Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
1.
J Neurosci ; 43(22): 4005-4018, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37185239

RESUMO

The composition of voltage-gated Ca2+ channel (Cav) subtypes that gate action potential (AP)-evoked release changes during the development of mammalian CNS synapses. Cav2.2 and Cav2.3 lose their function in gating-evoked release during postnatal synapse maturation. In mature boutons, Cav2.1 currents provide the almost exclusive trigger for evoked release, and Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the functional significance of Cav2.2 remained elusive in mature boutons, although they remain present at active zones and continue contributing significantly to presynaptic Ca2+ influx. Here, we addressed the functional significance of Cav2.2 and Cav2.3 at mature parallel-fiber (PF) to Purkinje neuron synapses of mice of either sex. These synapses are known to exhibit the corresponding developmental Cav subtype changes in gating release. We addressed two hypotheses, namely that Cav2.2 and Cav2.3 are involved in triggering spontaneous glutamate release and that they are engaged in vesicle recruitment during repetitive evoked release. We found that spontaneous miniature release is Ca2+ dependent. However, experiments with Cav subtype-specific blockers excluded the spontaneous opening of Cavs as the Ca2+ source for spontaneous glutamate release. Thus, neither Cav2.2 nor Cav2.3 controls spontaneous release from PF boutons. Furthermore, vesicle recruitment during brief bursts of APs was also independent of Ca2+ influx through Cav2.2 and Cav2.3. However, Cav2.2, but not Cav2.3, currents significantly boosted vesicle recruitment during sustained high-frequency synaptic transmission. Thus, in mature PF boutons Cav2.2 channels are specifically required to sustain synaptic transmission during prolonged neuronal activity.SIGNIFICANCE STATEMENT At young CNS synapses, action potential-evoked release is gated via three subtypes of voltage-gated Ca2+ channels: Cav2.1, Cav2.2, and Cav2.3. During postnatal maturation, Cav2.2 and Cav2.3 lose their function in gating evoked release, such that at mature synapses Cav2.1 provides the almost exclusive source for triggering evoked release. Cav2.3 currents are required for the induction of presynaptic long-term potentiation. However, the function of the still abundant Cav2.2 in mature boutons remained largely elusive. Here, we studied mature cerebellar parallel-fiber synapses and found that Cav2.2 does not control spontaneous release. However, Ca2+ influx through Cav2.2 significantly boosted vesicle recruitment during trains of action potentials. Thus, Cav2.2 in mature parallel-fiber boutons participate in sustaining synaptic transmission during prolonged activity.


Assuntos
Canais de Cálcio Tipo N , Sinapses , Animais , Camundongos , Axônios/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo N/fisiologia , Mamíferos , Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
2.
Int Urol Nephrol ; 54(11): 2871-2879, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35416563

RESUMO

Accumulating evidences indicated that voltage-gated calcium channels (VDCC), including L-, T-, N-, and P/Q-type, are present in kidney and contribute to renal injury during various chronic diseases trough different mechanisms. As a voltage-gated calcium channel, N-type calcium channel was firstly been founded predominately distributed on nerve endings which control neurotransmitter releases. Since sympathetic nerve is distributed along renal afferent and efferent arterioles, N-type calcium channel blockade on sympathetic nerve terminals would bring renal dynamic improvement by dilating both arterioles and reducing glomerular pressure. In addition, large body of scientific research indicated that neurotransmitters, such as norepinephrine, releases by activating N-type calcium channel can trigger inflammatory and fibrotic signaling pathways in kidney. Interestingly, we recently demonstrated that N-type calcium channel is also expressed on podocytes and may directly contribute to podocyte injury in denervated animal models. In this paper, we will summarize our current knowledge regarding renal N-type calcium channels, and discuss how they might contribute to the river that terminates in renal injury.


Assuntos
Bloqueadores dos Canais de Cálcio , Canais de Cálcio Tipo N , Animais , Cálcio , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo N/fisiologia , Rim , Neurotransmissores , Norepinefrina
3.
Neuropharmacology ; 201: 108842, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34678375

RESUMO

The posttraumatic stress disorder is marked by an impaired ability to extinct fear memory acquired in trauma. Although previous studies suggest that fear extinction depends on the function of the amygdala, the underlying mechanisms are unclear. We found that NRG1 receptors (ErbB4) were abundantly expressed in the intercalated cells mass of amygdala (ITC). The NRG1-ErbB4 pathway in the ITC promotes fear extinction. The NRG1-ErbB4 pathway in the ITC did not affect excitatory input to ITC neurons from BLA neurons but increased feed-forward inhibition of (the central medial nucleus of the amygdala) CeM neurons through increased GABAergic neurotransmission of ITC neurons. We also found that the NRG1-ErbB4 signaling pathway in ITC might regulate fear extinction through P/Q-type voltage-activated Ca2+ channels (VACCs) but not through L- or N-type VACCs. Overall, our results suggest that the NRG1-ErbB4 signaling pathway in the ITC might represent a potential target for the treatment of anxiety disorders.


