Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Subcell Biochem ; 104: 207-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963489

RESUMO

The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.


Assuntos
Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/fisiologia , Microscopia Crioeletrônica/métodos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/fisiologia , Relação Estrutura-Atividade , Regulação Alostérica
2.
Signal Transduct Target Ther ; 8(1): 261, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402746

RESUMO

Transient receptor potential (TRP) channels are sensors for a variety of cellular and environmental signals. Mammals express a total of 28 different TRP channel proteins, which can be divided into seven subfamilies based on amino acid sequence homology: TRPA (Ankyrin), TRPC (Canonical), TRPM (Melastatin), TRPML (Mucolipin), TRPN (NO-mechano-potential, NOMP), TRPP (Polycystin), TRPV (Vanilloid). They are a class of ion channels found in numerous tissues and cell types and are permeable to a wide range of cations such as Ca2+, Mg2+, Na+, K+, and others. TRP channels are responsible for various sensory responses including heat, cold, pain, stress, vision and taste and can be activated by a number of stimuli. Their predominantly location on the cell surface, their interaction with numerous physiological signaling pathways, and the unique crystal structure of TRP channels make TRPs attractive drug targets and implicate them in the treatment of a wide range of diseases. Here, we review the history of TRP channel discovery, summarize the structures and functions of the TRP ion channel family, and highlight the current understanding of the role of TRP channels in the pathogenesis of human disease. Most importantly, we describe TRP channel-related drug discovery, therapeutic interventions for diseases and the limitations of targeting TRP channels in potential clinical applications.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Humanos , Cátions , Mamíferos , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Cátion TRPP/química , Canais de Cátion TRPP/genética
3.
Gene ; 871: 147435, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37075925

RESUMO

The ability to predict 3D protein structures computationally has significantly advanced biological research. The AlphaFold protein structure database, developed by DeepMind, has provided a wealth of predicted protein structures and has the potential to bring about revolutionary changes in the field of life sciences. However, directly determining the function of proteins from their structures remains a challenging task. The Distogram from AlphaFold is used in this study as a novel feature set to identify transient receptor potential (TRP) channels. Distograms feature vectors and pre-trained language model (BERT) features were combined to improve prediction performance for transient receptor potential (TRP) channels. The method proposed in this study demonstrated promising performance on many evaluation metrics. For five-fold cross-validation, the method achieved a Sensitivity (SN) of 87.00%, Specificity (SP) of 93.61%, Accuracy (ACC) of 93.39%, and a Matthews correlation coefficient (MCC) of 0.52. Additionally, on an independent dataset, the method obtained 100.00% SN, 95.54% SP, 95.73% ACC, and an MCC of 0.69. The results demonstrate the potential for using structural information to predict protein function. In the future, it is hoped that such structural information will be incorporated into artificial intelligence networks to explore more useful and valuable functional information in the biological field.


Assuntos
Canais de Potencial de Receptor Transitório , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Inteligência Artificial , Bases de Dados de Proteínas
4.
Annu Rev Physiol ; 85: 293-316, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763971

RESUMO

The ability to detect stimuli from the environment plays a pivotal role in our survival. The molecules that allow the detection of such signals include ion channels, which are proteins expressed in different cells and organs. Among these ion channels, the transient receptor potential (TRP) family responds to the presence of diverse chemicals, temperature, and osmotic changes, among others. This family of ion channels includes the TRPV or vanilloid subfamily whose members serve several physiological functions. Although these proteins have been studied intensively for the last two decades, owing to their structural and functional complexities, a number of controversies regarding their function still remain. Here, we discuss some salient features of their regulation in light of these controversies and outline some of the efforts pushing the field forward.


