Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(5): 1350-1361, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960924

RESUMO

Comparative genomic sequence analysis has found that the genes for many chromatin-associated proteins are poorly conserved, but the biological consequences of these sequence changes are not understood. Here, we show that four genes identified for an Inappropriate Vulval cell Proliferation (ivp) phenotype in the nematode Caenorhabditis briggsae exhibit distinct functions and genetic interactions when compared with their orthologs in C. elegans. Specifically, we show that the four C. briggsae ivp genes encode the noncanonical histone HTZ-1/H2A.z and three nematode-specific proteins predicted to function in the nucleus. The mutants exhibit ectopic vulval precursor cell proliferation (the multivulva [Muv] phenotype) due to inappropriate expression of the lin-3/EGF gene, and RNAseq analysis suggests a broad role for these ivp genes in transcriptional repression. Importantly, although the C. briggsae phenotypes have parallels with those seen in the C. elegans synMuv system, except for the highly conserved HTZ-1/H2A.z, comparable mutations in C. elegans ivp orthologs do not exhibit synMuv gene interactions or phenotypes. These results demonstrate the evolutionary changes that can underlie conserved biological outputs and argue that proteins critical to repress inappropriate expression from the genome participate in a rapidly evolving functional landscape.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/metabolismo , Feminino , Histonas/metabolismo , Proteínas Nucleares/genética , Vulva/crescimento & desenvolvimento
2.
BMC Evol Biol ; 19(1): 74, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30866802

RESUMO

BACKGROUND: Variation in body size is thought to be a major driver of a wide variety of ecological and evolutionary patterns, including changes in development, reproduction, and longevity. Additionally, drastic changes in natural context often have profound effects on multiple fitness-related traits. Caenorhabditis inopinata is a recently-discovered fig-associated nematode that is unusually large relative to other members of the genus, including the closely related model system C. elegans. Here we test whether the dramatic increase in body size and shift in ecological context has led to correlated changes in key life history and developmental parameters within this species. RESULTS: Using four developmental milestones, C. inopinata was found to have a slower rate of development than C. elegans across a range of temperatures. Despite this, C. inopinata did not reveal any differences in adult lifespan from C. elegans after accounting for differences in developmental timing and reproductive mode. C. inopinata fecundity was generally lower than that of C. elegans, but fitness improved under continuous-mating, consistent with sperm-limitation under gonochoristic (male/female) reproduction. C. inopinata also revealed greater fecundity and viability at higher temperatures. CONCLUSION: Consistent with observations in other ectotherms, slower growth in C. inopinata indicates a potential trade-off between body size and developmental timing, whereas its unchanged lifespan suggests that longevity is largely uncoupled from its increase in body size. Additionally, temperature-dependent patterns of fitness in C. inopinata are consistent with its geographic origins in subtropical Okinawa. Overall, these results underscore the extent to which changes in ecological context and body size can shape life history traits.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis/crescimento & desenvolvimento , Longevidade/fisiologia , Animais , Tamanho Corporal , Caenorhabditis/anatomia & histologia , Caenorhabditis elegans/genética , Feminino , Temperatura Alta , Masculino , Modelos Biológicos , Fases de Leitura Aberta/genética , Fenótipo , Espermatozoides/metabolismo
3.
Dev Genes Evol ; 227(3): 213-218, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28220250

RESUMO

Normal vulval development in the nematode Caenorhabditis briggsae is identical to that in the related Caenorhabditis elegans. However, several experiments suggest that there are differences between the two species with respect to the contribution of EGF/Ras signaling. To investigate these differences genetically, we have characterized a C. briggsae mutant strain that phenocopies the effect observed when C. briggsae animals are treated with U0126, an inhibitor of the EGF pathway component MEK. We identify that the gene affected in the mutant strain is Cbr-sur-2, which encodes a MED23 mediator complex protein that acts downstream of EGF signaling in C. elegans and other organisms, such as mammals. When Cbr-sur-2 and Cel-sur-2 mutants are compared, we find that the production of additional vulval cells from P5.p and P7.p in C. elegans is dependent on proper development of P6.p, while C. briggsae does not have a similar requirement. Combined chemical and genetic interference with the EGF pathway completely eliminates vulval development in C. elegans but not in C. briggsae. Our results provide genetic evidence for the differing requirements for EGF signaling in the two species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis/classificação , Fator de Crescimento Epidérmico/metabolismo , Feminino , Transdução de Sinais , Vulva/crescimento & desenvolvimento
4.
Evolution ; 70(2): 342-57, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26787139