Assuntos
Tonsila do Cerebelo/fisiologia , Extinção Psicológica/fisiologia , Medo/psicologia , Neuregulina-1/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/etiologia , Canais de Cálcio Tipo N/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Terapia de Alvo Molecular , Neuregulina-1/metabolismo , Receptor ErbB-4/metabolismo , Transdução de Sinais/fisiologia
4.
Neurobiol Dis ; 155: 105394, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34015490

RESUMO

Schizophrenia exhibits up to 80% heritability. A number of genome wide association studies (GWAS) have repeatedly shown common variants in voltage-gated calcium (Cav) channel genes CACNA1C, CACNA1I and CACNA1G have a major contribution to the risk of the disease. More recently, studies using whole exome sequencing have also found that CACNA1B (Cav2.2 N-type) deletions and rare disruptive variants in CACNA1A (Cav2.1 P/Q-type) are associated with schizophrenia. The negative symptoms of schizophrenia include behavioural defects such as impaired memory, sleep and circadian rhythms. It is not known how variants in schizophrenia-associated genes contribute to cognitive and behavioural symptoms, thus hampering the development of treatment for schizophrenia symptoms. In order to address this knowledge gap, we studied behavioural phenotypes in a number of loss of function mutants for the Drosophila ortholog of the Cav2 gene family called cacophony (cac). cac mutants showed several behavioural features including decreased night-time sleep and hyperactivity similar to those reported in human patients. The change in timing of sleep-wake cycles suggested disrupted circadian rhythms, with the loss of night-time sleep being caused by loss of cac just in the circadian clock neurons. These animals also showed a reduction in rhythmic circadian behaviour a phenotype that also could be mapped to the central clock. Furthermore, reduction of cac just in the clock resulted in a lengthening of the 24 h period. In order to understand how loss of Cav2 function may lead to cognitive deficits and underlying cellular pathophysiology we targeted loss of function of cac to the memory centre of the fly, called the mushroom bodies (MB). This manipulation was sufficient to cause reduction in both short- and intermediate-term associative memory. Memory impairment was accompanied by a decrease in Ca2+ transients in response to a depolarizing stimulus, imaged in the MB presynaptic terminals. This work shows loss of cac Cav2 channel function alone causes a number of cognitive and behavioural deficits and underlying reduced neuronal Ca2+ transients, establishing Drosophila as a high-throughput in vivo genetic model to study the Cav channel pathophysiology related to schizophrenia.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio/fisiologia , Ritmo Circadiano/fisiologia , Memória/fisiologia , Esquizofrenia/fisiopatologia , Sono/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/fisiologia , Feminino , Locomoção/fisiologia , Masculino , Esquizofrenia/genética
5.
Mol Cell Neurosci ; 112: 103609, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33662542

RESUMO

Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.


Assuntos
Tronco Encefálico/fisiologia , Canais de Cálcio Tipo N/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Vias Auditivas/fisiologia , Cálcio/metabolismo , Canais de Cálcio Tipo N/química , Humanos , Transporte de Íons , Mamíferos/fisiologia , Proteínas do Tecido Nervoso/química , Domínios Proteicos , Subunidades Proteicas , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo
6.
Blood ; 137(21): 2907-2919, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33619534

RESUMO

Mitochondria of hematopoietic stem cells (HSCs) play crucial roles in regulating cell fate and preserving HSC functionality and survival. However, the mechanism underlying HSC regulation remains poorly understood. Here, we identify transcription factor TWIST1 as a novel regulator of HSC maintenance through modulation of mitochondrial function. We demonstrate that Twist1 deletion results in significantly decreased lymphoid-biased HSC frequency, markedly reduced HSC dormancy and self-renewal capacity, and skewed myeloid differentiation in steady-state hematopoiesis. Twist1-deficient HSCs are more compromised in tolerance of irradiation- and 5-fluorouracil-induced stresses and exhibit typical phenotypes of senescence. Mechanistically, Twist1 deletion induces transactivation of voltage-gated calcium channel (VGCC) Cacna1b, which exhausts lymphoid-biased HSCs, impairs genotoxic hematopoietic recovery, and enhances mitochondrial calcium levels, metabolic activity, and reactive oxygen species production. Suppression of VGCC by a calcium channel blocker largely rescues the phenotypic and functional defects in Twist1-deleted HSCs under both steady-state and stress conditions. Collectively, our data, for the first time, characterize TWIST1 as a critical regulator of HSC function acting through the CACNA1B/Ca2+/mitochondria axis and highlight the importance of Ca2+ in HSC maintenance. These observations provide new insights into the mechanisms for the control of HSC fate.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Células-Tronco Hematopoéticas/citologia , Proteína 1 Relacionada a Twist/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Apoptose , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio , Ciclo Celular , Autorrenovação Celular , Dano ao DNA , Fluoruracila/farmacologia , Fluoruracila/toxicidade , Regulação da Expressão Gênica , Ontologia Genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mielopoese , RNA Mensageiro/biossíntese , Lesões Experimentais por Radiação/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 Relacionada a Twist/deficiência , Proteína 1 Relacionada a Twist/genética
7.
J Neurophysiol ; 124(6): 1605-1614, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32966754