Assuntos
Canais Iônicos , Canais de Potencial de Receptor Transitório , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
5.
Eur J Pharmacol ; 939: 175467, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36543288

RESUMO

Artemisinin and its derivatives are the main therapeutic drugs against Plasmodium protists, the causative agents of malaria. While several putative mechanisms of action have been proposed, the precise molecular targets of these compounds have not been fully elucidated. In addition to their antimalarial properties, artemisinins have been reported to act as anti-tumour agents and certain antinociceptive effects have also been proposed. We investigated the effect of the parent compound, artemisinin, on a number of temperature-gated Transient Receptor Potential ion channels (so called thermoTRPs), given their demonstrated roles in pain-sensing and cancer. We report that artemisinin acts as an agonist of the Transient Receptor Potential Ankyrin type 1 (TRPA1) receptor channel. Artemisinin was able to evoke calcium transients in HEK293T cells expressing recombinant human TRPA1, as well as in a subpopulation of mouse dorsal root ganglion (DRG) neurons which also responded to the selective TRPA1 agonist allyl isothiocyanate (AITC) and these responses were reversibly abolished by the selective TRPA1 antagonist A967079. Artemisinin also triggered whole-cell currents in HEK293T cells transiently transfected with human TRPA1, as well as in TRPA1-expressing DRG neurons, and these currents were inhibited by A967079. Interestingly, using human TRPA1 mutants, we demonstrate that artemisinin acts as a non-electrophilic agonist of TRPA1, activating the channel in a similar manner to carvacrol and menthol. These results may provide a better understanding of the biological actions of the very important antimalarial and anti-tumour agent artemisinin.


Assuntos
Antimaláricos , Artemisininas , Canais de Potencial de Receptor Transitório , Animais , Humanos , Camundongos , Anquirinas/química , Anquirinas/farmacologia , Antimaláricos/química , Antimaláricos/farmacologia , Artemisininas/química , Artemisininas/farmacologia , Gânglios Espinais , Células HEK293 , Canais de Potencial de Receptor Transitório/agonistas , Canais de Potencial de Receptor Transitório/química , Canal de Cátion TRPA1
6.
Artigo em Inglês | MEDLINE | ID: mdl-35882668

RESUMO

The transient receptor potential (TRP) channels, classified into six (-A, -V, -P, -C, -M, -ML, -N and -Y) subfamilies, are important membrane sensors and mediators of diverse stimuli including pH, light, mechano-force, temperature, pain, taste, and smell. The mammalian TRP superfamily of 28 members share similar membrane topology with six membrane-spanning helices (S1-S6) and cytosolic N-/C-terminus. Abnormal function or expression of TRP channels is associated with cancer, skeletal dysplasia, immunodeficiency, and cardiac, renal, and neuronal diseases. The majority of TRP members share common functional regulators such as phospholipid PIP2, 2-aminoethoxydiphenyl borate (2-APB), and cannabinoid, while other ligands are more specific, such as allyl isothiocyanate (TRPA1), vanilloids (TRPV1), menthol (TRPM8), ADP-ribose (TRPM2), and ML-SA1 (TRPML1). The mechanisms underlying the gating and regulation of TRP channels remain largely unclear. Recent advances in cryogenic electron microscopy provided structural insights into 19 different TRP channels which all revealed close proximity of the C-terminus with the N-terminus and intracellular S4-S5 linker. Further studies found that some highly conserved residues in these regions of TRPV, -P, -C and -M members mediate functionally critical intramolecular interactions (i.e., within one subunit) between these regions. This review provides an overview on (1) intramolecular interactions in TRP channels and their effect on channel function; (2) functional roles of interplays between PIP2 (and other ligands) and TRP intramolecular interactions; and (3) relevance of the ligand-induced modulation of intramolecular interaction to diseases.


