Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.805
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 333, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961333

RESUMO

BACKGROUND: Oxidative stress may contribute to cardiac ryanodine receptor (RyR2) dysfunction in diabetic cardiomyopathy. Ginsenoside Rb1 (Rb1) is a major pharmacologically active component of ginseng to treat cardiovascular diseases. Whether Rb1 treat diabetes injured heart remains unknown. This study was to investigate the effect of Rb1 on diabetes injured cardiac muscle tissue and to further investigate its possible molecular pharmacology mechanisms. METHODS: Male Sprague-Dawley rats were injected streptozotocin solution for 2 weeks, followed 6 weeks Rb1 or insulin treatment. The activity of SOD, CAT, Gpx, and the levels of MDA was measured; histological and ultrastructure analyses, RyR2 activity and phosphorylated RyR2(Ser2808) protein expression analyses; and Tunel assay were performed. RESULTS: There was decreased activity of SOD, CAT, Gpx and increased levels of MDA in the diabetic group from control. Rb1 treatment increased activity of SOD, CAT, Gpx and decreased the levels of MDA as compared with diabetic rats. Neutralizing the RyR2 activity significantly decreased in diabetes from control, and increased in Rb1 treatment group from diabetic group. The expression of phosphorylation of RyR2 Ser2808 was increased in diabetic rats from control, and were attenuated with insulin and Rb1 treatment. Diabetes increased the apoptosis rate, and Rb1 treatment decreased the apoptosis rate. Rb1 and insulin ameliorated myocardial injury in diabetic rats. CONCLUSIONS: These data indicate that Rb1 could be useful for mitigating oxidative damage, reduced phosphorylation of RyR2 Ser2808 and decreased the apoptosis rate of cardiomyocytes in diabetic cardiomyopathy.


Assuntos
Antioxidantes , Apoptose , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Ginsenosídeos , Miócitos Cardíacos , Estresse Oxidativo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina , Estreptozocina , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Ginsenosídeos/farmacologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Cardiomiopatias Diabéticas/etiologia , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Fosforilação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Insulina , Malondialdeído/metabolismo
2.
Nat Commun ; 15(1): 5120, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879623

RESUMO

Calmodulin transduces [Ca2+] information regulating the rhythmic Ca2+ cycling between the sarcoplasmic reticulum and cytoplasm during contraction and relaxation in cardiac and skeletal muscle. However, the structural dynamics by which calmodulin modulates the sarcoplasmic reticulum Ca2+ release channel, the ryanodine receptor, at physiologically relevant [Ca2+] is unknown. Using fluorescence lifetime FRET, we resolve different structural states of calmodulin and Ca2+-driven shifts in the conformation of calmodulin bound to ryanodine receptor. Skeletal and cardiac ryanodine receptor isoforms show different calmodulin-ryanodine receptor conformations, as well as binding and structural kinetics with 0.2-ms resolution, which reflect different functional roles of calmodulin. These FRET methods provide insight into the physiological calmodulin-ryanodine receptor structural states, revealing additional distinct structural states that complement cryo-EM models that are based on less physiological conditions. This technology will drive future studies on pathological calmodulin-ryanodine receptor interactions and dynamics with other important ryanodine receptor bound modulators.


Assuntos
Cálcio , Calmodulina , Transferência Ressonante de Energia de Fluorescência , Músculo Esquelético , Miocárdio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Calmodulina/metabolismo , Calmodulina/química , Cálcio/metabolismo , Miocárdio/metabolismo , Cinética , Animais , Músculo Esquelético/metabolismo , Humanos , Conformação Proteica , Ligação Proteica , Retículo Sarcoplasmático/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(27): e2400497121, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38917010

RESUMO

S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.


