnea/inervação , Pele/patologia , Fibras Nervosas Amielínicas/patologia , Microscopia Confocal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...