RESUMO

The evolution of learning can be constrained by trade-offs. As male and female life histories often diverge, the relationship between learning and fitness may differ between the sexes. However, because sexes share much of their genome, intersexual genetic correlations can prevent males and females from reaching their sex-specific optima resulting in intralocus sexual conflict (IaSC). To investigate if IaSC constraints sex-specific evolution of learning, we selected Caenorhabditis remanei nematode females for increased or decreased olfactory learning performance and measured learning, life span (in mated and virgin worms), reproduction, and locomotory activity in both sexes. Males from downward-selected female lines had higher locomotory activity and longer virgin life span but sired fewer progeny than males from upward-selected female lines. In contrast, we found no effect of selection on female reproduction and downward-selected females showed higher locomotory activity but lived shorter as virgins than upward-selected females. Strikingly, selection on learning performance led to the reversal of sexual dimorphism in virgin life span. We thus show sex-specific trade-offs between learning, reproduction, and life span. Our results support the hypothesis that selection on learning performance can shape the evolution of sexually dimorphic life histories via sex-specific genetic correlations.


Assuntos
Evolução Molecular , Aprendizagem , Seleção Genética , Caracteres Sexuais , Animais , Caenorhabditis/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/fisiologia , Feminino , Locomoção , Longevidade , Masculino , Percepção Olfatória , Reprodução
5.
J Gerontol A Biol Sci Med Sci ; 71(7): 882-90, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26472877

RESUMO

Rapamycin inhibits the nutrient-sensing TOR pathway and extends life span in a wide range of organisms. Although life-span extension usually differs between the sexes, the reason for this is poorly understood. Because TOR influences growth, rapamycin likely affects life-history traits such as growth and reproduction. Sexes have different life-history strategies, and theory predicts that they will resolve the tradeoffs between growth, reproduction, and life span differently. Specifically, in taxa with female-biased sexual size dimorphism, reduced growth may have smaller effects on male fitness. We investigated the effects of juvenile, adult, or life-long rapamycin treatment on growth, reproduction, life span, and individual fitness in the outcrossing nematode Caenorhabditis remanei Life-long exposure to rapamycin always resulted in the strongest response, whereas postreproductive exposure did not affect life span. Although rapamycin resulted in longer life span and smaller size in males, male individual fitness was not affected. In contrast, size and fitness were negatively affected in females, whereas life span was only extended under high rapamycin concentrations. Our results support the hypothesis that rapamycin affects key life-history traits in a sex-specific manner. We argue that the fitness cost of life-span extension will be sex specific and propose that the smaller sex generally pay less while enjoying stronger life-span increase.


Assuntos
Envelhecimento , Caenorhabditis , Longevidade , Desenvolvimento Sexual/efeitos dos fármacos , Sirolimo/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Evolução Biológica , Caenorhabditis/efeitos dos fármacos , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/fisiologia , Imunossupressores/farmacologia , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Fatores Sexuais
6.
Evol Dev ; 17(6): 380-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26492828

RESUMO

Thermal developmental plasticity represents a key organismal adaptation to maintain reproductive capacity in contrasting and fluctuating temperature niches. Although extensively studied, research on thermal plasticity has mainly focused on phenotypic outcomes, such as adult life history, rather than directly measuring plasticity of underlying developmental processes. How thermal plasticity of developmental phenotypes maps into plasticity of resulting final phenotypes, and how such mapping relationships evolve, thus remain poorly understood. Here we address these questions by quantifying thermal plasticity of Caenorhabditis hermaphrodite germline development. We integrate measurements of germline development and fertility at the upper thermal range in isolates of C. briggsae, C. elegans, and C. tropicalis. First, we compare intra- and interspecific variation in thermal germline plasticity with plasticity in reproductive output. Second, we ask whether the developmental errors leading to fertility break-down at upper thermal limits are evolutionarily conserved. We find that temperature variation modulates spermatogenesis, oogenesis and germ cell progenitor pools, yet the thermal sensitivity of these processes varies among isolates and species, consistent with evolutionary variation in upper thermal limits of hermaphrodite fertility. Although defective sperm function is a major contributor to heat-induced fertility break-down, high temperature also significantly perturbs oogenesis, germline integrity, and mitosis-meiosis progression. Remarkably, the occurrence and frequency of specific errors are strongly species- and genotype-dependent, indicative of evolutionary divergence in thermal sensitivity of distinct processes in germline development. Therefore, the Caenorhabditis reproductive system displays complex genotype-by-temperature interactions at the developmental level, which may remain masked when studying thermal plasticity exclusively at the life history level.


