Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 100(2): 297-310, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844148

RESUMO

The TRPC5 ion channel is activated upon depletion of intracellular calcium stores, as well as by various stimuli such as nitric oxide (NO), membrane stretch, and cold temperatures. TRPC5 is abundantly expressed in the central nervous system where it has important neuronal functions. In the chick retina, TRPC5 expression was shown to be restricted to amacrine cells (ACs) and Müller glial cells, although its expression was also observed in the ganglion cell layer (GCL) in displaced ACs, as determined by their characteristic cell morphology. However, it is possible that this expression analysis alone might be insufficient to fully understand the expression of TRPC5 in retinal ganglion cells (RGCs). Hence, we analyzed TRPC5 expression by in situ hybridization and immunostaining in the developing mouse retina, and for the first time identified that developing and mature RGCs strongly express TRPC5. The expression begins at E14.5, and is restricted to ACs and RGCs. It was reported that TRPC5 negatively regulates axonal outgrowth in hippocampal neurons. We thus hypothesized that TRPC5 might have similar functions in RGCs since they extend very long axons toward the brain, and this characteristic significantly differs from other retinal cell types. To elucidate its possible involvement in axonal outgrowth, we inhibited TRPC5 activity in developing RGCs which significantly increased RGC axon length. In contrast, overexpression of TRPC5 inhibited axonal outgrowth in developing RGCs. These results indicate that TRPC5 is an important negative regulator of RGC axonal outgrowth. Since TRPC5 is a mechanosensor, it might function to sense abnormal intraocular pressure changes, and could contribute to the death of RGCs in diseases such as glaucoma. In this case, excessive Ca2+ entry through TRPC5 might induce dendritic and axonal remodeling, which could lead to cell death, as our findings clearly indicate that TRPC5 is an important regulator of neurite remodeling.


Assuntos
Axônios/metabolismo , Retina/metabolismo , Células Ganglionares da Retina , Canais de Cátion TRPC , Células Amácrinas/citologia , Células Amácrinas/metabolismo , Animais , Cálcio/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
2.
Medicina (Kaunas) ; 55(7)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315301

RESUMO

Objectives: Many studies indicate the involvement of transient receptor potential (TRP) channels in the development of heart hypertrophy. However, the data is often conflicted and has originated in animal models. Here, we provide systematic analysis of TRP channels expression in human failing myocardium. Methods and results: Left-ventricular tissue samples were isolated from explanted hearts of NYHA III-IV patients undergoing heart transplants (n = 43). Quantitative real-time PCR was performed to assess the mRNA levels of TRPC, TRPM and TRPV channels. Analysis of functional, clinical and biochemical data was used to confirm an end-stage heart failure diagnosis. Compared to myocardium samples from healthy donor hearts (n = 5), we detected a distinct increase in the expression of TRPC1, TRPC5, TRPM4 and TRPM7, and decreased expression of TRPC4 and TRPV2. These changes were not dependent on gender, clinical or biochemical parameters, nor functional parameters of the heart. We detected, however, a significant correlation of TRPC1 and MEF2c expression. Conclusions: The end-stage heart failure displays distinct expressional changes of TRP channels. Our findings provide a systematic description of TRP channel expression in human heart failure. The results highlight the complex interplay between TRP channels and the need for deeper analysis of early stages of hypertrophy and heart failure development.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Transplante de Coração/efeitos adversos , Canais de Potencial de Receptor Transitório/análise , Análise de Variância , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/complicações , Transplante de Coração/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/análise , Proteínas Serina-Treonina Quinases/sangue , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estatísticas não Paramétricas , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/sangue , Canais de Cátion TRPM/análise , Canais de Cátion TRPM/sangue , Canais de Potencial de Receptor Transitório/sangue , Canais de Potencial de Receptor Transitório/farmacologia
3.
Org Biomol Chem ; 17(22): 5586-5594, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31115430

RESUMO

The transient receptor potential channel subfamily member 5 (TRPC5) is a calcium permeable cation channel widely expressed in the brain. Accumulating evidence indicates that it plays a crucial role in psychiatric disorders including depression and anxiety. Positron emission tomography (PET) combined with a TRPC5 specific radioligand may provide a unique tool to investigate the functions of TRPC5 in animal disease models to guide drug development targeting TRPC5. To develop a TRPC5 PET radiotracer, the potent TRPC5 inhibitor HC608 was chosen for C-11 radiosynthesis through the N-demethyl amide precursor 7 reacting with [11C]methyl iodide. Under optimized conditions, [11C]HC608 was achieved with good radiochemical yield (25 ± 5%), high chemical and radiochemical purity (>99%), and high specific activity (204-377 GBq µmol-1, decay corrected to the end of bombardment, EOB). The in vitro autoradiography study revealed that [11C]HC608 specifically binds to TRPC5. Moreover, initial in vivo evaluation of [11C]HC608 performed in rodents and the microPET study in the brain of non-human primates further demonstrated that [11C]HC608 was able to penetrate the blood brain barrier and sufficiently accumulate in the brain. These results suggest that [11C]HC608 has the potential to be a PET tracer for imaging TRPC5 in vivo.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Canais de Cátion TRPC/análise , Radioisótopos de Carbono , Humanos , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
4.
Cerebellum ; 18(3): 536-543, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30887370

