Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Metabolism ; 109: 154223, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275972

RESUMO

OBJECTIVE: Obesity is associated with myocardial fibrosis and impaired diastolic relaxation, abnormalities that are especially prevalent in women. Normal coronary vascular endothelial function is integral in mediating diastolic relaxation, and recent work suggests increased activation of the endothelial cell (EC) mineralocorticoid receptor (ECMR) is associated with impaired diastolic relaxation. As the endothelial Na+ channel (EnNaC) is a downstream target of the ECMR, we sought to determine whether EC-specific deletion of the critical alpha subunit, αEnNaC, would prevent diet induced-impairment of diastolic relaxation in female mice. METHODS AND MATERIALS: Female αEnNaC KO mice and littermate controls were fed a Western diet (WD) high in fat (46%), fructose corn syrup (17.5%) and sucrose (17.5%) for 12-16 weeks. Measurements were conducted for in vivo cardiac function, in vitro cardiomyocyte stiffness and EnNaC activity in primary cultured ECs. Additional biochemical studies examined indicators of oxidative stress, including aspects of antioxidant Nrf2 signaling, in cardiac tissue. RESULTS: Deletion of αEnNaC in female mice fed a WD significantly attenuated WD mediated impairment in diastolic relaxation. Improved cardiac relaxation was accompanied by decreased EnNaC-mediated Na+ currents in ECs and reduced myocardial oxidative stress. Further, deletion of αEnNaC prevented WD-mediated increases in isolated cardiomyocyte stiffness. CONCLUSION: Collectively, these findings support the notion that WD feeding in female mice promotes activation of EnNaC in the vasculature leading to increased cardiomyocyte stiffness and diastolic dysfunction.


Assuntos
Diástole/efeitos dos fármacos , Dieta Ocidental/efeitos adversos , Células Endoteliais/química , Coração/fisiopatologia , Canais de Sódio/metabolismo , Rigidez Vascular/efeitos dos fármacos , Animais , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , Estresse Oxidativo , Canais de Sódio/deficiência
2.
Am J Physiol Cell Physiol ; 317(3): C576-C583, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31291141

RESUMO

A murine line haploinsufficient in the cardiac sodium channel has been used to model human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters in wild-type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- ventricular slices showed longer refractory periods than wild-type both at baseline and during isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and increased mean increase in delay than did littermate controls at baseline and blunted responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects of isoprenaline with coapplication. Scn5a+/- mice showed a reduction in conduction reserve in that isoprenaline no longer increased conduction velocity, and this was not antagonized by muscarinic agonists.


Assuntos
Síndrome de Brugada/metabolismo , Haploinsuficiência/fisiologia , Preparação de Coração Isolado , Contração Miocárdica/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.5/deficiência , Animais , Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatologia , Feminino , Preparação de Coração Isolado/métodos , Masculino , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canais de Sódio/deficiência , Canais de Sódio/genética
3.
Dev Biol ; 435(2): 162-169, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29371032

RESUMO

DSL ligands activate the Notch receptor in many cellular contexts across metazoa to specify cell fate. In addition, Notch receptor activity is implicated in post-mitotic morphogenesis and neuronal function. In C. elegans, the DSL family ligand APX-1 is expressed in a subset of cells of the proximal gonad lineage, where it can act as a latent proliferation-promoting signal to maintain proximal germline tumors. Here we examine apx-1 in the proximal gonad and uncover a role in the maintenance of normal ovulation. Depletion of apx-1 causes an endomitotic oocyte (Emo) phenotype and ovulation defects. We find that lag-2 can substitute for apx-1 in this role, that the ovulation defect is partially suppressed by loss of ipp-5, and that lin-12 depletion causes a similar phenotype. In addition, we find that the ovulation defects are often accompanied by a delay of spermathecal distal neck closure after oocyte entry. Although calcium oscillations occur in the spermatheca, calcium signals are abnormal when the distal neck does not close completely. Moreover, oocytes sometimes cannot properly transit through the spermatheca, leading to fragmentation of oocytes once the neck closes. Finally, abnormal oocytes and neck closure defects are seen occasionally when apx-1 or lin-12 activity is reduced in adult animals, suggesting a possible post-developmental role for APX-1 and LIN-12 signaling in ovulation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Endorreduplicação/genética , Organismos Hermafroditas/genética , Ovulação/genética , Canais de Sódio/fisiologia , Estruturas Animais/anormalidades , Estruturas Animais/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Sinalização do Cálcio , Organismos Hermafroditas/fisiologia , Proteínas de Membrana/fisiologia , Mitose , Oócitos , Ovulação/fisiologia , Fenótipo , Receptores Notch/deficiência , Receptores Notch/fisiologia , Canais de Sódio/deficiência , Canais de Sódio/genética
4.
Neurobiol Dis ; 102: 38-48, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235671