Assuntos
Cálcio , Microscopia Crioeletrônica , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas S100 , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Proteínas S100/metabolismo , Proteínas S100/química , Cálcio/metabolismo , Animais , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Conformação Proteica , Humanos
4.
J Phys Chem B ; 128(25): 6097-6111, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38870543

RESUMO

Defects in the binding of the calcium sensing protein calmodulin (CaM) to the L-type calcium channel (CaV1.2) or to the ryanodine receptor type 2 (RyR2) can lead to dangerous cardiac arrhythmias with distinct phenotypes, such as long-QT syndrome (LQTS) and catecholaminergic ventricular tachycardia (CPVT). Certain CaM mutations lead to LQTS while other mutations lead to CPVT, but the mechanisms by which a specific mutation can lead to each disease phenotype are not well-understood. In this study, we use long, 2 µs molecular dynamics simulations and a multitrajectory approach to identify the key binding interactions between the IQ domain of CaV1.2 and CaM. Five key interactions are found between CaV1.2 and CaM in the C-lobe, 1 in the central linker, and 2 in the N-lobe. In addition, while 5 key interactions appear between residues 120-149 in the C-lobe of CaM when it interacts with CaV1.2, only 1 key interaction is found within this region of CaM when it interacts with the RyR2. We show that this difference in the distribution of key interactions correlates with the known distribution of CaM mutations that lead to LQTS or CPVT. This correlation suggests that a disruption of key binding interactions is a plausible mechanism that can lead to these two different disease phenotypes.


Assuntos
Canais de Cálcio Tipo L , Calmodulina , Simulação de Dinâmica Molecular , Ligação Proteica , Calmodulina/metabolismo , Calmodulina/química , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/química , Humanos , Sítios de Ligação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química
5.
Sci Rep ; 14(1): 14938, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942905

RESUMO

In honey bees, circulation of blood (hemolymph) is driven by the peristaltic contraction of the heart vessel located in the dorsal part of the abdomen. Chlorantraniliprole (CHL) is an insecticide of the anthranilic diamide class which main mode of action is to alter the function of intracellular Ca2+ release channels (known as RyRs, for ryanodine receptors). In the honey bee, it was recently found to be more toxic when applied on the dorsal part of the abdomen, suggesting a direct cardiotoxicity. In the present study, a short-term exposure of semi-isolated bee hearts to CHL (0.1-10 µM) induces alterations of cardiac contraction. These alterations range from a slow-down of systole and diastole kinetics, to bradycardia and cardiac arrest. The bees heart wall is made of a single layer of semi-circular cardiomyocytes arranged concentrically all along the long axis of tube lumen. Since the heart tube is suspended to the cuticle through long tubular muscles fibers (so-called alary muscle cells), the CHL effects in ex-vivo heart preparations could result from the modulation of RyRs present in these skeletal muscle fibers as well as cardiomyocytes RyRs themselves. In order to specifically assess effects of CHL on cardiomyocytes, for the first time, intact heart cells were enzymatically dissociated from bees. Exposure of cardiomyocytes to CHL induces an increase in cytoplasmic calcium, cell contraction at the highest concentrations and depletion of intracellular stores. Electrophysiological properties of isolated cardiomyocytes were described, with a focus on voltage-gated Ca2+ channels responsible for the cardiac action potentials depolarization phase. Two types of Ca2+ currents were measured under voltage-clamp. Exposure to CHL was accompanied by a decrease in voltage-activated Ca2+ currents densities. Altogether, these results show that chlorantraniliprole can cause cardiac defects in honey bees.


Assuntos
Cardiotoxicidade , Inseticidas , Miócitos Cardíacos , ortoaminobenzoatos , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , ortoaminobenzoatos/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inseticidas/toxicidade , Cardiotoxicidade/etiologia , Cálcio/metabolismo , Contração Miocárdica/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Diamida/farmacologia
6.
J Am Heart Assoc ; 13(12): e033733, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38860414

RESUMO

BACKGROUND: Chronic sympathetic stimulation drives desensitization and downregulation of ß1 adrenergic receptor (ß1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of ß1AR signaling in the heart. METHODS AND RESULTS: We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine ß1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular ß1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced ß1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the ß1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the ß1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced ß1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. CONCLUSIONS: This study reveals distinct mechanisms for the downregulation of subcellular ß1AR signaling in the heart under chronic adrenergic stimulation.