RESUMO

Canonical transient receptor potential (TRPC) non-selective cation channels are broadly expressed by neurons, glia and the microvasculature of the brain. In neurons and astrocytes, these ion channels are coupled to group I metabotropic glutamate receptors via Gαq-phospholipase C signal transduction. In the mouse cerebellar Purkinje neurons, TRPC channels assembled as tetramers of TRPC3 subunits exclusively mediate this glutamatergic signalling mechanism and regulation of alternative splicing results in dominance of a high Ca2+ conducting TRPC3c isoform. This regional control of TRPC3 transcript type likely has physiological and pathophysiological sequelae. The current study provides a quantitative comparison of the TRPC3c splice variant and the TRPC3b full-length isoform expression across seven regions of the human brain. This shows that the cerebellum has the highest expression level of both isoforms and that regulation of alternative splicing results in a higher propensity of the TRPC3c isoform in the cerebellum relative to the TRPC3b isoform (in a 1:3 ratio). This compares with the other regions (motor cortex, hippocampus, midbrain subregions, pons and medulla) where the prevalence of TRPC3c relative to TRPC3b is typically less than half as abundant. The finding here of a bias in the high-conductance TRPC3c isoform in the cerebellum is consistent with the enhanced vulnerability of the cerebellum to ischaemic injury.


Assuntos
Cerebelo/metabolismo , Canais de Cátion TRPC/metabolismo , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isoformas de Proteínas/análise , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPC/análise
5.
Cells Tissues Organs ; 204(5-6): 293-303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28697491

RESUMO

TRPC (transient receptor potential cation channel subfamily C) members are nonselective monovalent cation channels and control Ca2+ inflow. In this study, immunohistochemistry for TRPC1, TRPC3, and TRPC4 was performed on rat oral and craniofacial structures to elucidate their distribution and function in the peripheries. In the trigeminal ganglion (TG), 56.1, 84.1, and 68.3% of sensory neurons were immunoreactive (IR) for TRPC1, TRPC3, and TRPC4, respectively. A double immunofluorescence method revealed that small to medium-sized TG neurons co-expressed TRPCs and calcitonin gene-related peptide. In the superior cervical ganglion, all sympathetic neurons showed TRPC1 and TRPC3 immunoreactivity. Parasympathetic neurons in the submandibular ganglion, tongue, and parotid gland were TRPC1, TRPC3, and TRPC4 IR. Gustatory and olfactory cells were also IR for TRPC1, TRPC3, and/or TRPC4. In the musculature, motor endplates expressed TRPC1 and TRPC4 immunoreactivity. It is likely that TRPCs are associated with sensory, autonomic, and motor functions in oral and craniofacial structures.


Assuntos
Canais de Cátion TRPC/análise , Animais , Imuno-Histoquímica , Masculino , Sistema Nervoso Parassimpático/citologia , Glândula Parótida/citologia , Glândula Parótida/inervação , Ratos , Ratos Wistar , Células Receptoras Sensoriais/citologia , Língua/citologia , Língua/inervação , Gânglio Trigeminal/citologia
6.
Cell Physiol Biochem ; 38(2): 659-69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849622

RESUMO

BACKGROUND/AIMS: Insulin signaling to podocytes is relevant for the function of the glomerulus. Now, we tested the hypothesis that insulin increases the surface expression of canonical transient receptor potential canonical type 6 (TRPC6) channels in podocytes by a calcineurin-dependent pathway. METHODS: We used quantitative RT-PCR, immunoblotting, immunofluorescence and fluorescence spectrophotometry in cultured podocytes. Activation of Nuclear Factor of Activated T-cells (NFATc1) was measured using a specific calorimetric assay. RESULTS: Insulin increased the expression of TRPC6 transcripts and protein in podocytes. Insulin increased TRPC6 transcripts in a time and dose-dependent manner. The insulin-induced elevation of TRPC6 transcripts was blocked in the presence of tacrolimus, cyclosporine A, and NFAT-inhibitor (each p < 0.01 by ANOVA and Bonferroni's multiple comparison test). Transcripts of NOX4, another target gene of the calcineurin-NFAT pathway, were affected in a similar way. Immunoblotting showed that the administration of 100 nmol/L insulin increased TRPC6-proteins 2-fold within 48 hours. Insulin increased the activity of NFATc1 in nuclear extracts (p < 0.001) whereas tacrolimus, cyclosporine A, and NFAT-inhibitor blocked that insulin effect (p < 0.001; two way ANOVA). Immunofluorescence showed that insulin increased TRPC6-expression on the cell surface. Fluorescence-spectrophotometry and manganese quench experiments indicated that the increased TRPC6-expression after insulin administration was accompanied by an elevated transplasmamembrane cation influx. Insulin-stimulated surface expression of TRPC6 as well as transplasmamembrane cation influx could be reduced by pretreatment with tacrolimus. CONCLUSION: Insulin increases the expression of TRPC6 channels in podocytes by activation of the calcineurin-dependent pathway.