RESUMO

Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3/deficiência , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Convulsões/genética , Convulsões/metabolismo , Canais de Sódio/deficiência , Canais de Sódio/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Epilepsias Parciais/genética , Epilepsias Parciais/metabolismo , Feminino , Predisposição Genética para Doença , Variação Genética , Células HEK293 , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo
5.
J Comp Neurol ; 525(5): 1109-1121, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27636205

RESUMO

The Na+ leak-current channel (NALCN) regulates locomotion, respiration, and intellectual development. Previous work highlighted striking similarities between characteristic movement phenotypes of NALCN-deficient animals (Drosophila and Caenorhabditis elegans) and the major symptoms of Parkinson's disease and primary progressive freezing gait. We have discovered novel physiological connections between the NALCN, K+ channels, and gap junctions that mediate regulation of locomotion in C. elegans. Drugs that block K+ channels and gap junctions or that activate Ca++ channels significantly improve movement of NALCN-deficient animals. Loss-of-function of the NALCN creates an imbalance in ions, including K+ and Ca++ , that interferes with normal cycles of depolarization-repolarization. This work suggests new therapeutic strategies for certain human movement disorders. J. Comp. Neurol. 525:1109-1121, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Transtornos Neurológicos da Marcha/fisiopatologia , Locomoção/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio/deficiência , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans , Modelos Animais de Doenças , Transtornos Neurológicos da Marcha/metabolismo , Junções Comunicantes/efeitos dos fármacos , Locomoção/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos
6.
Mol Genet Metab ; 117(1): 42-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26647175

RESUMO

We describe neurotransmitter abnormalities in two patients with drug-resistant epilepsy resulting from deleterious de novo mutations in sodium channel genes. Whole exome sequencing identified a de novo SCN2A splice-site mutation (c.2379+1G>A, p.Glu717Gly.fs*30) resulting in deletion of exon 14, in a 10-year old male with early onset global developmental delay, intermittent ataxia, autism, hypotonia, epileptic encephalopathy and cerebral/cerebellar atrophy. In the cerebrospinal fluid both homovanillic acid and 5-hydroxyindoleacetic acid were significantly decreased; extensive biochemical and genetic investigations ruled out primary neurotransmitter deficiencies and other known inborn errors of metabolism. In an 8-year old female with an early onset intractable epileptic encephalopathy, developmental regression, and progressive cerebellar atrophy, a previously unreported de novo missense mutation was identified in SCN8A (c.5615G>A; p.Arg1872Gln), affecting a highly conserved residue located in the C-terminal of the Nav1.6 protein. Aside from decreased homovanillic acid and 5-hydroxyindoleacetic acid, 5-methyltetrahydrofolate was also found to be low. We hypothesize that these channelopathies cause abnormal synaptic mono-amine metabolite secretion/uptake via impaired vesicular release and imbalance in electrochemical ion gradients, which in turn aggravate the seizures. Treatment with oral 5-hydroxytryptophan, l-Dopa/Carbidopa, and a dopa agonist resulted in mild improvement of seizure control in the male case, most likely via dopamine and serotonin receptor activated signal transduction and modulation of glutamatergic, GABA-ergic and glycinergic neurotransmission. Neurotransmitter analysis in other sodium channelopathy patients will help validate our findings, potentially yielding novel treatment opportunities.


Assuntos
Canalopatias/metabolismo , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/metabolismo , Mutação de Sentido Incorreto , Neurotransmissores/deficiência , Convulsões/etiologia , Transtorno Autístico/etiologia , Transtorno Autístico/genética , Canalopatias/tratamento farmacológico , Criança , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Exoma , Feminino , Ácido Homovanílico/líquido cefalorraquidiano , Humanos , Ácido Hidroxi-Indolacético/líquido cefalorraquidiano , Masculino , Hipotonia Muscular/etiologia , Hipotonia Muscular/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurotransmissores/metabolismo , Receptores Dopaminérgicos/metabolismo , Convulsões/genética , Análise de Sequência de DNA , Canais de Sódio/deficiência , Canais de Sódio/genética , Tetra-Hidrofolatos/líquido cefalorraquidiano
7.
Circulation ; 129(10): 1092-103, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24352520

