Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.960
Filtrar
1.
Commun Biol ; 7(1): 711, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862808

RESUMO

Deepfakes are viral ingredients of digital environments, and they can trick human cognition into misperceiving the fake as real. Here, we test the neurocognitive sensitivity of 25 participants to accept or reject person identities as recreated in audio deepfakes. We generate high-quality voice identity clones from natural speakers by using advanced deepfake technologies. During an identity matching task, participants show intermediate performance with deepfake voices, indicating levels of deception and resistance to deepfake identity spoofing. On the brain level, univariate and multivariate analyses consistently reveal a central cortico-striatal network that decoded the vocal acoustic pattern and deepfake-level (auditory cortex), as well as natural speaker identities (nucleus accumbens), which are valued for their social relevance. This network is embedded in a broader neural identity and object recognition network. Humans can thus be partly tricked by deepfakes, but the neurocognitive mechanisms identified during deepfake processing open windows for strengthening human resilience to fake information.


Assuntos
Percepção da Fala , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Percepção da Fala/fisiologia , Rede Nervosa/fisiologia , Córtex Auditivo/fisiologia , Voz/fisiologia , Corpo Estriado/fisiologia
2.
Proc Natl Acad Sci U S A ; 121(24): e2311570121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830095

RESUMO

Even a transient period of hearing loss during the developmental critical period can induce long-lasting deficits in temporal and spectral perception. These perceptual deficits correlate with speech perception in humans. In gerbils, these hearing loss-induced perceptual deficits are correlated with a reduction of both ionotropic GABAA and metabotropic GABAB receptor-mediated synaptic inhibition in auditory cortex, but most research on critical period plasticity has focused on GABAA receptors. Therefore, we developed viral vectors to express proteins that would upregulate gerbil postsynaptic inhibitory receptor subunits (GABAA, Gabra1; GABAB, Gabbr1b) in pyramidal neurons, and an enzyme that mediates GABA synthesis (GAD65) presynaptically in parvalbumin-expressing interneurons. A transient period of developmental hearing loss during the auditory critical period significantly impaired perceptual performance on two auditory tasks: amplitude modulation depth detection and spectral modulation depth detection. We then tested the capacity of each vector to restore perceptual performance on these auditory tasks. While both GABA receptor vectors increased the amplitude of cortical inhibitory postsynaptic potentials, only viral expression of postsynaptic GABAB receptors improved perceptual thresholds to control levels. Similarly, presynaptic GAD65 expression improved perceptual performance on spectral modulation detection. These findings suggest that recovering performance on auditory perceptual tasks depends on GABAB receptor-dependent transmission at the auditory cortex parvalbumin to pyramidal synapse and point to potential therapeutic targets for developmental sensory disorders.


Assuntos
Córtex Auditivo , Gerbillinae , Perda Auditiva , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Receptores de GABA-B/metabolismo , Receptores de GABA-B/genética , Glutamato Descarboxilase/metabolismo , Glutamato Descarboxilase/genética , Receptores de GABA-A/metabolismo , Receptores de GABA-A/genética , Parvalbuminas/metabolismo , Parvalbuminas/genética , Percepção Auditiva/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Vetores Genéticos/genética
3.
Cereb Cortex ; 34(13): 146-160, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696608

RESUMO

Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder. Valproic acid-exposed rats have fewer neurons in their auditory brainstem and thalamus, fewer calbindin-positive neurons, reduced ascending projections to the midbrain and thalamus, elevated thresholds, and delayed auditory brainstem responses. Additionally, in the auditory cortex, valproic acid exposure results in abnormal responses, decreased phase-locking, elevated thresholds, and abnormal tonotopic maps. We therefore hypothesized that in utero, valproic acid exposure would result in fewer neurons in auditory cortex, neuronal dysmorphology, fewer calbindin-positive neurons, and reduced connectivity. We approached this hypothesis using morphometric analyses, immunohistochemistry, and retrograde tract tracing. We found thinner cortical layers but no changes in the density of neurons, smaller pyramidal and non-pyramidal neurons in several regions, fewer neurons immunoreactive for calbindin-positive, and fewer cortical neurons projecting to the inferior colliculus. These results support the widespread impact of the auditory system in autism spectrum disorder and valproic acid-exposed animals and emphasize the utility of simple, noninvasive auditory screening for autism spectrum disorder.


