Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.989
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2321228121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857399

RESUMO

Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Longevidade , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Intestinos/citologia , Transdução de Sinais , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo
2.
Ophthalmic Res ; 67(1): 301-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705136

RESUMO

INTRODUCTION: Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS: The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS: In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION: Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Genótipo , Fenótipo , Retinose Pigmentar , Acuidade Visual , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Masculino , Feminino , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Adulto Jovem , Adolescente , Eletrorretinografia , Tomografia de Coerência Óptica/métodos , Idoso , Mutação , Criança , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Angiofluoresceinografia/métodos , Estudos de Associação Genética , Análise Mutacional de DNA , Linhagem , DNA/genética
3.
Plant Sci ; 345: 112111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734143

RESUMO

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Hibiscus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hibiscus/genética , Hibiscus/fisiologia , Hibiscus/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética
4.
ACS Chem Neurosci ; 15(8): 1652-1668, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579109

RESUMO

In treating retinitis pigmentosa, a genetic disorder causing progressive vision loss, selective inhibition of rod cyclic nucleotide-gated (CNG) channels holds promise. Blocking the increased Ca2+-influx in rod photoreceptors through CNG channels can potentially delay disease progression and improve the quality of life for patients. To find inhibitors for rod CNG channels, we investigated the impact of 16 cGMP analogues on both rod and cone CNG channels using the patch-clamp technique. Although modifications at the C8 position of the guanine ring did not change the ligand efficacy, modifications at the N1 and N2 positions rendered cGMP largely ineffective in activating retinal CNG channels. Notably, PET-cGMP displayed selective potential, favoring rod over cone, whereas Rp-cGMPS showed greater efficiency in activating cone over rod CNG channels. Ligand docking and molecular dynamics simulations on cyclic nucleotide-binding domains showed comparable binding energies and binding modes for cGMP and its analogues in both rod and cone CNG channels (CNGA1 vs CNGA3 subunits). Computational experiments on CNGB1a vs CNGB3 subunits showed similar binding modes albeit with fewer amino acid interactions with cGMP due to an inactivated conformation of their C-helix. In addition, no clear correlation could be observed between the computational scores and the CNG channel efficacy values, suggesting additional factors beyond binding strength determining ligand selectivity and potency. This study highlights the importance of looking beyond the cyclic nucleotide-binding domain and toward the gating mechanism when searching for selective modulators. Future efforts in developing selective modulators for CNG channels should prioritize targeting alternative channel domains.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Qualidade de Vida , Humanos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ligantes , Retina/metabolismo , Nucleotídeos Cíclicos , GMP Cíclico/metabolismo
5.
Plant Physiol Biochem ; 210: 108593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615446

RESUMO

Cyclic nucleotide-gated ion channels (CNGCs), as non-selective cation channels, play essential roles in plant growth and stress responses. However, they have not been identified in Qingke (Hordeum vulgare L.). Here, we performed a comprehensive genome-wide identification and function analysis of the HvCNGC gene family to determine its role in drought tolerance. Phylogenetic analysis showed that 27 HvCNGC genes were divided into four groups and unevenly located on seven chromosomes. Transcription analysis revealed that two closely related members of HvCNGC3 and HvCNGC16 were highly induced and the expression of both genes were distinctly different in two extremely drought-tolerant materials. Transient expression revealed that the HvCNGC3 and HvCNGC16 proteins both localized to the plasma membrane and karyotheca. Overexpression of HvCNGC3 and HvCNGC16 in Arabidopsis thaliana led to impaired seed germination and seedling drought tolerance, which was accompanied by higher hydrogen peroxide (H2O2), malondialdehyde (MDA), proline accumulation and increased cell damage. In addition, HvCNGC3 and HvCNGC16-overexpression lines reduced ABA sensitivity, as well as lower expression levels of some ABA biosynthesis and stress-related gene in transgenic lines. Furthermore, Yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HvCNGC3 and HvCNGC16 interacted with calmodulin/calmodulin-like proteins (CaM/CML), which, as calcium sensors, participate in the perception and decoding of intracellular calcium signaling. Thus, this study provides information on the CNGC gene family and provides insight into the function and potential regulatory mechanism of HvCNGC3 and HvCNGC16 in drought tolerance in Qingke.