Assuntos
Canais de Potencial de Receptor Transitório , Animais , Humanos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Estrutura Secundária de Proteína , Mentol , Temperatura , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo , Mamíferos/metabolismo
7.
Elife ; 112022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35686986

RESUMO

Transient receptor potential (TRP) proteins are a large family of cation-selective channels, surpassed in variety only by voltage-gated potassium channels. Detailed molecular mechanisms governing how membrane voltage, ligand binding, or temperature can induce conformational changes promoting the open state in TRP channels are still a matter of debate. Aiming to unveil distinctive structural features common to the transmembrane domains within the TRP family, we performed phylogenetic reconstruction, sequence statistics, and structural analysis over a large set of TRP channel genes. Here, we report an exceptionally conserved set of residues. This fingerprint is composed of twelve residues localized at equivalent three-dimensional positions in TRP channels from the different subtypes. Moreover, these amino acids are arranged in three groups, connected by a set of aromatics located at the core of the transmembrane structure. We hypothesize that differences in the connectivity between these different groups of residues harbor the apparent differences in coupling strategies used by TRP subgroups.


Assuntos
Canais de Potencial de Receptor Transitório , Filogenia , Domínios Proteicos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética
8.
Annu Rev Biochem ; 91: 629-649, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287474

RESUMO

Transient receptor potential (TRP) ion channels are sophisticated signaling machines that detect a wide variety of environmental and physiological signals. Every cell in the body expresses one or more members of the extended TRP channel family, which consists of over 30 subtypes, each likely possessing distinct pharmacological, biophysical, and/or structural attributes. While the function of some TRP subtypes remains enigmatic, those involved in sensory signaling are perhaps best characterized and have served as models for understanding how these excitatory ion channels serve as polymodal signal integrators. With the recent resolution revolution in cryo-electron microscopy, these and other TRP channel subtypes are now yielding their secrets to detailed atomic analysis, which is beginning to reveal structural underpinnings of stimulus detection and gating, ion permeation, and allosteric mechanisms governing signal integration. These insights are providing a framework for designing and evaluating modality-specific pharmacological agents for treating sensory and other TRP channel-associated disorders.


Assuntos
Canais de Potencial de Receptor Transitório , Microscopia Crioeletrônica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
9.
J Biol Chem ; 298(2): 101487, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915027

RESUMO

In mammalians, transient receptor potential mucolipin ion channels (TRPMLs) exhibit variable permeability to cations such as Ca2+, Fe2+, Zn2+, and Na+ and can be activated by the phosphoinositide PI(3,5)P2 in the endolysosomal system. Loss or dysfunction of TRPMLs has been implicated in lysosomal storage disorders, infectious diseases, and metabolic diseases. TRPML2 has recently been identified as a mechanosensitive and hypotonicity-sensitive channel in endolysosomal organelles, which distinguishes it from TRPML1 and TRPML3. However, the molecular and gating mechanism of TRPML2 remains elusive. Here, we present the cryo-EM structure of the full-length mouse TRPML2 in lipid nanodiscs at 3.14 Å resolution. The TRPML2 homotetramer structure at pH 7.4 in the apo state reveals an inactive conformation and some unique features of the extracytosolic/luminal domain and voltage sensor-like domain that have implications for the ion-conducting pathway. This structure enables new comparisons between the different subgroups of TRPML channels with available structures and provides structural insights into the conservation and diversity of TRPML channels. These comparisons have broad implications for understanding a variety of molecular mechanisms of TRPMLs in different pH conditions, including with and without bound agonists and antagonists.


Assuntos
Lipídeos , Nanoestruturas , Canais de Potencial de Receptor Transitório , Animais , Microscopia Crioeletrônica , Endossomos/metabolismo , Lipídeos/química , Lisossomos/metabolismo , Mamíferos/metabolismo , Camundongos , Nanoestruturas/química , Canais de Potencial de Receptor Transitório/química
10.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360907

