Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34619367

RESUMO

Eicosapentaenoic acid (EPA) ethyl esters are of interest given their clinical approval for lowering circulating triglycerides and cardiometabolic disease risk. EPA ethyl esters prevent metabolic complications driven by a high fat diet in male mice; however, their impact on female mice is less studied. Herein, we first investigated how EPA influences the metabolic profile of female C57BL/6J mice consuming a high fat diet. EPA lowered murine fat mass accumulation, potentially through increased biosynthesis of 8-hydroxyeicosapentaenoic acid (HEPE), as revealed by mass spectrometry and cell culture studies. EPA also reversed the effects of a high fat diet on circulating levels of insulin, glucose, and select inflammatory/metabolic markers. Next, we studied if the improved metabolic profile of obese mice consuming EPA was associated with a reduction in the abundance of key gut Gram-negative bacteria that contribute toward impaired glucose metabolism. Using fecal 16S-ribosomal RNA gene sequencing, we found EPA restructured the gut microbiota in a time-dependent manner but did not lower the levels of key Gram-negative bacteria. Interestingly, EPA robustly increased the abundance of the Gram-negative Akkermansia muciniphila, which controls glucose homeostasis. Finally, predictive functional profiling of microbial communities revealed EPA-mediated reversal of high fat diet-associated changes in a wide range of genes related to pathways such as Th-17 cell differentiation and PI3K-Akt signaling. Collectively, these results show that EPA ethyl esters prevent some of the deleterious effects of a high fat diet in female mice, which may be mediated mechanistically through 8-HEPE and the upregulation of intestinal Akkermansia muciniphila.


Assuntos
Ácido Eicosapentaenoico/farmacologia , Microbioma Gastrointestinal/genética , Ácidos Hidroxieicosatetraenoicos/biossíntese , Akkermansia/genética , Akkermansia/crescimento & desenvolvimento , Animais , Fatores de Risco Cardiometabólico , Diferenciação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Ácido Eicosapentaenoico/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glucose/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Masculino , Espectrometria de Massas , Camundongos , Camundongos Obesos/genética , Camundongos Obesos/microbiologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Ribossômico 16S/genética , Caracteres Sexuais , Células Th17/metabolismo , Triglicerídeos/sangue
2.
Artigo em Inglês | MEDLINE | ID: mdl-34606993

RESUMO

BACKGROUND: Obesity and type 2 diabetes are two interrelated metabolic disorders characterized by insulin resistance and a mild chronic inflammatory state. We previously observed that leptin (ob/ob) and leptin receptor (db/db) knockout mice display a distinct inflammatory tone in the liver and adipose tissue. The present study aimed at investigating whether alterations in these tissues of the molecules belonging to the endocannabinoidome (eCBome), an extension of the endocannabinoid (eCB) signaling system, whose functions are important in the context of metabolic disorders and inflammation, could reflect their different inflammatory phenotypes. RESULTS: The basal eCBome lipid and gene expression profiles, measured by targeted lipidomics and qPCR transcriptomics, respectively, in the liver and subcutaneous or visceral adipose tissues, highlighted a differentially altered eCBome tone, which may explain the impaired hepatic function and more pronounced liver inflammation remarked in the ob/ob mice, as well as the more pronounced inflammatory state observed in the subcutaneous adipose tissue of db/db mice. In particular, the levels of linoleic acid-derived endocannabinoid-like molecules, of one of their 12-lipoxygenase metabolites and of Trpv2 expression, were always altered in tissues exhibiting the highest inflammation. Correlation studies suggested the possible interactions with some gut microbiota bacterial taxa, whose respective absolute abundances were significantly different between ob/ob and the db/db mice. CONCLUSIONS: The present findings emphasize the possibility that bioactive lipids and the respective receptors and enzymes belonging to the eCBome may sustain the tissue-dependent inflammatory state that characterizes obesity and diabetes, possibly in relation with gut microbiome alterations.


Assuntos
Canais de Cálcio/genética , Diabetes Mellitus Tipo 2/genética , Leptina/genética , Obesidade/genética , Receptores para Leptina/genética , Canais de Cátion TRPV/genética , Tecido Adiposo/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Endocanabinoides/genética , Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos NOD/genética , Camundongos Endogâmicos NOD/microbiologia , Camundongos Obesos/genética , Camundongos Obesos/microbiologia , Obesidade/metabolismo , Obesidade/patologia , Transcriptoma/genética
3.
FASEB J ; 35(7): e21734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143451

RESUMO

Impaired glucose homeostasis in obesity is mitigated by enhancing the glucoregulatory actions of glucagon-like peptide 1 (GLP-1), and thus, strategies that improve GLP-1 sensitivity and secretion have therapeutic potential for the treatment of type 2 diabetes. This study shows that Holdemanella biformis, isolated from the feces of a metabolically healthy volunteer, ameliorates hyperglycemia, improves oral glucose tolerance and restores gluconeogenesis and insulin signaling in the liver of obese mice. These effects were associated with the ability of H. biformis to restore GLP-1 levels, enhancing GLP-1 neural signaling in the proximal and distal small intestine and GLP-1 sensitivity of vagal sensory neurons, and to modify the cecal abundance of unsaturated fatty acids and the bacterial species associated with metabolic health. Our findings overall suggest the potential use of H biformis in the management of type 2 diabetes in obesity to optimize the sensitivity and function of the GLP-1 system, through direct and indirect mechanisms.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Firmicutes/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Camundongos Obesos/metabolismo , Camundongos Obesos/microbiologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Gluconeogênese/fisiologia , Glucose/metabolismo , Teste de Tolerância a Glucose/métodos , Hiperglicemia/metabolismo , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia
4.
Cell Metab ; 22(5): 886-94, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26387866

RESUMO

The effect of metabolic stress on the bone marrow microenvironment is poorly defined. We show that high-fat diet (HFD) decreased long-term Lin(-)Sca-1(+)c-Kit(+) (LSK) stem cells and shifted lymphoid to myeloid cell differentiation. Bone marrow niche function was impaired after HFD as shown by poor reconstitution of hematopoietic stem cells. HFD led to robust activation of PPARγ2, which impaired osteoblastogenesis while enhancing bone marrow adipogenesis. At the same time, expression of genes such as Jag-1, SDF-1, and IL-7 forming the bone marrow niche was highly suppressed after HFD. Moreover, structural changes of microbiota were associated to HFD-induced bone marrow changes. Antibiotic treatment partially rescued HFD-mediated effects on the bone marrow niche, while transplantation of stools from HFD mice could transfer the effect to normal mice. These findings show that metabolic stress affects the bone marrow niche by alterations of gut microbiota and osteoblast-adipocyte homeostasis.


Assuntos
Diferenciação Celular , Células-Tronco Hematopoéticas/metabolismo , Células Mieloides/metabolismo , Nicho de Células-Tronco , Estresse Fisiológico , Adipócitos/metabolismo , Animais , Células da Medula Óssea/metabolismo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos , Camundongos Obesos/metabolismo , Camundongos Obesos/microbiologia , Microbiota , Células Mieloides/citologia , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...