Assuntos
Arabidopsis , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Secas , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Ácido Abscísico/metabolismo , Filogenia , Resistência à Seca
6.
Plant Cell ; 36(6): 2328-2358, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38442317

RESUMO

Multiple cyclic nucleotide-gated channels (CNGCs) are abscisic acid (ABA)-activated Ca2+ channels in Arabidopsis (Arabidopsis thaliana) guard cells. In particular, CNGC5, CNGC6, CNGC9, and CNGC12 are essential for ABA-specific cytosolic Ca2+ signaling and stomatal movements. However, the mechanisms underlying ABA-mediated regulation of CNGCs and Ca2+ signaling are still unknown. In this study, we identified the Ca2+-independent protein kinase OPEN STOMATA 1 (OST1) as a CNGC activator in Arabidopsis. OST1-targeted phosphorylation sites were identified in CNGC5, CNGC6, CNGC9, and CNGC12. These CNGCs were strongly inhibited by Ser-to-Ala mutations and fully activated by Ser-to-Asp mutations at the OST1-targeted sites. The overexpression of individual inactive CNGCs (iCNGCs) under the UBIQUITIN10 promoter in wild-type Arabidopsis conferred a strong dominant-negative-like ABA-insensitive stomatal closure phenotype. In contrast, expressing active CNGCs (aCNGCs) under their respective native promoters in the cngc5-1 cngc6-2 cngc9-1 cngc12-1 quadruple mutant fully restored ABA-activated cytosolic Ca2+ oscillations and Ca2+ currents in guard cells, and rescued the ABA-insensitive stomatal movement mutant phenotypes. Thus, we uncovered that ABA elicits cytosolic Ca2+ signaling via an OST1-CNGC module, in which OST1 functions as a convergence point of the Ca2+-dependent and -independent pathways in Arabidopsis guard cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Estômatos de Plantas , Proteínas Quinases , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação , Fosforilação , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética
7.
PLoS Comput Biol ; 20(3): e1011559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517941

RESUMO

Cyclic AMP controls neuronal ion channel activity. For example hyperpolarization-activated cyclic nucleotide-gated (HCN) and M-type K+ channels are activated by cAMP. These effects have been suggested to be involved in astrocyte control of neuronal activity, for example, by controlling the action potential firing frequency. In cortical neurons, cAMP can induce mixed-mode oscillations (MMOs) consisting of small-amplitude, subthreshold oscillations separating complete action potentials, which lowers the firing frequency greatly. We extend a model of neuronal activity by including HCN and M channels, and show that it can reproduce a series of experimental results under various conditions involving and inferring with cAMP-induced activation of HCN and M channels. In particular, we find that the model can exhibit MMOs as found experimentally, and argue that both HCN and M channels are crucial for reproducing these patterns. To understand how M and HCN channels contribute to produce MMOs, we exploit the fact that the model is a three-time scale dynamical system with one fast, two slow, and two super-slow variables. We show that the MMO mechanism does not rely on the super-slow dynamics of HCN and M channel gating variables, since the model is able to produce MMOs even when HCN and M channel activity is kept constant. In other words, the cAMP-induced increase in the average activity of HCN and M channels allows MMOs to be produced by the slow-fast subsystem alone. We show that the slow-fast subsystem MMOs are due to a folded node singularity, a geometrical structure well known to be involved in the generation of MMOs in slow-fast systems. Besides raising new mathematical questions for multiple-timescale systems, our work is a starting point for future research on how cAMP signalling, for example resulting from interactions between neurons and glial cells, affects neuronal activity via HCN and M channels.