Assuntos
Caenorhabditis/fisiologia , Fertilidade , Oogênese , Espermatogênese , Animais , Caenorhabditis/embriologia , Caenorhabditis/crescimento & desenvolvimento , Células Germinativas/crescimento & desenvolvimento , Organismos Hermafroditas/crescimento & desenvolvimento , Organismos Hermafroditas/fisiologia , Temperatura
7.
Evolution ; 69(8): 2005-17, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26102479

RESUMO

Deciphering the genetic and developmental causes of the disproportionate rarity, inviability, and sterility of hybrid males, Haldane's rule, is important for understanding the evolution of reproductive isolation between species. Moreover, extrinsic and prezygotic factors can contribute to the magnitude of intrinsic isolation experienced between species with partial reproductive compatibility. Here, we use the nematodes Caenorhabditis briggsae and C. nigoni to quantify the sensitivity of hybrid male viability to extrinsic temperature and developmental timing, and test for a role of mito-nuclear incompatibility as a genetic cause. We demonstrate that hybrid male inviability manifests almost entirely as embryonic, not larval, arrest and is maximal at the lowest rearing temperatures, indicating an intrinsic-by-extrinsic interaction to hybrid inviability. Crosses using mitochondrial substitution strains that have reciprocally introgressed mitochondrial and nuclear genomes show that mito-nuclear incompatibility is not a dominant contributor to postzygotic isolation and does not drive Haldane's rule in this system. Crosses also reveal that competitive superiority of X-bearing sperm provides a novel means by which postmating prezygotic factors exacerbate the rarity of hybrid males. These findings highlight the important roles of gametic, developmental, and extrinsic factors in modulating the manifestation of Haldane's rule.


Assuntos
Caenorhabditis/embriologia , Caenorhabditis/genética , Hibridização Genética , Isolamento Reprodutivo , Animais , Caenorhabditis/crescimento & desenvolvimento , Núcleo Celular/genética , Embrião não Mamífero , Infertilidade/genética , Masculino , Mitocôndrias/genética , Cromossomos Sexuais , Espermatozoides/fisiologia , Temperatura
8.
Elife ; 42015 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25822066

RESUMO

The roundworm Caenorhabditis elegans has risen to the status of a top model organism for biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of C. elegans, we establish a broader context and improved tools for studying its biology.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Ecossistema , Estágios do Ciclo de Vida , Animais , Caenorhabditis/classificação , Caenorhabditis/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Feminino , Humanos , Masculino , Filogenia , Dinâmica Populacional
9.
Nat Commun ; 5: 5888, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25523309

RESUMO

Self-fertility evolved independently in three species of Caenorhabditis, yet the underlying genetic changes remain unclear. This transition required that XX animals acquire the ability to produce sperm and then signal those sperm to activate and fertilise oocytes. Here, we show that all genes that regulate sperm activation in C. elegans are conserved throughout the genus, even in male/female species. By using gene editing, we show that C. elegans and C. briggsae hermaphrodites use the SPE-8 tyrosine kinase pathway to activate sperm, whereas C. tropicalis hermaphrodites use a TRY-5 serine protease pathway. Finally, our analysis of double mutants shows that these pathways were redundant in ancestral males. Thus, newly evolving hermaphrodites became self-fertile by co-opting either of the two redundant male programs. The existence of these alternatives helps explain the frequent origin of self-fertility in nematode lineages. This work also demonstrates that the new genome-editing techniques allow unprecedented power and precision in evolutionary studies.