Assuntos
Canais de Cálcio Tipo L , Proteínas Quinases Dependentes de AMP Cíclico , Regulação para Baixo , Isoproterenol , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Receptores Adrenérgicos beta 1 , Canal de Liberação de Cálcio do Receptor de Rianodina , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Transdução de Sinais , Animais , Receptores Adrenérgicos beta 1/metabolismo , Masculino , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Isoproterenol/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/fisiopatologia , Cardiomiopatias/metabolismo , Cardiomiopatias/induzido quimicamente , Transferência Ressonante de Energia de Fluorescência
7.
J Cachexia Sarcopenia Muscle ; 15(3): 1003-1015, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38725372

RESUMO

BACKGROUND: Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS: Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS: We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS: We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.


Assuntos
Proteínas Musculares , Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Camundongos Knockout , Multiômica , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Quinase de Cadeia Leve de Miosina , Fosforilação , Proteômica/métodos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Biochem Biophys Res Commun ; 720: 150105, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754163

RESUMO

BACKGROUND: Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, can decrease the incidence of arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the underlying mechanisms by which DEX affects cardiac electrophysiological function remain unclear. METHODS: Ryanodine receptor (RyR2) heterozygous R2474S mice were used as a model for CPVT. WT and RyR2R2474S/+ mice were treated with isoproterenol (ISO) and DEX, and electrocardiograms were continuously monitored during both in vivo and ex vivo experiments. Dual-dye optical mapping was used to explore the anti-arrhythmic mechanism of DEX. RESULTS: DEX significantly reduced the occurrence and duration of ISO-induced of VT/VF in RyR2R2474S/+ mice in vivo and ex vivo. DEX remarkably prolonged action potential duration (APD80) and calcium transient duration (CaTD80) in both RyR2R2474S/+ and WT hearts, whereas it reduced APD heterogeneity and CaT alternans in RyR2R2474S/+ hearts. DEX inhibited ectopy and reentry formation, and stabilized voltage-calcium latency. CONCLUSION: DEX exhibited an antiarrhythmic effect through stabilizing membrane voltage and intracellular Ca2+. DEX can be used as a beneficial perioperative anesthetic for patients with CPVT or other tachy-arrhythmias.


Assuntos
Arritmias Cardíacas , Cálcio , Dexmedetomidina , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Dexmedetomidina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cálcio/metabolismo , Camundongos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Potenciais da Membrana/efeitos dos fármacos , Isoproterenol/farmacologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/tratamento farmacológico , Antiarrítmicos/farmacologia , Masculino , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
9.
J Phys Chem B ; 128(19): 4670-4684, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38717304

RESUMO

Ryanodine receptor type 1 (RyR1) is a Ca2+-release channel central to skeletal muscle excitation-contraction (EC) coupling. RyR1's cryo-EM structures reveal a zinc-finger motif positioned within the cytoplasmic C-terminal domain (CTD). Yet, owing to limitations in cryo-EM resolution, RyR1 structures lack precision in detailing the metal coordination structure, prompting the need for an accurate model. In this study, we employed molecular dynamics (MD) simulations and the density functional theory (DFT) method to refine the binding characteristics of Zn2+ in the zinc-finger site of the RyR1 channel. Our findings also highlight substantial conformational changes in simulations conducted in the absence of Zn2+. Notably, we observed a loss of contact at the interface between protein domains proximal to the zinc-finger site, indicating a crucial role of Zn2+ in maintaining structural integrity and interdomain interactions within RyR1. Furthermore, this study provides valuable insights into the modulation of ATP, Ca2+, and caffeine binding, shedding light on the intricate relationship between Zn2+ coordination and the dynamic behavior of RyR1. Our integrative approach combining MD simulations and DFT calculations enhances our understanding of the molecular mechanisms governing ligand binding in RyR1.


