Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 646(1-3): 12-21, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20713040

RESUMO

Calsequestrin (CASQ) is a major Ca(2+) storage protein within the sarcoplasmic reticulum (SR) of both cardiac and skeletal muscles. CASQ reportedly acts as a Ca(2+) buffer and Ca(2+)-channel regulator through its unique Ca(2+)-dependent oligomerization, maintaining the free Ca(2+) concentration at a low level (0.5-1mM) and the stability of SR Ca(2+) releases. Our approach, employing isothermal titration calorimetry and light scattering in parallel, has provided valuable information about the affinity of human cardiac CASQ (hCASQ2) for a variety of drugs, which have been associated with heart- or muscle-related side effects. Those strongly binding drugs included phenothiazines, anthracyclines and Ca(2+) channel blockers, such as trifluoperazine, thioridazine, doxorubicin, daunorubicin, amlodipine and verapamil, having an average affinity of ~18 µM. They exhibit an inhibitory effect on in vitro Ca(2+)-dependent polymerization of hCASQ2 in a manner proportional to their binding affinity. Therefore accumulation of such drugs in the SR could significantly hinder the Ca(2+)-buffering capacity of the SR and/or the regulation of the Ca(2+) channel, RyR2. These effects could result in serious cardiac problems in people who have genetically impaired hCASQ2, defects in other E-C coupling components or problems with metabolism and clearance of those drugs.


Assuntos
Calsequestrina/efeitos adversos , Calsequestrina/metabolismo , Miocárdio/metabolismo , Preparações Farmacêuticas/metabolismo , Cálcio , Calorimetria , Calsequestrina/química , Humanos , Miocárdio/citologia , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...