Assuntos
Evolução Biológica , Caenorhabditis elegans/genética , Espermatozoides/crescimento & desenvolvimento , Animais , Caenorhabditis/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Fertilidade , Masculino , Dados de Sequência Molecular , Espermatozoides/metabolismo
10.
Evol Dev ; 16(5): 278-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25143152

RESUMO

Understanding the robustness of developmental systems requires insights into the sensitivity of underlying molecular and cellular parameters to perturbations, and how such sensitivity evolves. We address these issues using vulval cell fate determination--a reproducible and robust patterning process regulated by a cross-talk of EGF-Ras-MAPK and Delta-Notch pathways. Although the final vulval cell fate pattern is identical in all Caenorhabditis species, the patterning process underlies extensive cryptic genetic variation between and within species. Here, we tested whether this cryptic genetic variation translates into variation in developmental sensitivity to environmental perturbations. We disrupted vulval patterning using thermal perturbations to quantify and compare environmental sensitivity of different system parameters between distinct genotypes of C. elegans and C. briggsae. Thermal perturbations globally debuffered vulval development, triggering diverse pattering variants, whose frequency and spectra were strongly species- and genotype-dependent. This condition-dependent variation indicates that environmental sensitivity of different system properties, such as vulval competence or vulval induction, is subject to evolutionary change. High temperature induced a genotype-specific decrease of secondary fate induction and corresponding Notch pathway activity in the C. elegans N2 strain; in contrast, hypoinduction of the primary cell fate was never observed. Vulval precursor cells therefore differ in temperature sensitivity and such cell-specific sensitivity shows evolutionary variation. We further compared spectra of temperature-induced vulval variants to the ones induced by mutation accumulation in the same genotypes. In response to either perturbation, we observed similar genotype-dependence of variant production, allowing identification of distinct system features most sensitive to both mutation and environment. Taken together, we show how sensitivity of system parameters regulating Caenorhabditis vulval development depends on subtle interactions between perturbations and genetic background. Our results imply that cryptic genetic variation may reflect evolutionary variation in developmental robustness, therefore potentially contributing to the maintenance of phenotypic precision when facing perturbations.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/genética , Animais , Padronização Corporal , Caenorhabditis/classificação , Feminino , Variação Genética , Temperatura , Vulva/citologia , Vulva/crescimento & desenvolvimento
12.
BMC Ecol ; 14: 4, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24502455

RESUMO

BACKGROUND: Although the nematode Caenorhabditis elegans is a major model organism in diverse biological areas and well studied under laboratory conditions, little is known about its ecology. Therefore, characterization of the species' natural habitats should provide a new perspective on its otherwise well-studied biology. The currently best characterized populations are in France, demonstrating that C. elegans prefers nutrient- and microorganism-rich substrates such as rotting fruits and decomposing plant matter. In order to extend these findings, we sampled C. elegans continuously across 1.5 years from rotting apples and compost heaps in three North German locations. RESULTS: C. elegans was found throughout summer and autumn in both years. It shares its habitat with the related nematode species C. remanei, which could thus represent an important competitor for a similar ecological niche. The two species were isolated from the same site, but rarely the same substrate sample. In fact, C. elegans was mainly found on compost and C. remanei on rotten apples, possibly suggesting niche separation. The occurrence of C. elegans itself was related to environmental humidity and rain, although the correlation was significant for only one sampling site each. Additional associations between nematode prevalence and abiotic parameters could not be established. CONCLUSIONS: Taken together, our findings vary from the previous results for French C. elegans populations in that the considered German populations always coexisted with the congeneric species C. remanei (rather than C. briggsae as in France) and that C. elegans prevalence can associate with humidity and rain (rather than temperature, as suggested for French populations). Consideration of additional locations and time points is thus essential for full appreciation of the nematode's natural ecology.


Assuntos
Caenorhabditis elegans/isolamento & purificação , Ecossistema , Animais , Biodiversidade , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/isolamento & purificação , Caenorhabditis elegans/crescimento & desenvolvimento , Frutas , Alemanha , Umidade , Malus , Dinâmica Populacional , Chuva , Estações do Ano , Solo
13.
J Exp Zool B Mol Dev Evol ; 322(3): 129-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24254995