Assuntos
Calcineurina/metabolismo , Insulina/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Canais de Cátion TRPC/genética , Regulação para Cima , Linhagem Celular , Humanos , Insulina/farmacologia , Podócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPC/análise , Canal de Cátion TRPC6 , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
Hum Pathol ; 49: 77-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826413

RESUMO

In vitro studies in prostate cancer (PCa) cell lines have suggested a key and complex role of the store-operated channels (SOCs) in major cancer hallmarks, including proliferation, apoptosis, and migration. In the present study, we investigated in vivo the expression of the SOC components transient receptor potential canonical (TRPC) 1, TRPC4, Orai1, and stromal interaction molecule 1 (STIM1), during all stages of PCa progression, and evaluated their prognostic impact in clinically localized cancer (CLC). The expressions of TRPC1, TRPC4, Orai1, STIM1, and the androgen receptor and the proliferation marker Ki-67 were evaluated by immunohistochemistry on tissue microarrays containing samples of normal prostate tissues (n=91), prostatic intraepithelial neoplasia (n=61), CLC surgically treated (n=238), and castration-resistant prostate cancer (CRPC; n=45). All markers significantly increased in CLC compared with normal tissues and (for Orai1 and STIM1) in advanced pT3 tumors compared with pT2. In contrast, their expression decreased in CRPC, particularly for Orai1. In CLC, staining for TRPC1, Orai1 and STIM1 correlated with androgen receptor expression, and TRPC1 status was associated with lower proliferation and longer recurrence-free survival, after adjusting for classical prognostic markers. Although increased SOC expression during PCa progression supports a role in cancer cell migration, the inverse association between TRPC1 and biochemical relapse suggests a protective effect in CLC. Moreover, the dramatic down-regulation of Orai1 in CRPC supports its role in apoptosis at this stage of the disease. These results call for caution when considering SOCs as potential therapeutic targets for PCa.


Assuntos
Biomarcadores Tumorais/análise , Canais de Cálcio/análise , Proteínas de Membrana/análise , Proteínas de Neoplasias/análise , Neoplasia Prostática Intraepitelial/química , Neoplasias de Próstata Resistentes à Castração/química , Neoplasias da Próstata/química , Canais de Cátion TRPC/análise , Idoso , Estudos de Casos e Controles , Intervalo Livre de Doença , Humanos , Imuno-Histoquímica , Antígeno Ki-67/análise , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Proteína ORAI1 , Prostatectomia , Neoplasia Prostática Intraepitelial/mortalidade , Neoplasia Prostática Intraepitelial/patologia , Neoplasia Prostática Intraepitelial/cirurgia , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/cirurgia , Fatores de Proteção , Receptores Androgênicos/análise , Fatores de Risco , Molécula 1 de Interação Estromal , Fatores de Tempo , Análise Serial de Tecidos , Resultado do Tratamento
8.
Clin Sci (Lond) ; 129(8): 741-56, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26201024

RESUMO

Diabetic peripheral neuropathy affects up to half of diabetic patients. This neuronal damage leads to sensory disturbances, including allodynia and hyperalgesia. Many growth factors have been suggested as useful treatments for prevention of neurodegeneration, including the vascular endothelial growth factor (VEGF) family. VEGF-A is generated as two alternative splice variant families. The most widely studied isoform, VEGF-A165a is both pro-angiogenic and neuroprotective, but pro-nociceptive and increases vascular permeability in animal models. Streptozotocin (STZ)-induced diabetic rats develop both hyperglycaemia and many of the resulting diabetic complications seen in patients, including peripheral neuropathy. In the present study, we show that the anti-angiogenic VEGF-A splice variant, VEGF-A165b, is also a potential therapeutic for diabetic neuropathy. Seven weeks of VEGF-A165b treatment in diabetic rats reversed enhanced pain behaviour in multiple behavioural paradigms and was neuroprotective, reducing hyperglycaemia-induced activated caspase 3 (AC3) levels in sensory neuronal subsets, epidermal sensory nerve fibre loss and aberrant sciatic nerve morphology. Furthermore, VEGF-A165b inhibited a STZ-induced increase in Evans Blue extravasation in dorsal root ganglia (DRG), saphenous nerve and plantar skin of the hind paw. Increased transient receptor potential ankyrin 1 (TRPA1) channel activity is associated with the onset of diabetic neuropathy. VEGF-A165b also prevented hyperglycaemia-enhanced TRPA1 activity in an in vitro sensory neuronal cell line indicating a novel direct neuronal mechanism that could underlie the anti-nociceptive effect observed in vivo. These results demonstrate that in a model of Type I diabetes VEGF-A165b attenuates altered pain behaviour and prevents neuronal stress, possibly through an effect on TRPA1 activity.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/prevenção & controle , Degeneração Neural/prevenção & controle , Neuralgia/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Linhagem Celular , Neuropatias Diabéticas/etiologia , Avaliação Pré-Clínica de Medicamentos , Azul Evans , Feminino , Gânglios Espinais/efeitos dos fármacos , Hiperglicemia/complicações , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
Biochemistry ; 54(26): 4033-41, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26112884