RESUMO

BACKGROUND: Brugada syndrome (BrS) primarily associates with the loss of sodium channel function. Previous studies showed features consistent with sodium current (INa) deficit in patients carrying desmosomal mutations, diagnosed with arrhythmogenic cardiomyopathy (or arrhythmogenic right ventricular cardiomyopathy). Experimental models showed correlation between the loss of expression of desmosomal protein plakophilin-2 (PKP2) and reduced INa. We hypothesized that PKP2 variants that reduce INa could yield a BrS phenotype, even without overt structural features characteristic of arrhythmogenic right ventricular cardiomyopathy. METHODS AND RESULTS: We searched for PKP2 variants in the genomic DNA of 200 patients with a BrS diagnosis, no signs of arrhythmogenic cardiomyopathy, and no mutations in BrS-related genes SCN5A, CACNa1c, GPD1L, and MOG1. We identified 5 cases of single amino acid substitutions. Mutations were tested in HL-1-derived cells endogenously expressing NaV1.5 but made deficient in PKP2 (PKP2-KD). Loss of PKP2 caused decreased INa and NaV1.5 at the site of cell contact. These deficits were restored by the transfection of wild-type PKP2, but not of BrS-related PKP2 mutants. Human induced pluripotent stem cell cardiomyocytes from a patient with a PKP2 deficit showed drastically reduced INa. The deficit was restored by transfection of wild type, but not BrS-related PKP2. Super-resolution microscopy in murine PKP2-deficient cardiomyocytes related INa deficiency to the reduced number of channels at the intercalated disc and increased separation of microtubules from the cell end. CONCLUSIONS: This is the first systematic retrospective analysis of a patient group to define the coexistence of sodium channelopathy and genetic PKP2 variations. PKP2 mutations may be a molecular substrate leading to the diagnosis of BrS.


Assuntos
Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Fenótipo , Placofilinas/genética , Canais de Sódio/deficiência , Adulto , Animais , Síndrome de Brugada/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Feminino , Genótipo , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Mutantes , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Técnicas de Patch-Clamp , Linhagem , Estudos Retrospectivos , Canais de Sódio/metabolismo
8.
J Neurosci ; 32(32): 10819-32, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22875917

RESUMO

Marked hypersensitivity to heat and mechanical (pressure) stimuli develop after a burn injury, but the neural mechanisms underlying these effects are poorly understood. In this study, we establish a new mouse model of focal second-degree burn injury to investigate the molecular and cellular basis for burn injury-induced pain. This model features robust injury-induced behavioral effects and tissue-specific altered cytokine profile, but absence of glial activation in spinal dorsal horn. Three voltage-gated sodium channels, Na(v)1.7, Na(v)1.8, and Na(v)1.9, are preferentially expressed in peripheral somatosensory neurons of the dorsal root ganglia (DRGs) and have been implicated in injury-induced neuronal hyperexcitability. Using knock-out mice, we provide evidence that Na(v)1.7 selectively contributes to burn-induced hypersensitivity to heat, but not mechanical, stimuli. After burn model injury, wild-type mice display increased sensitivity to heat stimuli, and a normally non-noxious warm stimulus induces activity-dependent Fos expression in spinal dorsal horn neurons. Strikingly, both effects are absent in Na(v)1.7 conditional knock-out (cKO) mice. Furthermore, burn injury increases density and shifts activation of tetrodotoxin-sensitive currents in a hyperpolarized direction, both pro-excitatory properties, in DRG neurons from wild-type but not Na(v)1.7 cKO mice. We propose that, in sensory neurons damaged by burn injury to the hindpaw, Na(v)1.7 currents contribute to the hyperexcitability of sensory neurons, their communication with postsynaptic spinal pain pathways, and behavioral thresholds to heat stimuli. Our results offer insights into the molecular and cellular mechanisms of modality-specific pain signaling, and suggest Na(v)1.7-blocking drugs may be effective in burn patients.