Assuntos
Simulação de Dinâmica Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina , Zinco , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Zinco/química , Zinco/metabolismo , Ligantes , Cálcio/química , Cálcio/metabolismo , Teoria da Densidade Funcional , Sítios de Ligação , Ligação Proteica , Dedos de Zinco , Cafeína/química , Cafeína/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Humanos
10.
Biochem Biophys Res Commun ; 723: 150163, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38820626

RESUMO

Excitation-contraction coupling in skeletal muscle myofibers depends upon Ca2+ release from the sarcoplasmic reticulum through the ryanodine receptor/Ca2+-release channel RyR1. The RyR1 contains ∼100 Cys thiols of which ∼30 comprise an allosteric network subject to posttranslational modification by S-nitrosylation, S-palmitoylation and S-oxidation. However, the role and function of these modifications is not understood. Although aberrant S-nitrosylation of multiple unidentified sites has been associated with dystrophic diseases, malignant hyperthermia and other myopathic syndromes, S-nitrosylation in physiological situations is reportedly specific to a single (1 of ∼100) Cys in RyR1, Cys3636 in a manner gated by pO2. Using mice expressing a form of RyR1 with a Cys3636→Ala point mutation to prevent S-nitrosylation at this site, we showed that Cys3636 was the principal target of endogenous S-nitrosylation during normal muscle function. The absence of Cys3636 S-nitrosylation suppressed stimulus-evoked Ca2+ release at physiological pO2 (at least in part by altering the regulation of RyR1 by Ca2+/calmodulin), eliminated pO2 coupling, and diminished skeletal myocyte contractility in vitro and measures of muscle strength in vivo. Furthermore, we found that abrogation of Cys3636 S-nitrosylation resulted in a developmental defect reflected in diminished myofiber diameter, altered fiber subtypes, and altered expression of genes implicated in muscle development and atrophy. Thus, our findings establish a physiological role for pO2-coupled S-nitrosylation of RyR1 in skeletal muscle contractility and development and provide foundation for future studies of RyR1 modifications in physiology and disease.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Músculo Esquelético/metabolismo , Camundongos , Cálcio/metabolismo , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional , Desenvolvimento Muscular , Camundongos Transgênicos , Sinalização do Cálcio
11.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819384

RESUMO

The EF-hand calcium (Ca2+) sensor protein S100A1 combines inotropic with antiarrhythmic potency in cardiomyocytes (CMs). Oxidative posttranslational modification (ox-PTM) of S100A1's conserved, single-cysteine residue (C85) via reactive nitrogen species (i.e., S-nitrosylation or S-glutathionylation) has been proposed to modulate conformational flexibility of intrinsically disordered sequence fragments and to increase the molecule's affinity toward Ca2+. Considering the unknown biological functional consequence, we aimed to determine the impact of the C85 moiety of S100A1 as a potential redox switch. We first uncovered that S100A1 is endogenously glutathionylated in the adult heart in vivo. To prevent glutathionylation of S100A1, we generated S100A1 variants that were unresponsive to ox-PTMs. Overexpression of wild-type (WT) and C85-deficient S100A1 protein variants in isolated CM demonstrated equal inotropic potency, as shown by equally augmented Ca2+ transient amplitudes under basal conditions and ß-adrenergic receptor (ßAR) stimulation. However, in contrast, ox-PTM defective S100A1 variants failed to protect against arrhythmogenic diastolic sarcoplasmic reticulum (SR) Ca2+ waves and ryanodine receptor 2 (RyR2) hypernitrosylation during ßAR stimulation. Despite diastolic performance failure, C85-deficient S100A1 protein variants exerted similar Ca2+-dependent interaction with the RyR2 than WT-S100A1. Dissecting S100A1's molecular structure-function relationship, our data indicate for the first time that the conserved C85 residue potentially acts as a redox switch that is indispensable for S100A1's antiarrhythmic but not its inotropic potency in CMs. We, therefore, propose a model where C85's ox-PTM determines S100A1's ability to beneficially control diastolic but not systolic RyR2 activity.NEW & NOTEWORTHY S100A1 is an emerging candidate for future gene-therapy treatment of human chronic heart failure. We aimed to study the significance of the conserved single-cysteine 85 (C85) residue in cardiomyocytes. We show that S100A1 is endogenously glutathionylated in the heart and demonstrate that this is dispensable to increase systolic Ca2+ transients, but indispensable for mediating S100A1's protection against sarcoplasmic reticulum (SR) Ca2+ waves, which was dependent on the ryanodine receptor 2 (RyR2) nitrosylation status.