RESUMO

A gain-of-function mutation (T635A) in the transient receptor potential (TRP) channel TRPC3 results in abnormal channel gating and causes cerebellar ataxia in the dominant Moonwalker (Mwk) mouse mutant. However, the underlying molecular and structural mechanisms are unclear. Here, we used a combined approach of computational modeling and functional characterization of proposed TRPC3 mutants. Our findings support a mechanism by which the hydrogen bonding capability of threonine 635 plays a significant role in maintaining a stable, closed state channel. This capability is lost in the Mwk mutant, suggesting a structural basis for the disease-causing phenotype in the Mwk mouse.


Assuntos
Ataxia Cerebelar/genética , Mutação Puntual , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/patologia , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Fosforilação , Alinhamento de Sequência , Canais de Cátion TRPC/análise
10.
J Dent Res ; 94(3): 446-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576470

RESUMO

Thermal and mechanical hypersensitivity in the injured region is a common complication. Although it is well known clinically that thermal and mechanical sensitivity of the oral mucosa is different from that of the skin, the mechanisms underlying injured pain of the oral mucosa remain poorly understood. The transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) in primary afferent neurons are known to contribute to pathological pain. Therefore, we investigated whether TRPV1 and/or TRPA1 contribute to thermal and mechanical hypersensitivity following oral mucosa or whisker pad skin incision. Strong heat and mechanical and cold hypersensitivity was caused in the buccal mucosa and whisker pad skin following incisions. On day 3 after the incisions, the number of TRPV1-immunoreactive (IR) and TRPA1-IR trigeminal ganglion (TG) neurons innervating the buccal mucosa and whisker pad skin was significantly increased, and the number of TRPV1/TRPA1-IR TG neurons innervating whisker pad skin, but not the buccal mucosa, was significantly increased. Administration of the TRPV1 antagonist, SB366791, to the incised site produced a significant suppression of heat hyperalgesia in both the buccal mucosa and whisker pad skin, as well as mechanical allodynia in the whisker pad skin. Administration of the TRPA1 antagonist, HC-030031, to the incised site suppressed mechanical allodynia and cold hyperalgesia in both the buccal mucosa and whisker pad skin, as well as heat hyperalgesia in the whisker pad skin. These findings indicate that altered expressions of TRPV1 and TRPA1 in TG neurons are involved in thermal and mechanical hypersensitivity following the buccal mucosa and whisker pad skin incision. Moreover, diverse changes in the number of TRPV1 and TRPA1 coexpressed TG neurons in whisker pad skin-incised rats may contribute to the intracellular interactions of TRPV1 and TRPA1 associated with whisker pad skin incision, whereas TRPV1 and TRPA1 expression in individual TG neurons is involved in buccal mucosa-incised pain.


Assuntos
Dor Facial/fisiopatologia , Mucosa Bucal/lesões , Dor/fisiopatologia , Canais de Cátion TRPC/fisiologia , Canais de Cátion TRPV/fisiologia , Acetanilidas/farmacologia , Anilidas/farmacologia , Animais , Cinamatos/farmacologia , Temperatura Baixa , Eletromiografia/métodos , Temperatura Alta , Hiperalgesia/fisiopatologia , Masculino , Mucosa Bucal/inervação , Neurônios/citologia , Neurônios/fisiologia , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/antagonistas & inibidores , Gânglio Trigeminal/fisiopatologia , Vibrissas/lesões , Vibrissas/inervação
11.
J Dent Res ; 94(2): 304-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416669