Assuntos
Queimaduras/complicações , Temperatura Alta/efeitos adversos , Hiperalgesia/etiologia , Limiar da Dor/fisiologia , Canais de Sódio/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Análise de Variância , Animais , Biofísica , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/etiologia , Estimulação Elétrica , Lateralidade Funcional , Gânglios Espinais/citologia , Glicoproteínas/metabolismo , Hiperalgesia/patologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.7 , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Neuralgia/etiologia , Neuralgia/patologia , Neuroglia/patologia , Técnicas de Patch-Clamp , Proteínas/genética , RNA Mensageiro/metabolismo , RNA não Traduzido , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/deficiência , Tetrodotoxina/farmacologia , Transfecção
9.
J Neurosci ; 32(17): 5716-27, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539834

RESUMO

The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na⁺ channel accessory subunit Navß1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navß1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b-null cortical pyramidal neurons lacking Navß1. Biochemical and voltage-clamp experiments further demonstrated that Navß1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Navß1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability.


Assuntos
Regulação da Expressão Gênica/fisiologia , Neurônios/fisiologia , Canais de Potássio Shal/metabolismo , Canais de Sódio/metabolismo , Análise de Variância , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofísica , Biotinilação , Linhagem Celular Transformada , Córtex Cerebral/citologia , Cicloeximida/farmacologia , Estimulação Elétrica , Endocitose/efeitos dos fármacos , Endocitose/genética , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Inibidores da Síntese de Proteínas/farmacologia , Proteômica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores da Transferrina/metabolismo , Canais de Potássio Shal/deficiência , Canais de Sódio/deficiência , Transfecção , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
10.
J Neurosci ; 32(12): 4080-91, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22442073

RESUMO

Acid-sensing ion channel-1a (ASIC1a) is a potential therapeutic target for multiple neurological diseases. We studied here ASIC1a glycosylation and trafficking, two poorly understood processes pivotal in determining the functional outcome of an ion channel. We found that most ASIC1a in the mouse brain was fully glycosylated. Inhibiting glycosylation with tunicamycin reduced ASIC1a surface trafficking, dendritic targeting, and acid-activated current density. N-glycosylation of the two glycosylation sites, Asn393 and Asn366, has differential effects on ASIC1a biogenesis. Maturation of Asn393 increased ASIC1a surface and dendritic trafficking, pH sensitivity, and current density. In contrast, glycosylation of Asn366 was dispensable for ASIC1a function and may be a rate-limiting step in ASIC1a biogenesis. In addition, we revealed that acidosis reduced the density and length of dendritic spines in a time- and ASIC1a-dependent manner. ASIC1a N366Q, which showed increased glycosylation and dendritic targeting, potentiated acidosis-induced spine loss. Conversely, ASIC1a N393Q, which had diminished dendritic targeting and inhibited ASIC1a current dominant-negatively, had the opposite effect. These data tie N-glycosylation of ASIC1a with its trafficking. More importantly, by revealing a site-specific effect of acidosis on dendritic spines, our findings suggest that these processes have an important role in regulating synaptic plasticity and determining long-term consequences in diseases that generate acidosis.


Assuntos
Acidose , Espinhas Dendríticas/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Análise de Variância , Animais , Animais Recém-Nascidos , Asparagina/genética , Asparagina/metabolismo , Biotinilação/fisiologia , Células CHO , Cricetinae , Cricetulus , Feminino , Glicina/genética , Glicosilação/efeitos dos fármacos , Hipocampo/citologia , Concentração de Íons de Hidrogênio , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Oócitos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Ratos , Canais de Sódio/deficiência , Transfecção , Tunicamicina/farmacologia , Xenopus
11.
J Clin Invest ; 122(4): 1306-15, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22426212

RESUMO

Mechanical hyperalgesia is a common and potentially disabling complication of many inflammatory and neuropathic conditions. Activation of the enzyme PKCε in primary afferent nociceptors is a major mechanism that underlies mechanical hyperalgesia, but the PKCε substrates involved downstream are not known. Here, we report that in a proteomic screen we identified the NaV1.8 sodium channel, which is selectively expressed in nociceptors, as a PKCε substrate. PKCε-mediated phosphorylation increased NaV1.8 currents, lowered the threshold voltage for activation, and produced a depolarizing shift in inactivation in wild-type - but not in PKCε-null - sensory neurons. PKCε phosphorylated NaV1.8 at S1452, and alanine substitution at this site blocked PKCε modulation of channel properties. Moreover, a specific PKCε activator peptide, ψεRACK, produced mechanical hyperalgesia in wild-type mice but not in Scn10a-/- mice, which lack NaV1.8 channels. These studies demonstrate that NaV1.8 is an important, direct substrate of PKCε that mediates PKCε-dependent mechanical hyperalgesia.