Assuntos
Nucleotídeos Cíclicos , Canais de Potássio , Canais de Potássio/química , Nucleotídeos Cíclicos/farmacologia , Neurônios , AMP Cíclico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos
8.
Invest Ophthalmol Vis Sci ; 65(3): 10, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466291

RESUMO

Purpose: This study aimed to investigate the role of the long non-coding RNA (lncRNA) NEAT1 in corneal epithelial wound healing in mice. Methods: The central corneal epithelium of wild-type (WT), MALAT1 knockout (M-KO), NEAT1 knockout (N-KO), and NEAT1 knockdown (N-KD) mice was scraped to evaluate corneal epithelial and nerve regeneration rates. RNA sequencing of the corneal epithelium from WT and N-KO mice was performed 24 hours after debridement to determine the role of NEAT1. Quantitative PCR (qPCR) and ELISA were used to confirm the bioinformatic analysis. The effects of the cAMP signaling pathway were evaluated in N-KO and N-KD mice using SQ22536, an adenylate cyclase inhibitor. Results: Central corneal epithelial debridement in N-KO mice significantly promoted epithelial and nerve regeneration rates while suppressing inflammatory cell infiltration. Furthermore, the expression of Atp1a2, Ppp1r1b, Calm4, and Cngb1, which are key components of the cAMP signaling pathway, was upregulated in N-KO mice, indicative of its activation. Furthermore, the cAMP pathway inhibitor SQ22536 reversed the accelerated corneal epithelial wound healing in both N-KO and N-KD mice. Conclusions: NEAT1 deficiency contributes to epithelial repair during corneal wound healing by activating the cAMP signaling pathway, thereby highlighting a potential therapeutic strategy for corneal epithelial diseases.


Assuntos
Doenças da Córnea , Lesões da Córnea , Epitélio Corneano , Animais , Camundongos , Córnea , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Proteínas do Tecido Nervoso , ATPase Trocadora de Sódio-Potássio , Cicatrização
9.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493663

RESUMO

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Assuntos
Oryza , Oryza/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Germinação/genética , Pólen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferases , Nucleotídeos Cíclicos/metabolismo
10.
Neuroreport ; 35(5): 328-336, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38407897

RESUMO

Traumatic brain injury (TBI) refers to brain dysfunction with or without traumatic structural injury induced by an external force. Nevertheless, the molecular mechanism of TBI remains undefined. Differentially expressed (DE) lncRNAs, DEmRNAs and DEmiRNAs were selected between human TBI tissues and the adjacent histologically normal tissue by high-throughput sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis of overlapping DEmRNAs between predicted mRNAs of DEmiRNAs and DEmRNAs. The competitive endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was established in light of the ceRNA theory. In the ceRNA network, the key lncRNAs were screened out. Then key lncRNAs related ceRNA subnetwork was constructed. After that, qRT-PCR was applied to validate the expression levels of hub genes. 114 DElncRNAs, 1807 DEmRNAs and 6 DEmiRNAs were DE in TBI. The TBI-related ceRNA network was built with 73 lncRNA nodes, 81 mRNA nodes and 6 miRNAs. According to topological analysis, two hub lncRNAs (ENST00000562897 and ENST00000640877) were selected to construct the ceRNA subnetwork. Subsequently, key lncRNA-miRNA-mRNA regulatory axes constructed by two lncRNAs including ENST00000562897 and ENST00000640877, two miRNAs including miR-6721-5p and miR-129-1-3p, two mRNAs including ketohexokinase (KHK) and cyclic nucleotide-gated channel beta1 (CNGB1), were identified. Furthermore, qRT-PCR results displayed that the expression of ENST00000562897, KHK and CNGB1 were significantly decreased in TBI, while the miR-6721-5p expression levels were markedly increased in TBI. The results of our study reveal a new insight into understanding the ceRNA regulation mechanism in TBI and select key lncRNA-miRNA-mRNA axes for prevention and treatment of TBI.


Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Redes Reguladoras de Genes , Regulação Neoplásica da Expressão Gênica , Lesões Encefálicas Traumáticas/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
11.
Stem Cell Res ; 76: 103334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340451

RESUMO

Retinitis pigmentosa (RP) is the most common inherited retinal diseases, characterized by photoreceptor cell death and retinal pigment epithelial atrophy. Mutations in cyclic nucleotide gated channel subunit alpha 1 (CNGA1) have been reported to cause retinitis pigmentosa. Here, we established the human induced pluripotent stem cell line (iPSC) SJTUGHi002-A, generated from peripheral blood mononuclear cells of a 36-year-old male RP patient, who carried a homozygous frameshift variant in CNGA1 gene (c.265delC; p.L89Ffs*4). The cell line can serve as a patient-derived disease model for exploring the pathogenesis and drug development of CNGA1-RP.