RESUMO

Disorders of human salivary glands resulting from therapeutic radiation treatment for head and neck cancers or from the autoimmune disease Sjögren syndrome (SS) frequently result in the reduction or complete loss of saliva secretion. Such irreversible dysfunction of the salivary glands is due to the impairment of acinar cells, the major glandular cells of protein, salt secretion, and fluid movement. Availability of primary epithelial cells from human salivary gland tissue is critical for studying the underlying mechanisms of these irreversible disorders. We applied 2 culture system techniques on human minor salivary gland epithelial cells (phmSG) and optimized the growth conditions to achieve the maintenance of phmSG in an acinar-like phenotype. These phmSG cells exhibited progenitor cell markers (keratin 5 and nanog) as well as acinar-specific markers-namely, α-amylase, cystatin C, TMEM16A, and NKCC1. Importantly, with an increase of the calcium concentration in the growth medium, these phmSG cells were further promoted to acinar-like cells in vitro, as indicated by an increase in AQP5 expression. In addition, these phmSG cells also demonstrated functional calcium mobilization, formation of epithelial monolayer with high transepithelial electrical resistance (TER), and polarized secretion of α-amylase secretion after ß-adrenergic receptor stimulation. Taken together, suitable growth conditions have been established to isolate and support culture of acinar-like cells from the human salivary gland. These primary epithelial cells can be useful for study of molecular mechanisms involved in regulating the function of acinar cells and in the loss of salivary gland function in patients.


Assuntos
Glândulas Salivares Menores/citologia , Anoctamina-1 , Aquaporina 5/análise , Cálcio/farmacologia , Sinalização do Cálcio/fisiologia , Moléculas de Adesão Celular/análise , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Canais de Cloreto/análise , Meios de Cultura , Cistatina C/análise , Impedância Elétrica , Células Epiteliais/citologia , Proteínas de Homeodomínio/análise , Humanos , Queratina-5/análise , Proteínas de Membrana/análise , Proteína Homeobox Nanog , Proteínas de Neoplasias/análise , Fenótipo , Receptores Adrenérgicos beta/efeitos dos fármacos , Membro 2 da Família 12 de Carreador de Soluto/análise , Células-Tronco/citologia , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal , Canais de Cátion TRPC/análise , Junções Íntimas/ultraestrutura , alfa-Amilases/análise
12.
Eur J Oral Sci ; 122(6): 391-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25371244

RESUMO

Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection.


Assuntos
Capsaicina/efeitos adversos , Temperatura Baixa/efeitos adversos , Dor Facial/etiologia , Hiperalgesia/etiologia , Fármacos do Sistema Sensorial/efeitos adversos , Canais de Cátion TRPC/fisiologia , Acetanilidas/farmacologia , Anilidas/farmacologia , Animais , Comportamento Animal , Capsaicina/farmacologia , Cinamatos/farmacologia , Eletromiografia/instrumentação , Face , Temperatura Alta/efeitos adversos , Injeções Intradérmicas , Masculino , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Neurônios/química , Neurônios/efeitos dos fármacos , Estimulação Física , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Fármacos do Sistema Sensorial/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/fisiologia , Gânglio Trigeminal/química , Gânglio Trigeminal/efeitos dos fármacos
13.
Crit Care Med ; 42(10): e663-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25072760

RESUMO

OBJECTIVE: Acute renal tubular injury is a serious complication in the postoperative period, which is associated with high mortality and increased ICU stay. We aimed to demonstrate the protective effect of rhEPO against acute tubular injury induced by ischemia-reperfusion and to explore the mechanism of canonical transient receptor potential channel-6. DESIGN: Randomized laboratory animal study. SETTINGS: Animal research laboratory. INTERVENTIONS: Male Sprague-Dawley rats were randomly divided into three groups: the sham group, the control group, and the rhEPO group. Experimental acute tubular injury was established in rats by bilateral renal arterial occlusion for 30 minutes followed by reperfusion. MEASUREMENTS AND MAIN RESULTS: Blood samples were obtained for cystatin-C and neutrophil gelatinase-associated lipocalin measurements by enzyme-linked immunosorbance assays. Seventy-two hours after reperfusion, urine samples were collected for osmolality and fractional excretion of sodium (%) assays on a chemistry analyzer. Kidneys were harvested at 24, 48, and 72 hours after reperfusion. Transient receptor potential channel-6, aquaporin-2, and Na,K-ATPase expression in collecting ducts were studied by immunofluorescence and Western blot. Coimmunoprecipitations were also performed to identify the possible signalplex relation between transient receptor potential channel-6 and aquaporin-2 or Na,K-ATPase channels. RhEPO pretreatment significantly inhibited serum cystatin-C (2 hr: 453 ± 64 µg/L vs 337 ± 28 µg/L, p < 0.01), serum neutrophil gelatinase-associated lipocalin (72 hr: 1,175 ± 107 ng/L vs 1,737 ± 402 ng/L, p < 0.05), and urinary fractional excretion of sodium (%) increase (0.9 ± 0.1 vs 2.2 ± 0.8, p < 0.05) and alleviated the decrease of urinary osmolality (1,293 ± 101 mosmol/kg H2O vs 767 ± 91 mosmol/kg H2O, p < 0.05) induced by ischemia-reperfusion injury. Meanwhile, recombinant human erythropoietin greatly improved the ischemia-reperfusion-induced attenuation of transient receptor potential channel-6 expression (48 hr: 42% ± 2% vs 67% ± 2% and 72 hr: 55% ± 2% vs 66% ± 2%), as well as aquaporin-2 and Na,K-ATPase expression in collecting ducts. Transient receptor potential channel-6 functionally interacted with Na,K-ATPase but not aquaporin-2. CONCLUSIONS: Recombinant human erythropoietin pretreatment at the dose of 5,000 IU/kg potently prevented ischemia-reperfusion-induced acute tubular injury, which might be partly attributed to the restoring the effect of transient receptor potential channel-6 expression and collecting duct function.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Eritropoetina/uso terapêutico , Túbulos Renais Coletores/fisiopatologia , Traumatismo por Reperfusão/tratamento farmacológico , Canais de Cátion TRPC/fisiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Proteínas de Fase Aguda/fisiologia , Animais , Aquaporina 2/análise , Aquaporina 2/metabolismo , Aquaporina 2/fisiologia , Cistatina C/sangue , Cistatina C/fisiologia , Humanos , Túbulos Renais Coletores/química , Túbulos Renais Coletores/metabolismo , Lipocalina-2 , Lipocalinas/sangue , Lipocalinas/fisiologia , Masculino , Proteínas Proto-Oncogênicas/sangue , Proteínas Proto-Oncogênicas/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Canais de Cátion TRPC/análise
14.
Anesth Analg ; 119(1): 179-185, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24854869