Assuntos
Hiperalgesia/etiologia , Proteína Quinase C-épsilon/fisiologia , Processamento de Proteína Pós-Traducional , Células Receptoras Sensoriais/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação , Substituição de Aminoácidos , Animais , Células Cultivadas/efeitos dos fármacos , Gânglios Espinais/citologia , Hiperalgesia/enzimologia , Ativação do Canal Iônico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.8 , Mutação Puntual , Proteína Quinase C-épsilon/análise , Proteína Quinase C-épsilon/genética , Ratos , Células Receptoras Sensoriais/enzimologia , Sódio/metabolismo , Canais de Sódio/análise , Canais de Sódio/química , Canais de Sódio/deficiência , Canais de Sódio/genética , Estresse Mecânico , Especificidade por Substrato
12.
Nature ; 483(7388): 209-12, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22343891

RESUMO

Transduction of mechanical stimuli by receptor cells is essential for senses such as hearing, touch and pain. Ion channels have a role in neuronal mechanotransduction in invertebrates; however, functional conservation of these ion channels in mammalian mechanotransduction is not observed. For example, no mechanoreceptor potential C (NOMPC), a member of transient receptor potential (TRP) ion channel family, acts as a mechanotransducer in Drosophila melanogaster and Caenorhabditis elegans; however, it has no orthologues in mammals. Degenerin/epithelial sodium channel (DEG/ENaC) family members are mechanotransducers in C. elegans and potentially in D. melanogaster; however, a direct role of its mammalian homologues in sensing mechanical force has not been shown. Recently, Piezo1 (also known as Fam38a) and Piezo2 (also known as Fam38b) were identified as components of mechanically activated channels in mammals. The Piezo family are evolutionarily conserved transmembrane proteins. It is unknown whether they function in mechanical sensing in vivo and, if they do, which mechanosensory modalities they mediate. Here we study the physiological role of the single Piezo member in D. melanogaster (Dmpiezo; also known as CG8486). Dmpiezo expression in human cells induces mechanically activated currents, similar to its mammalian counterparts. Behavioural responses to noxious mechanical stimuli were severely reduced in Dmpiezo knockout larvae, whereas responses to another noxious stimulus or touch were not affected. Knocking down Dmpiezo in sensory neurons that mediate nociception and express the DEG/ENaC ion channel pickpocket (ppk) was sufficient to impair responses to noxious mechanical stimuli. Furthermore, expression of Dmpiezo in these same neurons rescued the phenotype of the constitutive Dmpiezo knockout larvae. Accordingly, electrophysiological recordings from ppk-positive neurons revealed a Dmpiezo-dependent, mechanically activated current. Finally, we found that Dmpiezo and ppk function in parallel pathways in ppk-positive cells, and that mechanical nociception is abolished in the absence of both channels. These data demonstrate the physiological relevance of the Piezo family in mechanotransduction in vivo, supporting a role of Piezo proteins in mechanosensory nociception.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Nociceptividade/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Deleção de Genes , Células HEK293 , Humanos , Canais Iônicos/química , Canais Iônicos/deficiência , Canais Iônicos/genética , Larva/genética , Larva/metabolismo , Mecanorreceptores/metabolismo , Mecanotransdução Celular/genética , Canais de Sódio/deficiência , Canais de Sódio/genética , Canais de Sódio/metabolismo
13.
Epilepsia ; 53(1): 87-100, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22150645

RESUMO

PURPOSE: Dravet syndrome (DS), a devastating epileptic encephalopathy, is mostly caused by mutations of the SCN1A gene, coding for the voltage-gated Na(+) channel Na(V)1.1 α subunit. About 50% of SCN1A DS mutations truncate Na(V)1.1, possibly causing complete loss of its function. However, it has not been investigated yet if Na(V)1.1 truncated mutants are dominant negative, if they impair expression or function of wild-type channels, as it has been shown for truncated mutants of other proteins (e.g., Ca(V) channels). We studied the effect of two DS truncated Na(V)1.1 mutants, R222* and R1234*, on coexpressed wild-type Na(+) channels. METHODS: We engineered R222* or R1234* in the human cDNA of Na(V)1.1 (hNa(V)1.1) and studied their effect on coexpressed wild-type hNa(V)1.1, hNa(V)1.2 or hNa(V)1.3 cotransfecting tsA-201 cells, and on hNa(V)1.6 transfecting an human embryonic kidney (HEK) cell line stably expressing this channel. We also studied hippocampal neurons dissociated from Na(V)1.1 knockout (KO) mice, an animal model of DS expressing a truncated Na(V)1.1 channel. KEY FINDINGS: We found no modifications of current amplitude coexpressing the truncated mutants with hNa(V)1.1, hNa(V)1.2, or hNa(V)1.3, but a 30% reduction coexpressing them with hNa(V)1.6. However, we showed that also coexpression of functional full-length hNa(V)1.1 caused a similar reduction. Therefore, this effect should not be involved in the pathomechanism of DS. Some gating properties of hNa(V)1.1, hNa(V)1.3, and hNa(V)1.6 were modified, but recordings of hippocampal neurons dissociated from Na(V)1.1 KO mice did not show any significant modifications of these properties. Therefore, Na(V)1.1 truncated mutants are not dominant negative, consistent with haploinsufficiency as the cause of DS. SIGNIFICANCE: We have better clarified the pathomechanism of DS, pointed out an important difference between pathogenic truncated Ca(V)2.1 mutants and hNa(V)1.1 ones, and shown that hNa(V)1.6 expression can be reduced in physiologic conditions by coexpression of hNa(V)1.1. Moreover, our data may provide useful information for the development of therapeutic approaches.