RESUMO

Gene duplication and divergence has emerged as an important aspect of developmental evolution. The genomes of Caenorhabditis nematodes encode an ancient family of PUF RNA-binding proteins. Most have been implicated in germline development, and are often redundant with paralogs of the same sub-family. An exception is Cbr-puf-2 (one of three Caenorhabditis briggsae PUF-2 sub-family paralogs), which is required for development past the second larval stage. Here, we provide a detailed functional characterization of Cbr-puf-2. The larval arrest of Cbr-puf-2 mutant animals is caused by inefficient breakdown of bacterial food, which leads to starvation. Cbr-puf-2 is required for the normal grinding cycle of the muscular terminal bulb during early larval stages, and is transiently expressed in this tissue. In addition, rescue of larval arrest reveals that Cbr-puf-2 also promotes normal vulval development. It is expressed in the anchor cell (which induces vulval fate) and vulval muscles, but not in the vulva precursor cells (VPCs) themselves. This contrasts with the VPC-autonomous repression of vulval development described for the Caenorhabditis elegans homologs fbf-1/2. These different roles for PUF proteins occur even as the vulva and pharynx maintain highly conserved anatomies across Caenorhabditis, indicating pervasive developmental system drift (DSD). Because Cbr-PUF-2 shares RNA-binding specificity with its paralogs and with C. elegans FBF, we suggest that functional novelty of RNA-binding proteins evolves through changes in the site of their expression, perhaps in concert with cis-regulatory evolution in target mRNAs.


Assuntos
Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/genética , Proteínas de Helminto/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Evolução Biológica , Feminino , Larva/crescimento & desenvolvimento , Desenvolvimento Muscular/fisiologia , Mutação , Faringe/crescimento & desenvolvimento , Faringe/fisiopatologia , Vulva/crescimento & desenvolvimento , Vulva/fisiopatologia
14.
BMC Biol ; 10: 57, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22731915

RESUMO

Caenorhabditis elegans is a preeminent model organism, but the natural ecology of this nematode has been elusive. A four-year survey of French orchards published in BMC Biology reveals thriving populations of C. elegans (and Caenorhabditis briggsae) in rotting fruit and plant stems. Rather than being simply a 'soil nematode', C. elegans appears to be a 'plant-rot nematode'. These studies signal a growing interest in the integrated genomics and ecology of these tractable animals.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis/crescimento & desenvolvimento , Ecossistema , Animais , Feminino , Humanos , Masculino
15.
BMC Biol ; 10: 59, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22731941

RESUMO

BACKGROUND: The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. RESULTS: C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems) in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000) contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. CONCLUSIONS: C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis/crescimento & desenvolvimento , Ecossistema , Animais , Caenorhabditis/microbiologia , Caenorhabditis elegans/microbiologia , Sistema Digestório/anatomia & histologia , Feminino , Alimentos , França , Frutas/parasitologia , Geografia , Humanos , Laboratórios , Estágios do Ciclo de Vida , Masculino , Caules de Planta/parasitologia , Dinâmica Populacional , Reprodução , Temperatura , Fatores de Tempo
16.
Exp Gerontol ; 47(5): 388-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22426108

RESUMO

The nematode dauer larva (DL) is a non-aging diapause stage. The DL of the model nematode Caenorhabditis elegans has been studied as a model system for aging and longevity. However, information on DL in other nematode species is limited. In this study, the survivorship, storage, energy consumption, and oxidative stress tolerance of Caenorhabditis japonica DL were examined. C. japonica is a close relative of C. elegans, but has species-specific phoretic associations with the shield bug Parastrachia japonensis. Also, its DL has a much longer lifespan than C. elegans in a biological setting. However, when C. japonica DLs were detached from their phoretic host, they did not survive more than 10 days while more than 80% of C. elegans survived under the same conditions. Also, C. japonica DL showed more active movement (swimming) and lower tolerance to oxidative stress than C. elegans DL. Because the concentration of triacylglycerol (TAG), the energy source of nematodes, did not decrease significantly during the experiment, exhaustion of the energy reservoir did not cause the low survivorship of C. japonica. Instead, low tolerance to oxidizing stress and increased production of reactive oxygen species in C. japonica were the main causes of the reduced survivorship. The fact that C. japonica DL cannot survive away from its insect host indicates that its longevity is increased by unknown factors derived from the host. Despite these significant differences between C. japonica and C. elegans, these two species are phylogenetically closely related (they are derived from a common ancestor). Therefore, C. japonica could be a good comparative system for C. elegans, and further physiological and molecular analyses of C. japonica DL may provide important information about the internal and external factors affecting the longevity of nematodes in general.