Assuntos
Córtex Auditivo , Transtorno do Espectro Autista , Calbindinas , Modelos Animais de Doenças , Ácido Valproico , Animais , Transtorno do Espectro Autista/patologia , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/induzido quimicamente , Ácido Valproico/toxicidade , Feminino , Calbindinas/metabolismo , Córtex Auditivo/patologia , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Gravidez , Neurônios/patologia , Neurônios/metabolismo , Ratos , Masculino , Vias Auditivas/patologia , Vias Auditivas/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos Sprague-Dawley , Anticonvulsivantes
4.
J Neurodev Disord ; 16(1): 24, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720271

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children in the United States, based on a wide array of symptoms, including sensory dysfunction and abnormal language development. Boys are diagnosed ~ 3.8 times more frequently than girls. Auditory temporal processing is crucial for speech recognition and language development. Abnormal development of temporal processing may account for ASD language impairments. Sex differences in the development of temporal processing may underlie the differences in language outcomes in male and female children with ASD. To understand mechanisms of potential sex differences in temporal processing requires a preclinical model. However, there are no studies that have addressed sex differences in temporal processing across development in any animal model of ASD. METHODS: To fill this major gap, we compared the development of auditory temporal processing in male and female wildtype (WT) and Fmr1 knock-out (KO) mice, a model of Fragile X Syndrome (FXS), a leading genetic cause of ASD-associated behaviors. Using epidural screw electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at young (postnatal (p)21 and p30) and adult (p60) ages from both auditory and frontal cortices of awake, freely moving mice. RESULTS: The results show that ERP amplitudes were enhanced in both sexes of Fmr1 KO mice across development compared to WT counterparts, with greater enhancement in adult female than adult male KO mice. Gap-ASSR deficits were seen in the frontal, but not auditory, cortex in early development (p21) in female KO mice. Unlike male KO mice, female KO mice show WT-like temporal processing at p30. There were no temporal processing deficits in the adult mice of both sexes. CONCLUSIONS: These results show a sex difference in the developmental trajectories of temporal processing and hypersensitive responses in Fmr1 KO mice. Male KO mice show slower maturation of temporal processing than females. Female KO mice show stronger hypersensitive responses than males later in development. The differences in maturation rates of temporal processing and hypersensitive responses during various critical periods of development may lead to sex differences in language function, arousal and anxiety in FXS.


Assuntos
Modelos Animais de Doenças , Potenciais Evocados Auditivos , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Camundongos Knockout , Caracteres Sexuais , Animais , Síndrome do Cromossomo X Frágil/fisiopatologia , Feminino , Masculino , Camundongos , Potenciais Evocados Auditivos/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Percepção Auditiva/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Córtex Auditivo/fisiopatologia , Camundongos Endogâmicos C57BL
5.
Curr Biol ; 34(10): 2162-2174.e5, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38718798

RESUMO

Humans make use of small differences in the timing of sounds at the two ears-interaural time differences (ITDs)-to locate their sources. Despite extensive investigation, however, the neural representation of ITDs in the human brain is contentious, particularly the range of ITDs explicitly represented by dedicated neural detectors. Here, using magneto- and electro-encephalography (MEG and EEG), we demonstrate evidence of a sparse neural representation of ITDs in the human cortex. The magnitude of cortical activity to sounds presented via insert earphones oscillated as a function of increasing ITD-within and beyond auditory cortical regions-and listeners rated the perceptual quality of these sounds according to the same oscillating pattern. This pattern was accurately described by a population of model neurons with preferred ITDs constrained to the narrow, sound-frequency-dependent range evident in other mammalian species. When scaled for head size, the distribution of ITD detectors in the human cortex is remarkably like that recorded in vivo from the cortex of rhesus monkeys, another large primate that uses ITDs for source localization. The data solve a long-standing issue concerning the neural representation of ITDs in humans and suggest a representation that scales for head size and sound frequency in an optimal manner.