Assuntos
Epilepsias Mioclônicas/genética , Haploinsuficiência , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Canais de Sódio/genética , Animais , Linhagem Celular , Eletrofisiologia , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Camundongos , Camundongos Knockout , Mutagênese , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/deficiência , Técnicas de Patch-Clamp , Plasmídeos , Canais de Sódio/deficiência , Síndrome , Transfecção
14.
Nature ; 479(7373): 410-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22094702

RESUMO

Natural products that elicit discomfort or pain represent invaluable tools for probing molecular mechanisms underlying pain sensation. Plant-derived irritants have predominated in this regard, but animal venoms have also evolved to avert predators by targeting neurons and receptors whose activation produces noxious sensations. As such, venoms provide a rich and varied source of small molecule and protein pharmacophores that can be exploited to characterize and manipulate key components of the pain-signalling pathway. With this in mind, here we perform an unbiased in vitro screen to identify snake venoms capable of activating somatosensory neurons. Venom from the Texas coral snake (Micrurus tener tener), whose bite produces intense and unremitting pain, excites a large cohort of sensory neurons. The purified active species (MitTx) consists of a heteromeric complex between Kunitz- and phospholipase-A2-like proteins that together function as a potent, persistent and selective agonist for acid-sensing ion channels (ASICs), showing equal or greater efficacy compared with acidic pH. MitTx is highly selective for the ASIC1 subtype at neutral pH; under more acidic conditions (pH < 6.5), MitTx massively potentiates (>100-fold) proton-evoked activation of ASIC2a channels. These observations raise the possibility that ASIC channels function as coincidence detectors for extracellular protons and other, as yet unidentified, endogenous factors. Purified MitTx elicits robust pain-related behaviour in mice by activation of ASIC1 channels on capsaicin-sensitive nerve fibres. These findings reveal a mechanism whereby snake venoms produce pain, and highlight an unexpected contribution of ASIC1 channels to nociception.


Assuntos
Venenos Elapídicos/química , Venenos Elapídicos/farmacologia , Elapidae , Proteínas do Tecido Nervoso/metabolismo , Dor/induzido quimicamente , Multimerização Proteica , Canais de Sódio/metabolismo , Canais Iônicos Sensíveis a Ácido , Sequência de Aminoácidos , Animais , Capsaicina/farmacologia , Células Cultivadas , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Humanos , Concentração de Íons de Hidrogênio , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Oócitos , Dor/metabolismo , Dor/fisiopatologia , Estrutura Quaternária de Proteína , Prótons , Ratos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Agonistas de Canais de Sódio , Canais de Sódio/deficiência , Canais de Sódio/genética , Canais de Cátion TRPV/metabolismo , Xenopus laevis
15.
J Neurosci ; 31(41): 14577-91, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21994374