RESUMO

The vestibular system is modulated by various neuromodulators including opioid peptides. The current study was conducted to determine whether activation of nociceptin/orphanin FQ peptide (NOP) receptors modulates voltage-gated calcium currents and action potential discharge of rat vestibular afferent neurons. We performed whole cell patch-clamp recordings on cultured vestibular afferent neurons from P7-P10 Long-Evans rats. Application of nociceptin/orphanin FQ (N/OFQ), a 17-amino acid neuropeptide that is the endogenous ligand for NOP receptor, inhibits the high-voltage activated (HVA) component of the calcium current in a concentration-dependent manner with a half inhibitory concentration of 26 nM. Said inhibitory action on the calcium current is voltage-dependent, which was made clear by the fact that it was reverted in 80% by a depolarizing prepulse. Furthermore, the effect of N/OFQ was blocked by application of the specific NOP-antagonist UFP101, by preincubation with G-protein blocker pertussis toxin, and by coapplication of the specific N-type calcium-current blocker ω-conotoxin-MVIIA. N/OFQ application causes an increase in the duration and maximum rate of repolarization of action potentials. It also decreases repetitive discharge and discharge elicited by sinusoidal stimulation. These results show that in vestibular afferents, NOP receptor activation inhibits N-type calcium current by activating G proteins, mostly through the Gßγ subunit. This suggests that NOP activation produces a presynaptic modulation of primary vestibular afferent neurons' output into the vestibular nuclei, thus taking part in the integration and gain setting of vestibular information in second-order vestibular nucleus neurons.NEW & NOTEWORTHY Our results show that in primary vestibular afferent neurons, activation of the nociceptin/orphanin FQ peptide receptor inhibits the N-type calcium current by a mechanism mediated by G proteins. We propose that calcium current inhibition modulates neurotransmitter release from vestibular afferents, producing a presynaptic modulation of vestibular input to vestibular nuclei, thus contributing to gain control in the vestibular afferent input.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Neurônios/fisiologia , Peptídeos Opioides/fisiologia , Receptores Opioides/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana , Neurônios Aferentes/fisiologia , Ratos Long-Evans , Receptor de Nociceptina , Nociceptina
8.
Epilepsy Behav ; 111: 107251, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32593873

RESUMO

OBJECTIVE: Ziconotide (ω-conotoxin MVIIA peptide) is a novel analgesic agent acting on voltage-gated calcium channels and is administered intrathecally for neuropathic pain. While antiepileptic activities of other types of calcium channel blockers (T- or L-type) are well established, there is no information regarding the effect of ziconotide as an N-type calcium channel antagonist in pentylenetetrazol-induced seizures or its anxiolytic and sedative activities. The present study is the first to report on these effects. METHODS: To evaluate the anticonvulsant activity of ziconotide in the pentylenetetrazol (60 mg/kg) seizure model, ziconotide was administered intracerebroventricular (i.c.v.) as a single dose (1 µg/rat) or repeatedly (chronic administration: 0.1, 0.3, or 1 µg/rat once a day for seven days). The anxiolytic and sedative actions of ziconotide were evaluated with the elevated plus maze, light/dark (LD) box, and pentobarbital-induced sleep tests. Immediately after behavioral testing, the amygdala was completely removed bilaterally to determine corticosterone levels by immunoassay. RESULTS: In all dosing regimens, ziconotide significantly decreased the seizure frequency and also delayed the latency period compared with control. Chronic administration affected the percentage of mortality protection, while a single dose of ziconotide did not. In behavioral tests, ziconotide significantly increased both the number of entries and the percentage of time spent in the open arms of the elevated plus maze. Furthermore, ziconotide significantly increased the latency period and the number of entries into the light compartment during the LD box examination. Chronic administration of ziconotide significantly reduced the latency to sleep and increased sleeping time, whereas these parameters were not affected by a single dose. Additionally, amygdala corticosterone levels were significantly decreased in rats treated with ziconotide compared with control. CONCLUSION: Ziconotide displays beneficial neurobehavioral effects in a model of epilepsy with anxiety as its comorbid event. It seems that at least one of the mechanisms involved in these effects is associated with a decrease in brain corticosterone levels. The main advantage of ziconotide over benzodiazepines (routine anxiolytic and sedative drugs) is that it does not cause tolerance, dependency, and addiction. Therefore, more than ever, it is necessary to improve the convenience of drug delivery protocols and attenuate the adverse effects associated with ziconotide-based therapies.