RESUMO

BACKGROUND: The fact that transient receptor potential ankyrin 1 (TRPA1) on the peripheral terminals could attenuate hyperalgesia is widely accepted, but the effect of spinal TRPA1 in the modulation of hyperalgesia has not been fully demonstrated. In the present study, we investigated the effect of intrathecal (i.t.) administration TRPA1 antagonists on chronic pain and expression of TRPA1 and phosphorylation N-methyl-D-aspartate receptor 2B subunit (p-NR2B) in the spinal cord with chronic compression of the dorsal root ganglia (CCD) in rats. METHODS: The study was conducted in 2 parts. Part 1: Sixteen rats were divided into 2 groups (n = 8 each): a sham group and CCD group. Paw withdrawal mechanical thresholds (PWMT) were measured at baseline and 1, 3, 7, 10, 14, and 21 days after CCD. Sixteen other rats were used to evaluate expression of TRPA1 and p-NR2B in spinal cord on the seventh and 14th days after CCD; Western blotting was used to evaluate expression levels (n = 4 each). Part 2: 40 rats were divided into 5 groups (n = 8 each): CCD group, CCD + Vehicle group, CCD + HC-030031(10 µg, i.t.) group, CCD + HC-030031(25 µg, i.t.) group, and CCD + HC-030031(50 µg, i.t.) group. PWMTs were measured at baseline and 0.5, 1, 2, 4, and 6 hours after i.t. HC-030031 on the third, seventh, 10th, and 14th days after CCD. Another 48 rats were used to evaluate expression of TRPA1 and p-NR2B in spinal cord 2 hours after injection on the seventh and 14th days after CCD in groups CCD, CCD + Vehicle, and CCD+ HC-030031(50 µg, i.t.) using Western blotting (n = 4 each). RESULTS: Compared with the sham group, PWMT was significantly decreased, and protein expression of TRPA1 and p-NR2B were upregulated, in spinal cord on the seventh and 14th days after CCD operation. TRPA1 antagonists (HC-030031, 50 µg, i.t.) increased the PWMT after CCD and downregulated the protein level of TRPA1 and p-NR2B in spinal cord at 2 hours after the injection on the seventh and 14th days after CCD. CONCLUSIONS: These data demonstrated that the i.t. administration of TRPA1 antagonists could attenuate neuropathic pain in CCD rats, and this effect could be partially reduced by p-NR2B receptor expression in spinal cord.