RESUMO

The superfamily of P-loop channels includes various potassium channels, voltage-gated sodium and calcium channels, transient receptor potential channels, and ionotropic glutamate receptors. Despite huge structural and functional diversity of the channels, their pore-forming domain has a conserved folding. In the past two decades, scores of atomic-scale structures of P-loop channels with medically important drugs in the inner pore have been published. High structural diversity of these complexes complicates the comparative analysis of these structures. Here we 3D-aligned structures of drug-bound P-loop channels, compared their geometric characteristics, and analyzed the energetics of ligand-channel interactions. In the superimposed structures drugs occupy most of the sterically available space in the inner pore and subunit/repeat interfaces. Cationic groups of some drugs occupy vacant binding sites of permeant ions in the inner pore and selectivity-filter region. Various electroneutral drugs, lipids, and detergent molecules are seen in the interfaces between subunits/repeats. In many structures the drugs strongly interact with lipid and detergent molecules, but physiological relevance of such interactions is unclear. Some eukaryotic sodium and calcium channels have state-dependent or drug-induced π-bulges in the inner helices, which would be difficult to predict. The drug-induced π-bulges may represent a novel mechanism of gating modulation.


Assuntos
Domínio AAA , Canais de Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Preparações Farmacêuticas/metabolismo , Canais de Potássio/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Canais de Cálcio/química , Biologia Computacional/métodos , Eucariotos/metabolismo , Ligantes , Modelos Moleculares , Canais de Potássio/química , Conformação Proteica em alfa-Hélice , Receptores Ionotrópicos de Glutamato/química , Alinhamento de Sequência , Canais de Potencial de Receptor Transitório/química , Canais de Sódio Disparados por Voltagem/química
11.
Cells ; 10(8)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34440846

RESUMO

Oxysterols, or cholesterol oxidation products, are naturally occurring lipids which regulate the physiology of cells, including those of the immune system. In contrast to effects that are mediated through nuclear receptors or by epigenetic mechanism, which take tens of minutes to occur, changes in the activities of cell-surface receptors caused by oxysterols can be extremely rapid, often taking place within subsecond timescales. Such cell-surface receptor effects of oxysterols allow for the regulation of fast cellular processes, such as motility, secretion and endocytosis. These cellular processes play critical roles in both the innate and adaptive immune systems. This review will survey the two broad classes of cell-surface receptors for oxysterols (G-protein coupled receptors (GPCRs) and ion channels), the mechanisms by which cholesterol oxidation products act on them, and their presence and functions in the different cell types of the immune system. Overall, this review will highlight the potential of oxysterols, synthetic derivatives and their receptors for physiological and therapeutic modulation of the immune system.


Assuntos
Sistema Imunitário/metabolismo , Oxisteróis/metabolismo , Humanos , Canais Iônicos/metabolismo , Oxisteróis/química , Ligação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/metabolismo , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
12.
Elife ; 102021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101577

RESUMO

NompC is a mechanosensitive ion channel responsible for the sensation of touch and balance in Drosophila melanogaster. Based on a resolved cryo-EM structure, we performed all-atom molecular dynamics simulations and electrophysiological experiments to study the atomistic details of NompC gating. Our results showed that NompC could be opened by compression of the intracellular ankyrin repeat domain but not by a stretch, and a number of hydrogen bonds along the force convey pathway are important for the mechanosensitivity. Under intracellular compression, the bundled ankyrin repeat region acts like a spring with a spring constant of ~13 pN nm-1 by transferring forces at a rate of ~1.8 nm ps-1. The linker helix region acts as a bridge between the ankyrin repeats and the transient receptor potential (TRP) domain, which passes on the pushing force to the TRP domain to undergo a clockwise rotation, resulting in the opening of the channel. This could be the universal gating mechanism of similar tethered mechanosensitive TRP channels, which enable cells to feel compression and shrinkage.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Repetição de Anquirina , Linhagem Celular , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Canais de Potencial de Receptor Transitório/fisiologia , Canais de Potencial de Receptor Transitório/ultraestrutura
13.
Elife ; 102021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106044