Assuntos
Ansiolíticos/administração & dosagem , Anticonvulsivantes/administração & dosagem , Bloqueadores dos Canais de Cálcio/administração & dosagem , Hipnóticos e Sedativos/administração & dosagem , Convulsões/tratamento farmacológico , ômega-Conotoxinas/administração & dosagem , Animais , Canais de Cálcio Tipo N/fisiologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Masculino , Pentilenotetrazol/toxicidade , Projetos Piloto , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
9.
Elife ; 92020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213287

RESUMO

Cell-specific alternative splicing modulates myriad cell functions and is disrupted in disease. The mechanisms governing alternative splicing are known for relatively few genes and typically focus on RNA splicing factors. In sensory neurons, cell-specific alternative splicing of the presynaptic CaV channel Cacna1b gene modulates opioid sensitivity. How this splicing is regulated is unknown. We find that cell and exon-specific DNA hypomethylation permits CTCF binding, the master regulator of mammalian chromatin structure, which, in turn, controls splicing in a DRG-derived cell line. In vivo, hypomethylation of an alternative exon specifically in nociceptors, likely permits CTCF binding and expression of CaV2.2 channel isoforms with increased opioid sensitivity in mice. Following nerve injury, exon methylation is increased, and splicing is disrupted. Our studies define the molecular mechanisms of cell-specific alternative splicing of a functionally validated exon in normal and disease states - and reveal a potential target for the treatment of chronic pain.


Assuntos
Processamento Alternativo , Fator de Ligação a CCCTC/metabolismo , Canais de Cálcio Tipo N/genética , Metilação de DNA , Éxons , Neurônios/metabolismo , Animais , Canais de Cálcio Tipo N/fisiologia , Linhagem da Célula , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/fisiologia , DNA Metiltransferase 3A , Gânglios Espinais/metabolismo , Camundongos , Traumatismos dos Nervos Periféricos/metabolismo , Canais de Cátion TRPV/fisiologia
10.
Physiol Rep ; 7(16): e14198, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31444865

RESUMO

Magnocellular neurosecretory cells (MNCs) occupying the supraoptic nucleus (SON) contain voltage-gated Ca2+ channels that provide Ca2+ for triggering vesicle release, initiating signaling pathways, and activating channels, such as the potassium channels underlying the afterhyperpolarization (AHP). Phosphotidylinositol 4,5-bisphosphate (PIP2 ) is a phospholipid membrane component that has been previously shown to modulate Ca2+ channels, including in the SON in our previous work. In this study, we further investigated the ways in which PIP2 modulates these channels, and for the first time show how PIP2 modulates CaV channel currents in native membranes. Using whole cell patch clamp of genetically labeled dissociated neurons, we demonstrate that PIP2 depletion via wortmannin (0.5 µmol/L) inhibits Ca2+ channel currents in OT but not VP neurons. Additionally, it hyperpolarizes voltage-dependent activation of the channels by ~5 mV while leaving the slope of activation unchanged, properties unaffected in VP neurons. We also identified key differences in baseline currents between the cell types, wherein VP whole cell Ca2+ currents display more inactivation and shorter deactivation time constants. Wortmannin accelerates inactivation of Ca2+ channels in OT neurons, which we show to be mostly an effect on N-type Ca2+ channels. Finally, we demonstrate that wortmannin prevents prepulse-induced facilitation of peak Ca2+ channel currents. We conclude that PIP2 is a modulator that enhances current through N-type channels. This has implications for the afterhyperpolarization (AHP) of OT neurons, as previous work from our laboratory demonstrated the AHP is inhibited by wortmannin, and that its primary activation is from intracellular Ca2+ contributed by N-type channels.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Fosfatos de Inositol/metabolismo , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Supraóptico/fisiologia , Animais , Feminino , Potenciais da Membrana/fisiologia , Ratos , Ratos Transgênicos , Ratos Wistar
11.
Cell Rep ; 26(9): 2289-2297.e3, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811980

RESUMO

Activation of CaV2.1 voltage-gated calcium channels is facilitated by preceding calcium entry. Such self-modulatory facilitation is thought to contribute to synaptic facilitation. Using knockin mice with mutated CaV2.1 channels that do not facilitate (Ca IM-AA mice), we surprisingly found that, under conditions of physiological calcium and near-physiological temperatures, synaptic facilitation at hippocampal CA3 to CA1 synapses was not attenuated in Ca IM-AA mice and facilitation was paradoxically more prominent at two cerebellar synapses. Enhanced facilitation at these synapses is consistent with a decrease in initial calcium entry, suggested by an action-potential-evoked CaV2.1 current reduction in Purkinje cells from Ca IM-AA mice. In wild-type mice, CaV2.1 facilitation during high-frequency action potential trains was very small. Thus, for the synapses studied, facilitation of calcium entry through CaV2.1 channels makes surprisingly little contribution to synaptic facilitation under physiological conditions. Instead, CaV2.1 facilitation offsets CaV2.1 inactivation to produce remarkably stable calcium influx during high-frequency activation.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Sinapses/fisiologia , Potenciais de Ação , Animais , Região CA3 Hipocampal/metabolismo , Região CA3 Hipocampal/fisiologia , Cálcio/metabolismo , Canais de Cálcio Tipo N/genética , Potenciais Pós-Sinápticos Excitadores , Técnicas de Introdução de Genes , Camundongos , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia
12.
J Neurosci ; 39(11): 1969-1981, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30630881