Assuntos
Células-Tronco Pluripotentes Induzidas , Retinose Pigmentar , Adulto , Humanos , Masculino , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação , Retinose Pigmentar/patologia
12.
Proc Natl Acad Sci U S A ; 121(9): e2315132121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377199

RESUMO

The cooperative action of the subunits in oligomeric receptors enables fine-tuning of receptor activation, as demonstrated for the regulation of voltage-activated HCN pacemaker ion channels by relating cAMP binding to channel activation in ensemble signals. HCN channels generate electric rhythmicity in specialized brain neurons and cardiomyocytes. There is conflicting evidence on whether binding cooperativity does exist independent of channel activation or not, as recently reported for detergent-solubilized receptors positioned in zero-mode waveguides. Here, we show positive cooperativity in ligand binding to closed HCN2 channels in native cell membranes by following the binding of individual fluorescence-labeled cAMP molecules. Kinetic modeling reveals that the affinity of the still empty binding sites rises with increased degree of occupation and that the transition of the channel to a flip state is promoted accordingly. We conclude that ligand binding to the subunits in closed HCN2 channels not pre-activated by voltage is already cooperative. Hence, cooperativity is not causally linked to channel activation by voltage. Our analysis also shows that single-molecule binding measurements at equilibrium can quantify cooperativity in ligand binding to receptors in native membranes.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ligantes , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , AMP Cíclico/metabolismo , Fenômenos Biofísicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
13.
New Phytol ; 242(3): 1043-1054, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38184789

RESUMO

The timing of vegetative phase change (VPC) in plants is regulated by a temporal decline in the expression of miR156. Both exogenous cues and endogenous factors, such as temperature, light, sugar, nutrients, and epigenetic regulators, have been shown to affect VPC by altering miR156 expression. However, the genetic basis of natural variation in VPC remains largely unexplored. Here, we conducted a genome-wide association study on the variation of the timing of VPC in Arabidopsis. We identified CYCLIC NUCLEOTIDE-GATED ION CHANNEL 4 (CNGC4) as a significant locus associated with the diversity of VPC. Mutations in CNGC4 delayed VPC, accompanied by an increased expression level of miR156 and a corresponding decrease in SQUAMOSA PROMOTER BINDING-LIKE (SPL) gene expression. Furthermore, mutations in CNGC2 and CATION EXCHANGER 1/3 (CAX1/3) also led to a delay in VPC. Polymorphisms in the CNGC4 promoter contribute to the natural variation in CNGC4 expression and the diversity of VPC. Specifically, the early CNGC4 variant promotes VPC and enhances plant adaptation to local environments. In summary, our findings offer genetic insights into the natural variation in VPC in Arabidopsis, and reveal a previously unidentified role of calcium signaling in the regulation of VPC.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , MicroRNAs , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sinalização do Cálcio , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleotídeos Cíclicos/metabolismo
14.
Neurosci Lett ; 822: 137626, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38191090

RESUMO

Previous studies have shown that the hyperpolarized cyclic nucleotide gated (HCN) ion channels in the spinal dorsal horn (SDH) might be involved in the development of diabetic neuropathic pain (DNP). Additionally, other studies have shown that the decreased potassium-chloride cotransporter 2 (KCC2) expression in the SDH promotes pain hypersensitivity. Both HCN channels and KCC2 were highly expressed in spinal substantia gelatinosa neurons. However, whether the K+ efflux induced by the activation of HCN channels in DNP modulate KCC2 function and subsequently affect the role of γ-aminobutyric acid (GABA)/GABA-A receptors of neurons in the SDH remains to be clarified. The purpose of this work was to investigate the underlying mechanisms of KCC2 participating in HCN channels to promote DNP. Here, we found that the analgesic role of HCN channels blocker ZD7288 was associated with the up-regulated KCC2 expression and could be prevented by DIOA, a KCC2 blocker. Furthermore, the level of GABA in DNP rats significantly increased, which was decreased by ZD72288. Moreover, DIOA pretreatment could partly block the inhibitory effect of ZD7288 on the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signaling activation of DNP rats. Finally, inhibition of cAMP-PKA signaling alleviated allodynia and elevated KCC2 expression in DNP rats. Altogether, this study reveals that the role of cAMP-PKA signaling-regulated HCN channels in DNP associated with decreased KCC2 expression in the spinal cord and altered GABA nature.