Assuntos
Córtex Auditivo , Sinais (Psicologia) , Localização de Som , Córtex Auditivo/fisiologia , Humanos , Masculino , Localização de Som/fisiologia , Animais , Feminino , Adulto , Eletroencefalografia , Macaca mulatta/fisiologia , Magnetoencefalografia , Estimulação Acústica , Adulto Jovem , Percepção Auditiva/fisiologia
6.
Hear Res ; 447: 109027, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723386

RESUMO

Despite that fact that the cochlear implant (CI) is one of the most successful neuro-prosthetic devices which allows hearing restoration, several aspects still need to be improved. Interactions between stimulating electrodes through current spread occurring within the cochlea drastically limit the number of discriminable frequency channels and thus can ultimately result in poor speech perception. One potential solution relies on the use of new pulse shapes, such as asymmetric pulses, which can potentially reduce the current spread within the cochlea. The present study characterized the impact of changing electrical pulse shapes from the standard biphasic symmetric to the asymmetrical shape by quantifying the evoked firing rate and the spatial activation in the guinea pig primary auditory cortex (A1). At a fixed charge, the firing rate and the spatial activation in A1 decreased by 15 to 25 % when asymmetric pulses were used to activate the auditory nerve fibers, suggesting a potential reduction of the spread of excitation inside the cochlea. A strong "polarity-order" effect was found as the reduction was more pronounced when the first phase of the pulse was cathodic with high amplitude. These results suggest that the use of asymmetrical pulse shapes in clinical settings can potentially reduce the channel interactions in CI users.


Assuntos
Córtex Auditivo , Implantes Cocleares , Estimulação Elétrica , Animais , Cobaias , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos , Nervo Coclear/fisiopatologia , Estimulação Acústica , Cóclea/cirurgia , Implante Coclear/instrumentação , Potenciais de Ação , Feminino
7.
Hear Res ; 447: 109023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733710

RESUMO

Limited auditory input, whether caused by hearing loss or by electrical stimulation through a cochlear implant (CI), can be compensated by the remaining senses. Specifically for CI users, previous studies reported not only improved visual skills, but also altered cortical processing of unisensory visual and auditory stimuli. However, in multisensory scenarios, it is still unclear how auditory deprivation (before implantation) and electrical hearing experience (after implantation) affect cortical audiovisual speech processing. Here, we present a prospective longitudinal electroencephalography (EEG) study which systematically examined the deprivation- and CI-induced alterations of cortical processing of audiovisual words by comparing event-related potentials (ERPs) in postlingually deafened CI users before and after implantation (five weeks and six months of CI use). A group of matched normal-hearing (NH) listeners served as controls. The participants performed a word-identification task with congruent and incongruent audiovisual words, focusing their attention on either the visual (lip movement) or the auditory speech signal. This allowed us to study the (top-down) attention effect on the (bottom-up) sensory cortical processing of audiovisual speech. When compared to the NH listeners, the CI candidates (before implantation) and the CI users (after implantation) exhibited enhanced lipreading abilities and an altered cortical response at the N1 latency range (90-150 ms) that was characterized by a decreased theta oscillation power (4-8 Hz) and a smaller amplitude in the auditory cortex. After implantation, however, the auditory-cortex response gradually increased and developed a stronger intra-modal connectivity. Nevertheless, task efficiency and activation in the visual cortex was significantly modulated in both groups by focusing attention on the visual as compared to the auditory speech signal, with the NH listeners additionally showing an attention-dependent decrease in beta oscillation power (13-30 Hz). In sum, these results suggest remarkable deprivation effects on audiovisual speech processing in the auditory cortex, which partially reverse after implantation. Although even experienced CI users still show distinct audiovisual speech processing compared to NH listeners, pronounced effects of (top-down) direction of attention on (bottom-up) audiovisual processing can be observed in both groups. However, NH listeners but not CI users appear to show enhanced allocation of cognitive resources in visually as compared to auditory attended audiovisual speech conditions, which supports our behavioural observations of poorer lipreading abilities and reduced visual influence on audition in NH listeners as compared to CI users.


Assuntos
Estimulação Acústica , Atenção , Implante Coclear , Implantes Cocleares , Surdez , Eletroencefalografia , Pessoas com Deficiência Auditiva , Estimulação Luminosa , Percepção da Fala , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Implante Coclear/instrumentação , Adulto , Estudos Prospectivos , Estudos Longitudinais , Pessoas com Deficiência Auditiva/psicologia , Pessoas com Deficiência Auditiva/reabilitação , Surdez/fisiopatologia , Surdez/reabilitação , Surdez/psicologia , Estudos de Casos e Controles , Idoso , Percepção Visual , Leitura Labial , Fatores de Tempo , Audição , Potenciais Evocados Auditivos , Córtex Auditivo/fisiopatologia , Potenciais Evocados
8.
Hear Res ; 447: 109025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733712