RESUMO

In cerebellar Purkinje neuron dendrites, the transient depolarization associated with a climbing fiber (CF) EPSP activates voltage-gated Ca2+ channels (VGCCs), voltage-gated K+ channels (VGKCs), and Ca2+-activated SK and BK K+ channels. The resulting membrane potential (Vm) and Ca2+ transients play a fundamental role in dendritic integration and synaptic plasticity of parallel fiber inputs. Here we report a detailed investigation of the kinetics of dendritic Ca2+ and K+ channels activated by CF-EPSPs, based on optical measurements of Vm and Ca2+ transients and on a single-compartment NEURON model reproducing experimental data. We first measured Vm and Ca2+ transients associated with CF-EPSPs at different initial Vm, and we analyzed the changes in the Ca2+ transients produced by the block of each individual VGCCs, of A-type VGKCs and of SK and BK channels. Then, we constructed a model that includes six active ion channels to accurately match experimental signals and extract the physiological kinetics of each channel. We found that two different sets of channels are selectively activated. When the dendrite is hyperpolarized, CF-EPSPs mainly activate T-type VGCCs, SK channels, and A-type VGKCs that limit the transient Vm ∼ <0 mV. In contrast, when the dendrite is depolarized, T-type VGCCs and A-type VGKCs are inactivated and CF-EPSPs activate P/Q-type VGCCs, high-voltage activated VGKCs, and BK channels, leading to Ca2+ spikes. Thus, the potentially activity-dependent regulation of A-type VGKCs, controlling the activation of this second set of channels, is likely to play a crucial role in signal integration and plasticity in Purkinje neuron dendrites.SIGNIFICANCE STATEMENT The climbing fiber synaptic input transiently depolarizes the dendrite of cerebellar Purkinje neurons generating a signal that plays a fundamental role in dendritic integration. This signal is mediated by two types of Ca2+ channels and four types of K+ channels. Thus, understanding the kinetics of all of these channels is crucial for understanding PN function. To obtain this information, we used an innovative strategy that merges ultrafast optical membrane potential and Ca2+ measurements, pharmacological analysis, and computational modeling. We found that, according to the initial membrane potential, the climbing fiber depolarizing transient activates two distinct sets of channels. Moreover, A-type K+ channels limit the activation of P/Q-type Ca2+ channels and associated K+ channels, thus preventing the generation of Ca2+ spikes.


Assuntos
Canais de Cálcio/fisiologia , Dendritos/fisiologia , Potenciais Pós-Sinápticos Excitadores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Células de Purkinje/fisiologia , Animais , Canais de Cálcio Tipo L/fisiologia , Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio Tipo T/fisiologia , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Imagem Óptica
13.
J Physiol ; 597(2): 631-651, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30418666

RESUMO

KEY POINTS: Medullo-spinal CSF contacting neurones (CSF-cNs) located around the central canal are conserved in all vertebrates and suggested to be a novel sensory system intrinsic to the CNS. CSF-cNs receive GABAergic inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of metabotropic GABAB receptors (GABAB -Rs) has not yet been studied. Here, we indicate that CSF-cNs express functional GABAB -Rs that inhibit postsynaptic calcium channels but fail to activate inhibitory potassium channel of the Kir3-type. We further show that GABAB -Rs localise presynaptically on GABAergic and glutamatergic synaptic inputs contacting CSF-cNs, where they inhibit the release of GABA and glutamate. Our data are the first to address the function of GABAB -Rs in CSF-cNs and show that on the presynaptic side they exert a classical synaptic modulation whereas at the postsynaptic level they have an atypical action by modulating calcium signalling without inducing potassium-dependent inhibition. ABSTRACT: Medullo-spinal neurones that contact the cerebrospinal fluid (CSF-cNs) are a population of evolutionary conserved cells located around the central canal. CSF-cN activity has been shown to be regulated by inhibitory synaptic inputs involving ionotropic GABAA receptors, but the contribution of the G-protein coupled GABAB receptors has not yet been studied. Here, we used a combination of immunofluorescence, electrophysiology and calcium imaging to investigate the expression and function of GABAB -Rs in CSF-cNs of the mouse brainstem. We found that CSF-cNs express GABAB -Rs, but their selective activation failed to induce G protein-coupled inwardly rectifying potassium (GIRK) currents. Instead, CSF-cNs express primarily N-type voltage-gated calcium (CaV 2.2) channels, and GABAB -Rs recruit Gßγ subunits to inhibit CaV channel activity induced by membrane voltage steps or under physiological conditions by action potentials. Moreover, using electrical stimulation, we indicate that GABAergic inhibitory (IPSCs) and excitatory glutamatergic (EPSCs) synaptic currents can be evoked in CSF-cNs showing that mammalian CSF-cNs are also under excitatory control by glutamatergic synaptic inputs. We further demonstrate that baclofen reversibly reduced the amplitudes of both IPSCs and EPSCs evoked in CSF-cNs through a presynaptic mechanism of regulation. In summary, these results are the first to demonstrate the existence of functional postsynaptic GABAB -Rs in medullar CSF-cNs, as well as presynaptic GABAB auto- and heteroreceptors regulating the release of GABA and glutamate. Remarkably, postsynaptic GABAB -Rs associate with CaV but not GIRK channels, indicating that GABAB -Rs function as a calcium signalling modulator without GIRK-dependent inhibition in CSF-cNs.