RESUMO

Transient receptor potential (TRP) channels participate in calcium ion (Ca2+) influx and intracellular Ca2+ release. TRP channels have not been studied in Toxoplasma gondii or any other apicomplexan parasite. In this work, we characterize TgGT1_310560, a protein predicted to possess a TRP domain (TgTRPPL-2), and determined its role in Ca2+ signaling in T. gondii, the causative agent of toxoplasmosis. TgTRPPL-2 localizes to the plasma membrane and the endoplasmic reticulum (ER) of T. gondii. The ΔTgTRPPL-2 mutant was defective in growth and cytosolic Ca2+ influx from both extracellular and intracellular sources. Heterologous expression of TgTRPPL-2 in HEK-3KO cells allowed its functional characterization. Patching of ER-nuclear membranes demonstrates that TgTRPPL-2 is a non-selective cation channel that conducts Ca2+. Pharmacological blockers of TgTRPPL-2 inhibit Ca2+ influx and parasite growth. This is the first report of an apicomplexan ion channel that conducts Ca2+ and may initiate a Ca2+ signaling cascade that leads to the stimulation of motility, invasion, and egress. TgTRPPL-2 is a potential target for combating toxoplasmosis.


Assuntos
Sinalização do Cálcio/fisiologia , Proteínas de Protozoários , Toxoplasma , Canais de Potencial de Receptor Transitório , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasma/fisiologia , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
14.
STAR Protoc ; 2(2): 100527, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34027485

RESUMO

Small molecular probes designed for photopharmacology and opto-chemogenetics are rapidly gaining widespread recognition for investigations of transient receptor potential canonical (TRPC) channels. This protocol describes the use of three photoswitchable diacylglycerol analogs-PhoDAG-1, PhoDAG-3, and OptoDArG-for ultrarapid activation and deactivation of native TRPC2 channels in mouse vomeronasal sensory neurons and olfactory type B cells, as well as heterologously expressed human TRPC6 channels. Photoconversion can be achieved in mammalian tissue slices and enables all-optical stimulation and shutoff of TRPC channels. For complete details on the use and execution of this protocol, please refer to Leinders-Zufall et al. (2018).


Assuntos
Técnicas Citológicas/métodos , Diglicerídeos , Processos Fotoquímicos , Canais de Potencial de Receptor Transitório , Animais , Células Cultivadas , Diglicerídeos/química , Diglicerídeos/farmacologia , Camundongos , Neurônios Receptores Olfatórios/citologia , Canais de Potencial de Receptor Transitório/análise , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/metabolismo , Órgão Vomeronasal/citologia
15.
Structure ; 29(4): 330-344.e4, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33326749

RESUMO

Drosophila TRP is a calcium-permeable cation channel essential for fly visual signal transduction. During phototransduction, Ca2+ mediates both positive and negative feedback regulation on TRP channel activity, possibly via binding to calmodulin (CaM). However, the molecular mechanism underlying Ca2+ modulated CaM/TRP interaction is poorly understood. Here, we discover an unexpected, Ca2+-dependent binding mode between CaM and TRP. The TRP tail contains two CaM binding sites (CBS1 and CBS2) separated by an ∼70-residue linker. CBS1 binds to the CaM N-lobe and CBS2 recognizes the CaM C-lobe. Structural studies reveal the lobe-specific binding of CaM to CBS1&2. Mutations introduced in both CBS1 and CBS2 eliminated CaM binding in full-length TRP, but surprisingly had no effect on the response to light under physiological conditions, suggesting alternative mechanisms governing Ca2+-mediated feedback on the channel activity. Finally, we discover that TRPC4, the closest mammalian paralog of Drosophila TRP, adopts a similar CaM binding mode.