Assuntos
Envelhecimento/fisiologia , Caenorhabditis/fisiologia , Modelos Animais , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Larva/fisiologia , Estágios do Ciclo de Vida/fisiologia , Longevidade/fisiologia , Estresse Oxidativo/fisiologia , Carbonilação Proteica/fisiologia , Solo/parasitologia , Especificidade da Espécie , Análise de Sobrevida , Natação/fisiologia , Triglicerídeos/sangue
17.
Curr Biol ; 21(16): 1416-20, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21835620

RESUMO

Self-fertile hermaphrodites have evolved independently several times in the genus Caenorhabditis [1, 2]. These XX hermaphrodites make smaller sperm than males [3, 4], which they use to fertilize their own oocytes. Because larger sperm outcompete smaller sperm in nematodes [3-5], it had been assumed that this dimorphism evolved in response to sperm competition. However, we show that it was instead caused by a developmental bias. When we transformed females of the species Caenorhabditis remanei into hermaphrodites [6], their sperm were significantly smaller than those of males. Because this species never makes hermaphrodites in the wild, this dimorphism cannot be due to selection. Instead, analyses of the related nematode Caenorhabditis elegans suggest that this dimorphism might reflect the development of sperm within the distinct physiological environment of the hermaphrodite gonad. These results reveal a new mechanism for some types of developmental bias-the effects of a novel physical location alter the development of ectopic cells in predictable ways.


Assuntos
Caenorhabditis/citologia , Caenorhabditis/crescimento & desenvolvimento , Transtornos do Desenvolvimento Sexual , Caracteres Sexuais , Espermatozoides/ultraestrutura , Animais , Evolução Biológica , Caenorhabditis/classificação , Feminino , Larva/anatomia & histologia , Larva/fisiologia , Masculino , Filogenia , Interferência de RNA , Processos de Determinação Sexual , Espermatozoides/fisiologia
18.
PLoS Genet ; 7(7): e1002174, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21779179

RESUMO

The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.


Assuntos
Caenorhabditis/genética , Evolução Molecular , Endogamia , Recombinação Genética/genética , Animais , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis elegans/genética , Mapeamento Cromossômico , Cromossomos/genética , Cruzamentos Genéticos , Bases de Dados Genéticas , Feminino , Rearranjo Gênico/genética , Variação Genética , Genoma/genética , Genótipo , Desequilíbrio de Ligação/genética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Especificidade da Espécie , Sintenia/genética
20.
PLoS Genet ; 6(3): e1000877, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20300655

RESUMO

Genetic and developmental architecture may bias the mutationally available phenotypic spectrum. Although such asymmetries in the introduction of variation may influence possible evolutionary trajectories, we lack quantitative characterization of biases in mutationally inducible phenotypic variation, their genotype-dependence, and their underlying molecular and developmental causes. Here we quantify the mutationally accessible phenotypic spectrum of the vulval developmental system using mutation accumulation (MA) lines derived from four wild isolates of the nematodes Caenorhabditis elegans and C. briggsae. The results confirm that on average, spontaneous mutations degrade developmental precision, with MA lines showing a low, yet consistently increased, proportion of developmental defects and variants. This result indicates strong purifying selection acting to maintain an invariant vulval phenotype. Both developmental system and genotype significantly bias the spectrum of mutationally inducible phenotypic variants. First, irrespective of genotype, there is a developmental bias, such that certain phenotypic variants are commonly induced by MA, while others are very rarely or never induced. Second, we found that both the degree and spectrum of mutationally accessible phenotypic variation are genotype-dependent. Overall, C. briggsae MA lines exhibited a two-fold higher decline in precision than the C. elegans MA lines. Moreover, the propensity to generate specific developmental variants depended on the genetic background. We show that such genotype-specific developmental biases are likely due to cryptic quantitative variation in activities of underlying molecular cascades. This analysis allowed us to identify the mutationally most sensitive elements of the vulval developmental system, which may indicate axes of potential evolutionary variation. Consistent with this scenario, we found that evolutionary trends in the vulval system concern the phenotypic characters that are most easily affected by mutation. This study provides an empirical assessment of developmental bias and the evolution of mutationally accessible phenotypes and supports the notion that such bias may influence the directions of evolutionary change.


Assuntos
Evolução Biológica , Caenorhabditis/crescimento & desenvolvimento , Caenorhabditis/genética , Mutação/genética , Vulva/crescimento & desenvolvimento , Animais , Viés , Caenorhabditis/citologia , Caenorhabditis/isolamento & purificação , Linhagem da Célula , Feminino , Variação Genética , Genótipo , Fenótipo , Transdução de Sinais , Vulva/citologia , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...