Assuntos
Diabetes Mellitus , Neuralgia , Animais , Ratos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Diabetes Mellitus/metabolismo , Ácido gama-Aminobutírico/metabolismo , Cotransportadores de K e Cl- , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
15.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287019

RESUMO

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Conformação Proteica em alfa-Hélice , Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
16.
Ophthalmic Genet ; 45(1): 84-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37158316

RESUMO

BACKGROUND: Ectrodactyly is a rare congenital limb malformation characterized by a deep median cleft of the hand and/or foot due to the absence of central rays. It could be isolated or depicts a part of diverse syndromic forms. Heterozygous pathogenic variants in the TP63 gene are responsible for at least four rare syndromic human disorders associated with ectrodactyly. Among them, ADULT (Acro-Dermato-Ungual-Lacrimal-Tooth) syndrome is characterized by ectodermal dysplasia, excessive freckling, nail dysplasia, and lacrimal duct obstruction, in addition to ectrodactyly and/or syndactyly. Ophthalmic findings are very common in TP63-related disorders, consisting mainly of lacrimal duct hypoplasia. Absent meibomian glands have also been well documented in EEC3 (Ectrodactyly Ectodermal dysplasia Cleft lip/palate) syndrome but not in ADULT syndrome. METHODS: We report a case of syndromic ectrodactyly consistent with ADULT syndrome, with an additional ophthalmic manifestation of agenesis of meibomian glands. The proband, as well as her elder sister, presented with congenital cone dystrophy.The molecular investigation was performed in the proband using Whole Exome Sequencing. Family segregation of the identified variants was confirmed by Sanger sequencing. RESULTS: Two clinically relevant variants were found in the proband: the novel de novo heterozygous missense c.931A > G (p.Ser311Gly) in the TP63 gene classified as pathogenic, and the homozygous nonsense pathogenic c.1810C > T (p.Arg604Ter) in the CNGB3 gene. The same homozygous CNGB3 variation was also found in the sister, explaining the cone dystrophy in both cases. CONCLUSIONS: Whole Exome Sequencing allowed dual molecular diagnoses: de novo TP63-related syndromic ectrodactyly and familial CNGB3-related congenital cone dystrophy.


Assuntos
Anodontia , Mama , Fenda Labial , Fissura Palatina , Distrofia de Cones , Displasia Ectodérmica , Obstrução dos Ductos Lacrimais , Deformidades Congênitas dos Membros , Unhas Malformadas , Transtornos da Pigmentação , Adulto , Feminino , Humanos , Mama/anormalidades , Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Sequenciamento do Exoma , Glândulas Tarsais , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
17.
Mol Neurobiol ; 61(4): 2430-2445, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37889366

RESUMO

The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.


Assuntos
Memória de Curto Prazo , Células Piramidais , Animais , Ratos , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Memória de Curto Prazo/fisiologia , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Células Piramidais/metabolismo
18.
Plant Physiol ; 194(3): 1889-1905, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37949839