Assuntos
Tronco Encefálico/fisiologia , Cálcio/fisiologia , Líquido Cefalorraquidiano/fisiologia , Receptores de GABA-B/fisiologia , Animais , Canais de Cálcio Tipo N/fisiologia , Feminino , Proteínas de Ligação ao GTP/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Canais de Potássio/fisiologia
14.
J Physiol ; 596(22): 5415-5428, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30199095

RESUMO

KEY POINTS: Presynaptic CaV 2 voltage-gated calcium channels link action potentials arriving at the presynaptic terminal to neurotransmitter release. Hence, their regulation is essential to fine tune brain circuitry. CaV 2 channels are highly sensitive to G protein-coupled receptor (GPCR) modulation. Our previous data indicated that growth hormone secretagogue receptor (GHSR) constitutive activity impairs CaV 2 channels by decreasing their surface density. We present compelling support for the impact of CaV 2.2 channel inhibition by agonist-independent GHSR activity exclusively on GABA release in hippocampal cultures. We found that this selectivity arises from a high reliance of GABA release on CaV 2.2 rather than on CaV 2.1 channels. Our data provide new information on the effects of the ghrelin-GHSR system on synaptic transmission, suggesting a putative physiological role of the constitutive signalling of a GPCR that is expressed at high levels in brain areas with restricted access to its natural agonist. ABSTRACT: Growth hormone secretagogue receptor (GHSR) displays high constitutive activity, independent of its endogenous ligand, ghrelin. Unlike ghrelin-induced GHSR activity, the physiological role of GHSR constitutive activity and the mechanisms that underlie GHSR neuronal modulation remain elusive. We previously demonstrated that GHSR constitutive activity modulates presynaptic CaV 2 voltage-gated calcium channels. Here we postulate that GHSR constitutive activity-mediated modulation of CaV 2 channels could be relevant in the hippocampus since this brain area has high GHSR expression but restricted access to ghrelin. We performed whole-cell patch-clamp in hippocampal primary cultures from E16- to E18-day-old C57BL6 wild-type and GHSR-deficient mice after manipulating GHSR expression with lentiviral transduction. We found that GHSR constitutive activity impairs CaV 2.1 and CaV 2.2 native calcium currents and that CaV 2.2 basal impairment leads to a decrease in GABA but not glutamate release. We postulated that this selective effect is related to a higher CaV 2.2 over CaV 2.1 contribution to GABA release (∼40% for CaV 2.2 in wild-type vs. ∼20% in wild-type GHSR-overexpressing cultures). This effect of GHSR constitutive activity is conserved in hippocampal brain slices, where GHSR constitutive activity reduces local GABAergic transmission of the granule cell layer (intra-granule cell inhibitory postsynaptic current (IPSC) size ∼-67 pA in wild-type vs. ∼-100 pA in GHSR-deficient mice), whereas the glutamatergic output from the dentate gyrus to CA3 remains unchanged. In summary, we found that GHSR constitutive activity impairs IPSCs both in hippocampal primary cultures and in brain slices through a CaV 2-dependent mechanism without affecting glutamatergic transmission.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Hipocampo/citologia , Neurônios/fisiologia , Receptores de Grelina/metabolismo , Animais , Bário/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
J Neurosci ; 38(46): 9814-9828, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30249804