RESUMO

Scn1b-null mice have a severe neurological and cardiac phenotype. Human mutations in SCN1B result in epilepsy and cardiac arrhythmia. SCN1B is expressed as two developmentally regulated splice variants, ß1 and ß1B, that are each expressed in brain and heart in rodents and humans. Here, we studied the structure and function of ß1B and investigated a novel human SCN1B epilepsy-related mutation (p.G257R) unique to ß1B. We show that wild-type ß1B is not a transmembrane protein, but a soluble protein expressed predominantly during embryonic development that promotes neurite outgrowth. Association of ß1B with voltage-gated Na+ channels Na(v)1.1 or Na(v)1.3 is not detectable by immunoprecipitation and ß1B does not affect Na(v)1.3 cell surface expression as measured by [(3)H]saxitoxin binding. However, ß1B coexpression results in subtle alteration of Na(v)1.3 currents in transfected cells, suggesting that ß1B may modulate Na+ current in brain. Similar to the previously characterized p.R125C mutation, p.G257R results in intracellular retention of ß1B, generating a functional null allele. In contrast, two other SCN1B mutations associated with epilepsy, p.C121W and p.R85H, are expressed at the cell surface. We propose that ß1B p.G257R may contribute to epilepsy through a mechanism that includes intracellular retention resulting in aberrant neuronal pathfinding.


Assuntos
Epilepsia/genética , Mutação/genética , Canais de Sódio/genética , Canais de Sódio/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Arginina/genética , Biotinilação/métodos , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Cerebelo , Cricetinae , Cricetulus , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Glicina/genética , Humanos , Imunoprecipitação/métodos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.3 , Neuritos/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Saxitoxina/farmacocinética , Canais de Sódio/deficiência , Estatísticas não Paramétricas , Transfecção/métodos , Trítio/farmacocinética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem
16.
J Physiol ; 589(Pt 21): 5109-23, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21911609

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3ß4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Receptores Nicotínicos/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Canais Iônicos Sensíveis a Ácido , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Encéfalo/fisiologia , Linhagem Celular , Guanidinas/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Pirazóis/farmacologia , Canais de Sódio/deficiência , Canais de Sódio/genética , Canais de Sódio/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Xenopus
17.
Pain ; 152(10): 2348-2356, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21843914

RESUMO

Acid-sensing ion channels (ASICs) are activated by acidic pH and may play a significant role in the development of hyperalgesia. Earlier studies show ASIC3 is important for induction of hyperalgesia after muscle insult using ASIC3-/- mice. ASIC3-/- mice lack ASIC3 throughout the body, and the distribution and composition of ASICs could be different from wild-type mice. We therefore tested whether knockdown of ASIC3 in primary afferents innervating muscle of adult wild-type mice prevented development of hyperalgesia to muscle inflammation. We cloned and characterized artificial miRNAs (miR-ASIC3) directed against mouse ASIC3 (mASIC3) to downregulate ASIC3 expression in vitro and in vivo. In CHO-K1 cells transfected with mASIC3 cDNA in culture, the miR-ASIC3 constructs inhibited protein expression of mASIC3 and acidic pH-evoked currents and had no effect on protein expression or acidic pH-evoked currents of ASIC1a. When miR-ASIC3 was used in vivo, delivered into the muscle of mice using a herpes simplex viral vector, both muscle and paw mechanical hyperalgesia were reduced after carrageenan-induced muscle inflammation. ASIC3 mRNA in DRG and protein levels in muscle were decreased in vivo by miR-ASIC3. In CHO-K1 cells co-transfected with ASIC1a and ASIC3, miR-ASIC3 reduced the amplitude of acidic pH-evoked currents, suggesting an overall inhibition in the surface expression of heteromeric ASIC3-containing channels. Our results show, for the first time, that reducing ASIC3 in vivo in primary afferent fibers innervating muscle prevents the development of inflammatory hyperalgesia in wild-type mice, and thus, may have applications in the treatment of musculoskeletal pain in humans.


Assuntos
Marcação de Genes/métodos , Hiperalgesia/prevenção & controle , MicroRNAs/farmacologia , Dor Musculoesquelética/terapia , Miosite/genética , Canais de Sódio/genética , Canais Iônicos Sensíveis a Ácido , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Terapia Genética/métodos , Hiperalgesia/genética , Hiperalgesia/patologia , Mediadores da Inflamação/síntese química , Mediadores da Inflamação/fisiologia , Mediadores da Inflamação/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/síntese química , MicroRNAs/uso terapêutico , Dor Musculoesquelética/genética , Dor Musculoesquelética/patologia , Miosite/complicações , Miosite/patologia , Canais de Sódio/deficiência , Canais de Sódio/fisiologia
18.
Epilepsy Res ; 95(1-2): 86-93, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21474289