RESUMO

Cortical acetylcholine (ACh) release has been linked to various cognitive functions, including perceptual learning. We have previously shown that cortical cholinergic innervation is necessary for accurate sound localization in ferrets, as well as for their ability to adapt with training to altered spatial cues. To explore whether these behavioral deficits are associated with changes in the response properties of cortical neurons, we recorded neural activity in the primary auditory cortex (A1) of anesthetized ferrets in which cholinergic inputs had been reduced by making bilateral injections of the immunotoxin ME20.4-SAP in the nucleus basalis (NB) prior to training the animals. The pattern of spontaneous activity of A1 units recorded in the ferrets with cholinergic lesions (NB ACh-) was similar to that in controls, although the proportion of burst-type units was significantly lower. Depletion of ACh also resulted in more synchronous activity in A1. No changes in thresholds, frequency tuning or in the distribution of characteristic frequencies were found in these animals. When tested with normal acoustic inputs, the spatial sensitivity of A1 neurons in the NB ACh- ferrets and the distribution of their preferred interaural level differences also closely resembled those found in control animals, indicating that these properties had not been altered by sound localization training with one ear occluded. Simulating the animals' previous experience with a virtual earplug in one ear reduced the contralateral preference of A1 units in both groups, but caused azimuth sensitivity to change in slightly different ways, which may reflect the modest adaptation observed in the NB ACh- group. These results show that while ACh is required for behavioral adaptation to altered spatial cues, it is not required for maintenance of the spectral and spatial response properties of A1 neurons.


Assuntos
Estimulação Acústica , Córtex Auditivo , Prosencéfalo Basal , Furões , Animais , Córtex Auditivo/metabolismo , Córtex Auditivo/fisiopatologia , Prosencéfalo Basal/metabolismo , Localização de Som , Acetilcolina/metabolismo , Masculino , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Vias Auditivas/fisiopatologia , Vias Auditivas/metabolismo , Feminino , Imunotoxinas/toxicidade , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/fisiopatologia , Núcleo Basal de Meynert/patologia , Neurônios/metabolismo , Limiar Auditivo , Adaptação Fisiológica , Comportamento Animal
9.
Curr Biol ; 34(10): 2200-2211.e6, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38733991

RESUMO

The activity of neurons in sensory areas sometimes covaries with upcoming choices in decision-making tasks. However, the prevalence, causal origin, and functional role of choice-related activity remain controversial. Understanding the circuit-logic of decision signals in sensory areas will require understanding their laminar specificity, but simultaneous recordings of neural activity across the cortical layers in forced-choice discrimination tasks have not yet been performed. Here, we describe neural activity from such recordings in the auditory cortex of mice during a frequency discrimination task with delayed report, which, as we show, requires the auditory cortex. Stimulus-related information was widely distributed across layers but disappeared very quickly after stimulus offset. Choice selectivity emerged toward the end of the delay period-suggesting a top-down origin-but only in the deep layers. Early stimulus-selective and late choice-selective deep neural ensembles were correlated, suggesting that the choice-selective signal fed back to the auditory cortex is not just action specific but develops as a consequence of the sensory-motor contingency imposed by the task.


Assuntos
Córtex Auditivo , Comportamento de Escolha , Animais , Córtex Auditivo/fisiologia , Camundongos , Comportamento de Escolha/fisiologia , Estimulação Acústica , Camundongos Endogâmicos C57BL , Percepção Auditiva/fisiologia , Masculino , Neurônios/fisiologia
10.
Nat Commun ; 15(1): 4071, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778078

RESUMO

Adaptive behavior requires integrating prior knowledge of action outcomes and sensory evidence for making decisions while maintaining prior knowledge for future actions. As outcome- and sensory-based decisions are often tested separately, it is unclear how these processes are integrated in the brain. In a tone frequency discrimination task with two sound durations and asymmetric reward blocks, we found that neurons in the medial prefrontal cortex of male mice represented the additive combination of prior reward expectations and choices. The sensory inputs and choices were selectively decoded from the auditory cortex irrespective of reward priors and the secondary motor cortex, respectively, suggesting localized computations of task variables are required within single trials. In contrast, all the recorded regions represented prior values that needed to be maintained across trials. We propose localized and global computations of task variables in different time scales in the cerebral cortex.