RESUMO

Neurotransmitter release is triggered by Ca2+ influx through voltage-dependent Ca2+ channels (VDCCs). Distinct expression patterns of VDCC subtypes localized on the synaptic terminal affect intracellular Ca2+ dynamics induced by action potential-triggered Ca2+ influx. However, it has been unknown whether the expression pattern of VDCC subtypes depends on each axon terminal or neuronal subtype. Furthermore, little information is available on how these VDCC subtypes regulate the release probability of neurotransmitters. To address these questions, we performed multiple whole-cell patch-clamp recordings from GABAergic neurons in the insular cortex of either the male or the female rat. The paired-pulse ratio (PPR; 50 ms interstimulus interval) varied widely among inhibitory connections between GABAergic neurons. The PPR of unitary IPSCs was enhanced by ω-conotoxin GVIA (CgTx; 3 µm), an N-type VDCC blocker, whereas blockade of P/Q-type VDCCs by ω-agatoxin IVA (AgTx, 200 nm) decreased the PPR. In the presence of CgTx, application of 4 mm [Ca2+]o or of roscovitine, a P/Q-type activator, increased the PPR. These results suggest that the recruitment of P/Q-type VDCCs increases the PPR, whereas N-type VDCCs suppress the PPR. Furthermore, we found that charybdotoxin or apamin, blockers of Ca2+-dependent K+ channels, with AgTx increased the PPR, suggesting that Ca2+-dependent K+ channels are coupled to N-type VDCCs and suppress the PPR in GABAergic neuronal terminals. Variance-mean analysis with changing [Ca2+]o showed a negative correlation between the PPR and release probability in GABAergic synapses. These results suggest that GABAergic neurons differentially express N-type and/or P/Q-type VDCCs and that these VDCCs regulate the GABA release probability in distinct manners.SIGNIFICANCE STATEMENT GABAergic neuronal axons target multiple neurons and release GABA triggered by Ca2+ influx via voltage-dependent Ca2+ channels (VDCCs), including N-type and P/Q-type channels. Little is known about VDCC expression patterns in GABAergic synaptic terminals and their role in short-term plasticity. We focused on inhibitory synaptic connections between GABAergic neurons in the cerebral cortex using multiple whole-cell patch-clamp recordings and found different expression patterns of VDCCs in the synaptic terminals branched from a single presynaptic neuron. Furthermore, we observed facilitative and depressive short-term plasticity of IPSCs mediated by P/Q-type and N-type VDCCs, respectively. These results suggest that VDCC expression patterns regulate distinctive types of synaptic transmission in each GABAergic axon terminal even though they are branched from a common presynaptic neuron.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Córtex Cerebral/fisiologia , Neurônios GABAérgicos/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Masculino , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Transgênicos , Fatores de Tempo
16.
Brain Behav Immun ; 71: 52-65, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29709527

RESUMO

N-type voltage-gated calcium (Cav2.2) channels are expressed in the central terminals of dorsal root ganglion (DRG) neurons, and are critical for neurotransmitter release. Cav2.2 channels are also expressed in the soma of DRG neurons, where their function remains largely unknown. Here, we showed that Cav2.2 was upregulated in the soma of uninjured L4 DRG neurons, but downregulated in those of injured L5 DRG neurons following L5 spinal nerve ligation (L5-SNL). Local application of specific Cav2.2 blockers (ω-conotoxin GVIA, 1-100 µM or ZC88, 10-1000 µM) onto L4 and 6 DRGs on the operated side, but not the contralateral side, dose-dependently reversed mechanical allodynia induced by L5-SNL. Patch clamp recordings revealed that both ω-conotoxin GVIA (1 µM) and ZC88 (10 µM) depressed hyperexcitability in L4 but not in L5 DRG neurons of L5-SNL rats. Consistent with this, knockdown of Cav2.2 in L4 DRG neurons with AAV-Cav2.2 shRNA substantially prevented L5-SNL-induced mechanical allodynia and hyperexcitability of L4 DRG neurons. Furthermore, in L5-SNL rats, interleukin-1 beta (IL-1ß) and IL-10 were upregulated in L4 DRGs and L5 DRGs, respectively. Intrathecal injection of IL-1ß induced mechanical allodynia and Cav2.2 upregulation in bilateral L4-6 DRGs of naïve rats, whereas injection of IL-10 substantially prevented mechanical allodynia and Cav2.2 upregulation in L4 DRGs in L5-SNL rats. Finally, in cultured DRG neurons, Cav2.2 was dose-dependently upregulated by IL-1ß and downregulated by IL-10. These data indicate that the upregulation of Cav2.2 in uninjured DRG neurons via IL-1ß over-production contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Gânglios Espinais/fisiopatologia , Animais , Canais de Cálcio Tipo N/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios Aferentes/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/fisiopatologia , Transmissão Sináptica/fisiologia , Ativação Transcricional , Regulação para Cima
17.
J Neurosci ; 38(18): 4430-4440, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29654190

RESUMO

Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca2+) channel type 2.1 (CaV2.1) by neuronal Ca2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in CaV2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of CaV2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of CaV2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice.SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca2+ (CaV) channels. Regulation of CaV2.1 channels by neuronal calcium sensor (CaS) proteins controls short-term synaptic plasticity. Here we demonstrate a direct link between regulation of CaV2.1 channels and short-term synaptic plasticity in native hippocampal excitatory and inhibitory synapses. We also identify CaBP1/caldendrin as the calcium sensor interacting with CaV2.1 channels to mediate rapid synaptic depression in the inhibitory hippocampal synapses of parvalbumin-expressing basket cells to CA1 pyramidal cells. Disruption of this regulation causes altered short-term plasticity and impaired balance of hippocampal excitatory to inhibitory circuits.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia
18.
Life Sci ; 188: 110-117, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882644