RESUMO

PURPOSE: Aim of this study is to report a detailed profile of neuropsychological development in children with Dravet syndrome. METHODS: Twelve children with Dravet syndrome were longitudinally assessed using a detailed clinical and neuropsychological evaluation. Six had typical features of severe myoclonic epilepsy in infancy (SMEI) whereas the other six resulted borderline. All twelve underwent serial neuropsychological assessments with neurodevelopmental scales and further assessment of specific cognitive abilities. RESULTS: Our results reported an apparent normal development before disease onset, a general evolution in two main stages, more active the first one and with a general trend towards a clinical stabilization afterwards. The onset of cognitive decline was generally later than what is reported in other series; furthermore, the impairment of cognitive development is less severe, especially in borderline cases. As to specific cognitive competence, attention, visual motor integration, visual perception as well as executive functions are the most impaired abilities; language appears less involved, with a predominance of phonological defects. CONCLUSIONS: In our cohort the global development of patients appear less affected than in previous studies. Furthermore, our study points out an impairment of several specific cognitive skills even in patients with a developmental quotient apparently in the normal range. Language and other cognitive skill impairment such as attention, visuo-spatial organization, working memory and executive function appear consistent with what is usually found in cerebellar disorders.


Assuntos
Transtornos Cognitivos/etiologia , Deficiências do Desenvolvimento/etiologia , Epilepsia Mioclônica Juvenil/psicologia , Transtornos Psicomotores/etiologia , Idade de Início , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Criança , Pré-Escolar , Códon sem Sentido , Análise Mutacional de DNA , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/etiologia , Transtornos da Memória/etiologia , Mutação de Sentido Incorreto , Epilepsia Mioclônica Juvenil/complicações , Epilepsia Mioclônica Juvenil/genética , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Testes Neuropsicológicos , Estudos Prospectivos , Estudos Retrospectivos , Canais de Sódio/deficiência , Canais de Sódio/genética , Síndrome , Escalas de Wechsler
19.
Circ Arrhythm Electrophysiol ; 4(3): 397-406, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21493874

RESUMO

BACKGROUND: Mutations in the cardiac Na(+) channel gene (SCN5A) can adversely affect electric function in the heart, but effects can be age dependent. We explored the interacting effects of Scn5a disruption and aging on the pathogenesis of sinus node dysfunction in a heterozygous Scn5a knockout (Scn5a(+/-)) mouse model. METHODS AND RESULTS: We compared functional, histological, and molecular features in young (3 to 4 month) and old (1 year) wild type and Scn5a(+/-) mice. Both Scn5a disruption and aging were associated with decreased heart rate variability, reduced sinoatrial node automaticity, and slowed sinoatrial conduction. They also led to increased collagen and fibroblast levels and upregulated transforming growth factor-ß(1) (TGF-ß(1)) and vimentin transcripts, providing measures of fibrosis and reduced Nav1.5 expression. All these effects were most noticeable in old Scn5a(+/-) mice. Na(+) channel inhibition by Nav1.5-E3 antibody directly increased TGF-ß(1) production in both cultured human cardiac myocytes and fibroblasts. Finally, aging was associated with downregulation of a wide range of ion channel and related transcripts and, again, was greatest in old Scn5a(+/-) mice. The quantitative results from these studies permitted computer simulations that successfully replicated the observed sinoatrial node phenotypes shown by the different experimental groups. CONCLUSIONS: These results implicate a tissue degeneration triggered by Nav1.5 deficiency manifesting as a TGF-ß(1)-mediated fibrosis accompanied by electric remodeling in the sinus node dysfunction associated with Scn5a disruption or aging. The latter effects interact to produce the most severe phenotype in old Scn5a(+/-) mice. In demonstrating this, our findings suggest a novel regulatory role for Nav1.5 in cellular biological processes in addition to its electrophysiologic function.


Assuntos
Envelhecimento/genética , Sistema de Condução Cardíaco/fisiopatologia , Mutação , Miócitos Cardíacos/metabolismo , RNA/genética , Síndrome do Nó Sinusal/genética , Canais de Sódio/genética , Envelhecimento/metabolismo , Animais , Células Cultivadas , Simulação por Computador , Modelos Animais de Doenças , Coração/embriologia , Sistema de Condução Cardíaco/metabolismo , Humanos , Imuno-Histoquímica , Ativação do Canal Iônico , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Canal de Sódio Disparado por Voltagem NAV1.5 , Reação em Cadeia da Polimerase , Síndrome do Nó Sinusal/metabolismo , Síndrome do Nó Sinusal/fisiopatologia , Nó Sinoatrial/metabolismo , Nó Sinoatrial/patologia , Nó Sinoatrial/fisiopatologia , Canais de Sódio/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...