Assuntos
Córtex Auditivo , Comportamento de Escolha , Recompensa , Animais , Masculino , Comportamento de Escolha/fisiologia , Camundongos , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Camundongos Endogâmicos C57BL , Córtex Cerebral/fisiologia , Córtex Motor/fisiologia , Percepção Auditiva/fisiologia
11.
Hear Res ; 449: 109032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797035

RESUMO

Neurons within a neuronal network can be grouped by bottom-up and top-down influences using synchrony in neuronal oscillations. This creates the representation of perceptual objects from sensory features. Oscillatory activity can be differentiated into stimulus-phase-locked (evoked) and non-phase-locked (induced). The former is mainly determined by sensory input, the latter by higher-level (cortical) processing. Effects of auditory deprivation on cortical oscillations have been studied in congenitally deaf cats (CDCs) using cochlear implant (CI) stimulation. CI-induced alpha, beta, and gamma activity were compromised in the auditory cortex of CDCs. Furthermore, top-down information flow between secondary and primary auditory areas in hearing cats, conveyed by induced alpha oscillations, was lost in CDCs. Here we used the matching pursuit algorithm to assess components of such oscillatory activity in local field potentials recorded in primary field A1. Additionally to the loss of induced alpha oscillations, we also found a loss of evoked theta activity in CDCs. The loss of theta and alpha activity in CDCs can be directly related to reduced high-frequency (gamma-band) activity due to cross-frequency coupling. Here we quantified such cross-frequency coupling in adult 1) hearing-experienced, acoustically stimulated cats (aHCs), 2) hearing-experienced cats following acute pharmacological deafening and subsequent CIs, thus in electrically stimulated cats (eHCs), and 3) electrically stimulated CDCs. We found significant cross-frequency coupling in all animal groups in > 70% of auditory-responsive sites. The predominant coupling in aHCs and eHCs was between theta/alpha phase and gamma power. In CDCs such coupling was lost and replaced by alpha oscillations coupling to delta/theta phase. Thus, alpha/theta oscillations synchronize high-frequency gamma activity only in hearing-experienced cats. The absence of induced alpha and theta oscillations contributes to the loss of induced gamma power in CDCs, thereby signifying impaired local network activity.


Assuntos
Estimulação Acústica , Córtex Auditivo , Surdez , Ritmo Gama , Animais , Gatos , Córtex Auditivo/fisiopatologia , Surdez/fisiopatologia , Surdez/congênito , Implantes Cocleares , Ritmo alfa , Potenciais Evocados Auditivos , Algoritmos , Vias Auditivas/fisiopatologia , Modelos Animais de Doenças , Ritmo Teta
12.
Nat Commun ; 15(1): 4313, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773109

RESUMO

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.


Assuntos
Córtex Auditivo , Percepção Auditiva , Magnetoencefalografia , Humanos , Masculino , Feminino , Adulto , Percepção Auditiva/fisiologia , Adulto Jovem , Córtex Auditivo/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Mapeamento Encefálico , Música , Giro do Cíngulo/fisiologia , Memória/fisiologia , Hipocampo/fisiologia , Reconhecimento Psicológico/fisiologia
13.
J Integr Neurosci ; 23(5): 93, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38812381

RESUMO

BACKGROUND: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG. METHODS: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured. RESULTS: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed. CONCLUSIONS: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.


Assuntos
Córtex Auditivo , Eletroencefalografia , Potenciais Evocados Auditivos , Magnetoencefalografia , Humanos , Magnetoencefalografia/instrumentação , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Adulto , Masculino
14.
Nat Commun ; 15(1): 3941, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729937

RESUMO

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Assuntos
Estimulação Acústica , Córtex Auditivo , Callithrix , Eletrocorticografia , Animais , Córtex Auditivo/fisiologia , Callithrix/fisiologia , Masculino , Feminino , Potenciais Evocados/fisiologia , Lobo Frontal/fisiologia , Potenciais Evocados Auditivos/fisiologia , Percepção Auditiva/fisiologia , Mapeamento Encefálico/métodos
15.
Clin Neurophysiol ; 163: 102-111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729074