Assuntos
Neuralgia/tratamento farmacológico , Canais de Cátion TRPC/antagonistas & inibidores , Acetanilidas/administração & dosagem , Acetanilidas/farmacologia , Animais , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Injeções Espinhais , Masculino , Purinas/administração & dosagem , Purinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/análise , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise
15.
Asian Pac J Trop Med ; 7(1): 44-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24418082

RESUMO

OBJECTIVE: To study the expression of TRPC6 among prostate cancer cells, establish high expression cell lines of TRPC6, and to provide potential cell mode for prostate cancer oncogenesis and development. METHODS: Occurrence and development of prostate cancer cells, PC3, PC-3 m DU145, 22 rv1, LNCaP and normal prostate epithelial cells in the PrEC TRPC6 expression level were detected by QPCR method. Calcium phosphate transfection method was used to package retrovirus pLEGFP-N1-TRPC6 and pLEGFP-N1-vector and infect the prostate cancer cells, a stable high expression of TRPC6 prostate cancer cells. Sable cell lines of TRPC6, matrix metalloproteinase (MMP) 2, MMP9 expression was detected by QPCR and Western blot. Change of cell invasion ability was detected by Transwell. RESULTS: The expression level of prostate cancer cells TRPC6 were higher than control group PrEC cells. Among TPRC6 the expression of cell line PC 3 transfer potential wre the lowest, and high transfer cell line PC-3M express was the highest. Real-time fluorescent quantitative PCR and western blot results showed that after filter, the seventh generation of cell TRPC6 protein and mRNA expression levels were higher than the control group obviously. Transwell experimental results showed that the overexpression of TRPC6 could promote the invasion ability of PC3 prostate cancer cells. CONCLUSIONS: TRPC6 expressed in prostate cancer cells is in disorder, and its action may be associated with the invasion and metastasis of prostate cancer cells; successful establishment of stable high expression of TRPC6 prostate cancer cells primarily confirm the invasion-trigger ability of TRPC6 on prostate cancer, and lay down the Foundation for exploring the TRPC6's role in the occurrence and development of prostate cancer mechanism.


Assuntos
Invasividade Neoplásica/genética , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPC/metabolismo , Linhagem Celular Tumoral , Humanos , Masculino , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Próstata/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroviridae , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
16.
Cell Tissue Res ; 355(1): 201-12, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24146259

RESUMO

Growing evidence indicates that transient receptor potential canonical (TRPC) channels play important roles in various Ca(2+)-mediated physiological and pathophysiological processes, including development. Many types of TRPC proteins are expressed in the heart. However, limited data are available comparing the expression and localization among TRPC proteins in the ventricular myocyte at various developmental stages. Our purpose is to investigate the expression and localization profile of TRPC proteins in ventricular myocytes of fetal (18.5 days), neonatal (< 24 h after birth) and adult (8 week old) rats. Western blotting, immunofluorescence and confocal laser scanning microscopy were employed. TRPC1/3-6 proteins were expressed in the rat ventricle throughout the three developmental stages. The expression profile of TRPC1/3/4 in the ventricle followed an upward trend from the fetus to the adult. By contrast, TRPC6 in the ventricle was expressed at the highest level in the fetal group and was sharply down-regulated immediately after birth. TRPC5 expression in the ventricle did not change significantly during the three stages. TRPC1/3/5/6 proteins were localized to the T-tubule and TRPC1/3/4/6 to intercalated disks in adult myocytes. The wide spatiotemporal overlap and dynamic regulation of TRPC expression in ventricular myocytes indicates potential complex combinations and redundancy of native TRPC proteins in the heart and gives important clues for further investigations into the exact subunit compositions and functional properties of native TRPC channels in the heart.


Assuntos
Ventrículos do Coração/citologia , Ventrículos do Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Canais de Cátion TRPC/análise , Animais , Células Cultivadas , Feminino , Imunofluorescência , Masculino , Miócitos Cardíacos/ultraestrutura , Ratos , Ratos Sprague-Dawley
17.
J Clin Invest ; 123(12): 5298-309, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24231357

RESUMO

An intact kidney filter is vital to retention of essential proteins in the blood and removal of waste from the body. Damage to the filtration barrier results in albumin loss in the urine, a hallmark of cardiovascular disease and kidney failure. Here we found that the ion channel TRPC5 mediates filtration barrier injury. Using Trpc5-KO mice, a small-molecule inhibitor of TRPC5, Ca2+ imaging in isolated kidney glomeruli, and live imagining of podocyte actin dynamics, we determined that loss of TRPC5 or its inhibition abrogates podocyte cytoskeletal remodeling. Inhibition or loss of TRPC5 prevented activation of the small GTP-binding protein Rac1 and stabilized synaptopodin. Importantly, genetic deletion or pharmacologic inhibition of TRPC5 protected mice from albuminuria. These data reveal that the Ca2+-permeable channel TRPC5 is an important determinant of albuminuria and identify TRPC5 inhibition as a therapeutic strategy for the prevention or treatment of proteinuric kidney disease.


Assuntos
Albuminúria/prevenção & controle , Barreira de Filtração Glomerular/fisiologia , Canais de Cátion TRPC/fisiologia , Albuminúria/induzido quimicamente , Albuminúria/genética , Sequência de Aminoácidos , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neuropeptídeos/metabolismo , Podócitos/ultraestrutura , Protaminas/toxicidade , Ratos , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
Cell Tissue Res ; 354(2): 507-19, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23942896

RESUMO

Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 µM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 µM WS12 and 100 µM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.