RESUMO

Small RNAs are widely involved in plant immune responses. However, the role of long small RNAs (25 to 40 nt) in monocot plant disease resistance is largely unknown. Here, we identified a long small RNA (lsiR76113) from rice (Oryza sativa) that is downregulated by Magnaporthe oryzae infection and targets a gene encoding CYCLIC NUCLEOTIDE-GATED CHANNEL 5 (CNGC5). The cngc5 mutant lines were more susceptible to M. oryzae than the wild type, while knocking down lsiR76113 in transgenic rice plants promoted pathogen resistance. A protoplast transient expression assay showed that OsCNGC5 promotes Ca2+ influx. These results demonstrate that OsCNGC5 enhances rice resistance to rice blast by increasing the cytosolic Ca2+ concentration. Importantly, exogenous Ca2+ application enhanced rice M. oryzae resistance by affecting reactive oxygen species (ROS) production. Moreover, cngc5 mutants attenuated the PAMP-triggered immunity response, including chitin-induced and flg22-induced ROS bursts and protein phosphorylation in the mitogen-activated protein kinase cascade, indicating that OsCNGC5 is essential for PAMP-induced calcium signaling in rice. Taken together, these results suggest that lsiR76113-mediated regulation of Ca2+ influx is important for PTI responses and disease resistance in rice.


Assuntos
Cálcio , Resistência à Doença , Resistência à Doença/genética , Espécies Reativas de Oxigênio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Plantas Geneticamente Modificadas , RNA , Nucleotídeos Cíclicos
19.
New Phytol ; 241(3): 1277-1291, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013595

RESUMO

Transient and rapid increase in cytosolic Ca2+ plays a crucial role in plant-pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). Cyclic nucleotide-gated channels (CNGCs) have been implicated in mediating this Ca2+ influx; however, their regulatory mechanisms remain poorly understood. Here, we have found that AVRblb2 requires the calmodulin (CaM) and calmodulin-like (CML) proteins as co-factors to interact with the NbCNGCs, resulting in the formation of AVRblb2-CaM/CML-NbCNGCs complex. Furthermore, CaM and CML are dissociated from NbCNGC18 during PTI response to increase Ca2+ influx; however, Avrblb2 inhibits calcium channel activation by disrupting the release of CaM and CML from NbCNGC18. Following recognition of PAMP, NbCNGC18 forms active heteromeric channels with other NbCNGCs, which may give selectivity of CNGC complex against diverse signals for fine-tuning of cytosolic Ca2+ level to mediate appropriate responses. Silencing of multiple NbCNGCs compromised the function of AVRblb2 on the pathogenicity of Phytophthora infestans, confirming that AVRblb2 contributes to pathogen virulence by targeting CNGCs. Our findings provide new insights into the regulation of CNGCs in PTI and the role of pathogen effectors in manipulating host cell physiology to promote infection.


Assuntos
Calmodulina , Phytophthora infestans , Calmodulina/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Cálcio/metabolismo , Reconhecimento da Imunidade Inata , Phytophthora infestans/metabolismo , Nucleotídeos Cíclicos/metabolismo , Imunidade Vegetal
20.
Clin Genet ; 105(4): 376-385, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38148624

RESUMO

An estimated 1 in 10 000 people are born without the ability to smell, a condition known as congenital anosmia, and about one third of those people have non-syndromic, or isolated congenital anosmia (ICA). Despite the significant impact of olfaction for our quality of life, the underlying causes of ICA remain largely unknown. Using whole exome sequencing (WES) in 10 families and 141 individuals with ICA, we identified a candidate list of 162 rare, segregating, deleterious variants in 158 genes. We confirmed the involvement of CNGA2, a previously implicated ICA gene that is an essential component of the olfactory transduction pathway. Furthermore, we found a loss-of-function variant in SREK1IP1 from the family gene candidate list, which was also observed in 5% of individuals in an additional non-family cohort with ICA. Although SREK1IP1 has not been previously associated with olfaction, its role in zinc ion binding suggests a potential influence on olfactory signaling. This study provides a more comprehensive understanding of the spectrum of genetic alterations and their etiology in ICA patients, which may improve the diagnosis, prognosis, and treatment of this disorder and lead to better understanding of the mechanisms governing basic olfactory function.


Assuntos
Transtornos do Olfato , Transtornos do Olfato/congênito , Qualidade de Vida , Humanos , Transtornos do Olfato/genética , Transtornos do Olfato/diagnóstico , Mutação , Transdução de Sinais , Olfato/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...