RESUMO

OBJECTIVE: We investigated the role of transverse temporal gyrus and adjacent cortex (TTG+) in facial expressions and perioral movements. METHODS: In 31 patients undergoing stereo-electroencephalography monitoring, we describe behavioral responses elicited by electrical stimulation within the TTG+. Task-induced high-gamma modulation (HGM), auditory evoked responses, and resting-state connectivity were used to investigate the cortical sites having different types of responses on electrical stimulation. RESULTS: Changes in facial expressions and perioral movements were elicited on electrical stimulation within TTG+ in 9 (29%) and 10 (32%) patients, respectively, in addition to the more common language responses (naming interruptions, auditory hallucinations, paraphasic errors). All functional sites showed auditory task induced HGM and evoked responses validating their location within the auditory cortex, however, motor sites showed lower peak amplitudes and longer peak latencies compared to language sites. Significant first-degree connections for motor sites included precentral, anterior cingulate, parahippocampal, and anterior insular gyri, whereas those for language sites included posterior superior temporal, posterior middle temporal, inferior frontal, supramarginal, and angular gyri. CONCLUSIONS: Multimodal data suggests that TTG+ may participate in auditory-motor integration. SIGNIFICANCE: TTG+ likely participates in facial expressions in response to emotional cues during an auditory discourse.


Assuntos
Córtex Auditivo , Emoções , Expressão Facial , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Córtex Auditivo/fisiologia , Emoções/fisiologia , Potenciais Evocados Auditivos/fisiologia , Eletroencefalografia , Idoso , Adulto Jovem , Estimulação Elétrica
16.
Hear Res ; 448: 109034, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781768

RESUMO

Older listeners have difficulty processing temporal cues that are important for word discrimination, and deficient processing may limit their ability to benefit from these cues. Here, we investigated aging effects on perception and neural representation of the consonant transition and the factors that contribute to successful perception. To further understand the neural mechanisms underlying the changes in processing from brainstem to cortex, we also examined the factors that contribute to exaggerated amplitudes in cortex. We enrolled 30 younger normal-hearing and 30 older normal-hearing participants who met the criteria of clinically normal hearing. Perceptual identification functions were obtained for the words BEAT and WHEAT on a 7-step continuum of consonant-transition duration. Auditory brainstem responses (ABRs) were recorded to click stimuli and frequency-following responses (FFRs) and cortical auditory-evoked potentials were recorded to the endpoints of the BEAT-WHEAT continuum. Perceptual performance for identification of BEAT vs. WHEAT did not differ between younger and older listeners. However, both subcortical and cortical measures of neural representation showed age group differences, such that FFR phase locking was lower but cortical amplitudes (P1 and N1) were higher in older compared to younger listeners. ABR Wave I amplitude and FFR phase locking, but not audiometric thresholds, predicted early cortical amplitudes. Phase locking to the transition region and early cortical peak amplitudes (P1) predicted performance on the perceptual identification function. Overall, results suggest that the neural representation of transition durations and cortical overcompensation may contribute to the ability to perceive transition duration contrasts. Cortical overcompensation appears to be a maladaptive response to decreased neural firing/synchrony.


Assuntos
Estimulação Acústica , Envelhecimento , Córtex Auditivo , Sinais (Psicologia) , Potenciais Evocados Auditivos do Tronco Encefálico , Percepção da Fala , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Envelhecimento/fisiologia , Envelhecimento/psicologia , Idoso , Percepção da Fala/fisiologia , Pessoa de Meia-Idade , Córtex Auditivo/fisiologia , Fatores Etários , Limiar Auditivo , Eletroencefalografia , Fatores de Tempo , Vias Auditivas/fisiologia , Potenciais Evocados Auditivos
17.
Cell Rep ; 43(5): 114172, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38703366

RESUMO

Changes in sound-evoked responses in the auditory cortex (ACtx) occur during learning, but how learning alters neural responses in different ACtx subregions and changes their interactions is unclear. To address these questions, we developed an automated training and widefield imaging system to longitudinally track the neural activity of all mouse ACtx subregions during a tone discrimination task. We find that responses in primary ACtx are highly informative of learned stimuli and behavioral outcomes throughout training. In contrast, representations of behavioral outcomes in the dorsal posterior auditory field, learned stimuli in the dorsal anterior auditory field, and inter-regional correlations between primary and higher-order areas are enhanced with training. Moreover, ACtx response changes vary between stimuli, and such differences display lag synchronization with the learning rate. These results indicate that learning alters functional connections between ACtx subregions, inducing region-specific modulations by propagating behavioral information from primary to higher-order areas.