RESUMO

AIMS: Both N-type and P/Q-type voltage-gated Ca2+ channels (VGCCs) are involved in the induction of long-term potentiation (LTP), the long-lasting increase of synaptic strength, in the central nervous system. To provide further information on the roles of N-type and P/Q-type VGCCs in the induction of LTP at excitatory synapses of trigeminal primary afferents in the spinal trigeminal subnucleus oralis (Vo), we investigated whether they contribute to the induction of LTP by activation of group I metabotropic glutamate receptors (mGluRs). MAIN METHODS: (S)-3,5-Dihydroxyphenylglycine (DHPG; 10µM for 5min), the group I mGluR agonist, was used to induce LTP of excitatory postsynaptic currents that were evoked in the Vo neurons by stimulating the trigeminal track. KEY FINDINGS: Weak blockade of the N-type or P/Q-type VGCCs by ω-conotoxin GVIA or ω-agatoxin IVA, respectively, which inhibited only 20-40% of Ca2+ currents recorded in isolated trigeminal ganglion neurons but had no effect on the basal excitatory synaptic transmission, completely blocked the induction of LTP. In contrast, stronger blockade of the channels, which inhibited >50% of Ca2+ currents and about 30% of basal synaptic transmission, resulted in the development of long-term depression (LTD), the long-lasting decrease of synaptic strength. Interestingly, the postsynaptic mechanism of DHPG-induced LTP, which was determined by paired-pulse ratio, disappeared when LTP was blocked, or LTD occurred, while a presynaptic mechanism still remained. SIGNIFICANCE: Our data suggest that postsynaptic N-type and P/Q-type VGCCs mediate the DHPG-induced LTP at the trigeminal afferent synapses in the Vo.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Canais de Cálcio Tipo P/fisiologia , Canais de Cálcio Tipo Q/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia , Agatoxinas/farmacologia , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio , Cromonas/farmacologia , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Terminações Pré-Sinápticas/fisiologia , Ratos , Receptores de Glutamato Metabotrópico/agonistas , Potenciais Sinápticos/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Núcleo Espinal do Trigêmeo/efeitos dos fármacos , ômega-Conotoxinas/farmacologia
19.
Neurobiol Aging ; 55: 1-10, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28391067

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the amino-terminal region of the huntingtin (htt) protein. In addition to facilitating neurodegeneration, mutant htt is implicated in HD-related alterations of neurotransmission. Previous data showed that htt can modulate N-type voltage-gated Ca2+ channels (Cav2.2), which are essential for presynaptic neurotransmitter release. Thus, to elucidate the mechanism underlying mutant htt-mediated alterations in neurotransmission, we investigated how Cav2.2 is affected by full-length mutant htt expression in a mouse model of HD (BACHD). Our data indicate that young BACHD mice exhibit increased striatal glutamate release, which is reduced to wild type levels following Cav2.2 block. Cav2.2 Ca2+ current-density and plasma membrane expression are increased in BACHD mice, which could account for increased glutamate release. Moreover, mutant htt affects the interaction between Cav2.2 and 2 major channel regulators, namely syntaxin 1A and Gßγ protein. Notably, 12-month old BACHD mice exhibit decreased Cav2.2 cell surface expression and glutamate release, suggesting that Cav2.2 alterations vary according to disease stage.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Proteína Huntingtina/genética , Proteína Huntingtina/fisiologia , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Mutação , Transmissão Sináptica/genética , Animais , Modelos Animais de Doenças , Glutamatos/metabolismo , Camundongos Transgênicos , Neurotransmissores/metabolismo , Sinapses/metabolismo , Sintaxina 1/fisiologia
20.
Nano Lett ; 17(2): 886-892, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28094958

RESUMO

Techniques offering remote control of neural activity with high spatiotemporal resolution and specificity are invaluable for deciphering the physiological roles of different classes of neurons in brain development and disease. Here, we first confirm that microfabricated substrates with enhanced magnetic field gradients allow for wireless stimulation of neural circuits dosed with magnetic nanoparticles using calcium indicator dyes. We also investigate the mechanism of mechano-transduction in this system and identify that N-type mechano-sensitive calcium ion channels play a key role in signal generation in response to magnetic force. We next applied this method for chronic stimulation of a fragile X syndrome (FXS) neural network model and found that magnetic force-based stimulation modulated the expression of mechano-sensitive ion channels which are out of equilibrium in a number of neurological diseases including FXS. This technique can serve as a tool for acute and chronic modulation of endogenous ion channel expression in neural circuits in a spatially localized manner to investigate a number of disease processes in the future.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Nanopartículas de Magnetita/química , Rede Nervosa/fisiopatologia , Animais , Fenômenos Biomecânicos , Encéfalo/patologia , Encéfalo/fisiopatologia , Cálcio/metabolismo , Sinalização do Cálcio , Campos Eletromagnéticos , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Síndrome do Cromossomo X Frágil/terapia , Humanos , Magnetoterapia , Mecanotransdução Celular , Rede Nervosa/patologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...