Assuntos
Calmodulina/química , Proteínas de Drosophila/química , Canais de Potencial de Receptor Transitório/química , Animais , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células HEK293 , Humanos , Camundongos , Mutação , Ligação Proteica , Canais de Cátion TRPC/química , Canais de Cátion TRPC/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
16.
Oxid Med Cell Longev ; 2020: 7289194, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32963700

RESUMO

Transient receptor potential (TRP) proteins consist of a superfamily of cation channels that have been involved in diverse physiological processes in the brain as well as in the pathogenesis of neurological disease. TRP channels are widely expressed in the brain, including neurons and glial cells, as well as in the cerebral vascular endothelium and smooth muscle. Members of this channel superfamily show a wide variety of mechanisms ranging from ligand binding to voltage, physical, and chemical stimuli, implying the promising therapeutic potential of TRP in neurological diseases. In this review, we focus on the physiological functions of TRP channels in the brain and the pathological roles in neurological disorders to explore future potential neuroprotective strategies.


Assuntos
Doenças do Sistema Nervoso/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Terapia de Alvo Molecular , Doenças do Sistema Nervoso/tratamento farmacológico , Canais de Potencial de Receptor Transitório/química
17.
Molecules ; 25(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962000

RESUMO

The Japanese traditional medicine maobushisaishinto (MBST) has been prescribed for treating upper respiratory tract infections, such as a common cold. However, its mode of action is poorly understood, especially concerning the MBST constituent Asiasari Radix (AR). In this study, we focused on AR, with an objective of clarifying its bioavailable active ingredients and role within MBST by performing pharmacokinetic and pharmacological studies. Firstly, we performed qualitative non-targeted analysis utilizing high-resolution mass spectrometry to explore the bioavailable ingredients of AR as well as quantitative targeted analysis to reveal plasma concentrations following oral administration of MBST in rats. Secondly, we performed in vitro pharmacological study of bioavailable AR ingredients in addition to other ingredients of MBST to confirm any agonistic activities against transient receptor potential (TRP) channels. As a result, methyl kakuol and other compounds derived from AR were detected in the rat plasma and showed agonistic activity against TRPA1. This study suggests that methyl kakuol as well as other compounds have the potential to be an active ingredient in AR and thus presumably would contribute in part to the effects exerted by MBST.


Assuntos
Medicamentos de Ervas Chinesas/química , Espectrometria de Massas em Tandem/métodos , Canais de Potencial de Receptor Transitório/química , Animais , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/metabolismo , Meia-Vida , Masculino , Medicina Tradicional , Óxido Nítrico/metabolismo , Plantas Medicinais/química , Plantas Medicinais/metabolismo , Ratos , Ratos Sprague-Dawley , Canais de Potencial de Receptor Transitório/metabolismo
18.
Elife ; 92020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32804077

RESUMO

The recent proliferation of published TRP channel structures provides a foundation for understanding the diverse functional properties of this important family of ion channel proteins. To facilitate mechanistic investigations, we constructed a structure-based alignment of the transmembrane domains of 120 TRP channel structures. Comparison of structures determined in the absence or presence of activating stimuli reveals similar constrictions in the central ion permeation pathway near the intracellular end of the S6 helices, pointing to a conserved cytoplasmic gate and suggesting that most available structures represent non-conducting states. Comparison of the ion selectivity filters toward the extracellular end of the pore supports existing hypotheses for mechanisms of ion selectivity. Also conserved to varying extents are hot spots for interactions with hydrophobic ligands, lipids and ions, as well as discrete alterations in helix conformations. This analysis therefore provides a framework for investigating the structural basis of TRP channel gating mechanisms and pharmacology, and, despite the large number of structures included, reveals the need for additional structural data and for more functional studies to establish the mechanistic basis of TRP channel function.


Assuntos
Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Humanos , Ativação do Canal Iônico , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Alinhamento de Sequência , Relação Estrutura-Atividade
20.
Mol Cells ; 43(6): 572-580, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32484163

RESUMO

Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.


Assuntos
Boidae/metabolismo , Cálcio/metabolismo , Crotalus/metabolismo , Citosol/metabolismo , Variação Genética , Temperatura , Canais de Potencial de Receptor Transitório/genética , Sequência de Aminoácidos , Animais , Cátions Bivalentes/farmacologia , Quelantes/farmacologia , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...