Assuntos
Córtex Auditivo , Aprendizagem por Discriminação , Córtex Auditivo/fisiologia , Animais , Aprendizagem por Discriminação/fisiologia , Camundongos , Estimulação Acústica , Percepção Auditiva/fisiologia , Masculino , Feminino , Camundongos Endogâmicos C57BL , Potenciais Evocados Auditivos/fisiologia
18.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629796

RESUMO

Neuroimaging studies have shown that the neural representation of imagery is closely related to the perception modality; however, the undeniable different experiences between perception and imagery indicate that there are obvious neural mechanism differences between them, which cannot be explained by the simple theory that imagery is a form of weak perception. Considering the importance of functional integration of brain regions in neural activities, we conducted correlation analysis of neural activity in brain regions jointly activated by auditory imagery and perception, and then brain functional connectivity (FC) networks were obtained with a consistent structure. However, the connection values between the areas in the superior temporal gyrus and the right precentral cortex were significantly higher in auditory perception than in the imagery modality. In addition, the modality decoding based on FC patterns showed that the FC network of auditory imagery and perception can be significantly distinguishable. Subsequently, voxel-level FC analysis further verified the distribution regions of voxels with significant connectivity differences between the 2 modalities. This study complemented the correlation and difference between auditory imagery and perception in terms of brain information interaction, and it provided a new perspective for investigating the neural mechanisms of different modal information representations.


Assuntos
Córtex Auditivo , Mapeamento Encefálico , Mapeamento Encefálico/métodos , Imaginação , Encéfalo/diagnóstico por imagem , Percepção Auditiva , Córtex Cerebral , Imageamento por Ressonância Magnética/métodos , Córtex Auditivo/diagnóstico por imagem
19.
PLoS One ; 19(4): e0301514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564597

RESUMO

Evoked potential studies have shown that speech planning modulates auditory cortical responses. The phenomenon's functional relevance is unknown. We tested whether, during this time window of cortical auditory modulation, there is an effect on speakers' perceptual sensitivity for vowel formant discrimination. Participants made same/different judgments for pairs of stimuli consisting of a pre-recorded, self-produced vowel and a formant-shifted version of the same production. Stimuli were presented prior to a "go" signal for speaking, prior to passive listening, and during silent reading. The formant discrimination stimulus /uh/ was tested with a congruent productions list (words with /uh/) and an incongruent productions list (words without /uh/). Logistic curves were fitted to participants' responses, and the just-noticeable difference (JND) served as a measure of discrimination sensitivity. We found a statistically significant effect of condition (worst discrimination before speaking) without congruency effect. Post-hoc pairwise comparisons revealed that JND was significantly greater before speaking than during silent reading. Thus, formant discrimination sensitivity was reduced during speech planning regardless of the congruence between discrimination stimulus and predicted acoustic consequences of the planned speech movements. This finding may inform ongoing efforts to determine the functional relevance of the previously reported modulation of auditory processing during speech planning.


Assuntos
Córtex Auditivo , Percepção da Fala , Humanos , Fala/fisiologia , Percepção da Fala/fisiologia , Acústica , Movimento , Fonética , Acústica da Fala
20.
Nat Commun ; 15(1): 3093, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600118

RESUMO

Sensory-motor interactions in the auditory system play an important role in vocal self-monitoring and control. These result from top-down corollary discharges, relaying predictions about vocal timing and acoustics. Recent evidence suggests such signals may be two distinct processes, one suppressing neural activity during vocalization and another enhancing sensitivity to sensory feedback, rather than a single mechanism. Single-neuron recordings have been unable to disambiguate due to overlap of motor signals with sensory inputs. Here, we sought to disentangle these processes in marmoset auditory cortex during production of multi-phrased 'twitter' vocalizations. Temporal responses revealed two timescales of vocal suppression: temporally-precise phasic suppression during phrases and sustained tonic suppression. Both components were present within individual neurons, however, phasic suppression presented broadly regardless of frequency tuning (gating), while tonic was selective for vocal frequencies and feedback (prediction). This suggests that auditory cortex is modulated by concurrent corollary discharges during vocalization, with different computational mechanisms.


Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Neurônios/fisiologia , Retroalimentação Sensorial/fisiologia , Retroalimentação , Callithrix/fisiologia , Vocalização Animal/fisiologia , Percepção Auditiva/fisiologia , Estimulação Acústica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...