Assuntos
Glândulas Salivares/ultraestrutura , Canais de Potencial de Receptor Transitório/análise , Animais , Cálcio/metabolismo , Expressão Gênica , Masculino , RNA Mensageiro/genética , Ratos Long-Evans , Ratos Wistar , Glândulas Salivares/química , Glândulas Salivares/metabolismo , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPM/análise , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/análise , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-21394510

RESUMO

A homolog of TRPA1 was identified in the genome of the anemone, Nematostella vectensis (nv-TRPA1a), and predicted to possess six ankyrin repeat domains at the N-terminus and an ion channel domain near the C-terminus. Transmembrane segments of the ion channel domain are well conserved among several known TRPA1 polypeptides. Inhibitors of TRPA1 including ruthenium red decrease vibration-dependent discharge of nematocysts in N. vectensis and Haliplanella luciae. Activators of TRPA1 including URB-597 and polygodial increase nematocyst discharge in the absence of vibrations. Co-immunoprecipitation yields a band on SDS-PAGE gels at the predicted mass of the nv-TRPA1a polypeptide among other bands. Co-immunoprecipitation performed in the presence of antigenic peptide decreases the yield of this and several other polypeptides. In untreated controls, anti-nv-TRPA1a primarily labels the base of the hair bundle with some labeling also distributed along the length of stereocilia. Tissue immunolabeled in the presence of the antigenic peptide exhibits reduced labeling. Activating chemoreceptors for N-acetylated sugars induce immunolabel to distribute distally in stereocilia. In anemones, activating chemoreceptors for N-acetylated sugars induce hair bundles to elongate among several other structural and functional changes. Taken together, these results are consistent with the possibility that nv-TRPA1a participates in signal transduction of anemone hair bundles.


Assuntos
Anêmonas-do-Mar/fisiologia , Canais de Cátion TRPC/fisiologia , Sequência de Aminoácidos , Animais , Mecanorreceptores/fisiologia , Dados de Sequência Molecular , Transdução de Sinais/fisiologia , Canais de Cátion TRPC/análise
20.
PLoS Biol ; 9(3): e1001025, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21408196

RESUMO

Store-operated Ca²+ entry (SOCE) has been associated with two types of channels: CRAC channels that require Orai1 and STIM1 and SOC channels that involve TRPC1, Orai1, and STIM1. While TRPC1 significantly contributes to SOCE and SOC channel activity, abrogation of Orai1 function eliminates SOCE and activation of TRPC1. The critical role of Orai1 in activation of TRPC1-SOC channels following Ca²+ store depletion has not yet been established. Herein we report that TRPC1 and Orai1 are components of distinct channels. We show that TRPC1/Orai1/STIM1-dependent I(SOC), activated in response to Ca²+ store depletion, is composed of TRPC1/STIM1-mediated non-selective cation current and Orai1/STIM1-mediated I(CRAC); the latter is detected when TRPC1 function is suppressed by expression of shTRPC1 or a STIM1 mutant that lacks TRPC1 gating, STIM1(684EE685). In addition to gating TRPC1 and Orai1, STIM1 mediates the recruitment and association of the channels within ER/PM junctional domains, a critical step in TRPC1 activation. Importantly, we show that Ca²+ entry via Orai1 triggers plasma membrane insertion of TRPC1, which is prevented by blocking SOCE with 1 µM Gd³+, removal of extracellular Ca²+, knockdown of Orai1, or expression of dominant negative mutant Orai1 lacking a functional pore, Orai1-E106Q. In cells expressing another pore mutant of Orai1, Orai1-E106D, TRPC1 trafficking is supported in Ca²+-containing, but not Ca²+-free, medium. Consistent with this, I(CRAC) is activated in cells pretreated with thapsigargin in Ca²+-free medium while I(SOC) is activated in cells pretreated in Ca²+-containing medium. Significantly, TRPC1 function is required for sustained K(Ca) activity and contributes to NFκB activation while Orai1 is sufficient for NFAT activation. Together, these findings reveal an as-yet unidentified function for Orai1 that explains the critical requirement of the channel in the activation of TRPC1 following Ca²+ store depletion. We suggest that coordinated regulation of the surface expression of TRPC1 by Orai1 and gating by STIM1 provides a mechanism for rapidly modulating and maintaining SOCE-generated Ca²+ signals. By recruiting ion channels and other signaling pathways, Orai1 and STIM1 concertedly impact a variety of critical cell functions that are initiated by SOCE.


Assuntos
Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/química , Citosol/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Canais de Cálcio/análise , Canais de Cálcio/genética , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Citosol/química , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteína ORAI1 , Técnicas de Patch-Clamp , Molécula 1 de Interação Estromal , Canais de Cátion TRPC/análise , Canais de Cátion TRPC/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...