Assuntos
Sinalização do Cálcio , Cisteína , Miócitos Cardíacos , Oxirredução , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas S100 , Miócitos Cardíacos/metabolismo , Animais , Cisteína/metabolismo , Proteínas S100/metabolismo , Proteínas S100/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Diástole , Masculino , Processamento de Proteína Pós-Traducional , Camundongos Endogâmicos C57BL , Retículo Sarcoplasmático/metabolismo , Glutationa/metabolismo , Camundongos , Contração Miocárdica
12.
Nat Commun ; 15(1): 4115, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750013

RESUMO

RyR1 is an intracellular Ca2+ channel important in excitable cells such as neurons and muscle fibers. Ca2+ activates it at low concentrations and inhibits it at high concentrations. Mg2+ is the main physiological RyR1 inhibitor, an effect that is overridden upon activation. Despite the significance of Mg2+-mediated inhibition, the molecular-level mechanisms remain unclear. In this work we determined two cryo-EM structures of RyR1 with Mg2+ up to 2.8 Å resolution, identifying multiple Mg2+ binding sites. Mg2+ inhibits at the known Ca2+ activating site and we propose that the EF hand domain is an inhibitory divalent cation sensor. Both divalent cations bind to ATP within a crevice, contributing to the precise transmission of allosteric changes within the enormous channel protein. Notably, Mg2+ inhibits RyR1 by interacting with the gating helices as validated by molecular dynamics. This structural insight enhances our understanding of how Mg2+ inhibition is overcome during excitation.


Assuntos
Cálcio , Microscopia Crioeletrônica , Magnésio , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Magnésio/metabolismo , Cálcio/metabolismo , Sítios de Ligação , Animais , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Humanos , Coelhos
14.
Stem Cell Res ; 77: 103411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582058

RESUMO

RYR1 variants are a common cause of congenital myopathies, including multi-minicore disease (MmD) and central core disease (CCD). Here, we generated iPSC lines from two CCD patients with dominant RYR1 missense variants that affect the transmembrane (pore) and SPRY3 protein domains (p.His4813Tyr and p.Asn1346Lys, respectively). Both lines had typical iPSC morphology, expressed canonical pluripotency markers, exhibited trilineage differentiation potential, and had normal karyotypes. Together with existing RYR1 iPSC lines, these represent important tools to study and develop treatments for RYR1-related myopathies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Miopatia da Parte Central/metabolismo , Adulto , Linhagem Celular , Masculino , Diferenciação Celular , Feminino
15.
Stem Cell Res ; 77: 103410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583293

RESUMO

RYR1 variants are the most common genetic cause of congenital myopathies, and typically cause central core disease (CCD) and/or malignant hyperthermia (MH). Here, we generated iPSC lines from two patients with CCD and MH caused by dominant RYR1 variants within the central region of the protein (p.Val2168Met and p.Arg2508Cys). Both lines displayed typical iPSC morphology, uniform expression of pluripotency markers, trilineage differentiation potential, and had normal karyotypes. These are the first RYR1 iPSC lines from patients with both CCD and MH. As these are common CCD/MH variants, these lines should be useful to study these conditions and test therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Hipertermia Maligna , Mutação de Sentido Incorreto , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Hipertermia Maligna/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Miopatia da Parte Central/genética , Miopatia da Parte Central/patologia , Masculino , Feminino , Linhagem Celular , Diferenciação Celular
16.
J Cardiovasc Transl Res ; 17(3): 481-495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652413

RESUMO

The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.


Assuntos
Calcineurina , Dantroleno , Modelos Animais de Doenças , Regulação para Baixo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Canal de Liberação de Cálcio do Receptor de Rianodina , Transdução de Sinais , Fator de Necrose Tumoral alfa , Animais , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Calcineurina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Dantroleno/farmacologia , Masculino , Inibidores de Calcineurina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Células Cultivadas , Cardiomegalia/metabolismo , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Cardiomegalia/tratamento farmacológico , Ratos Sprague-Dawley , Ratos , Hipertrofia Ventricular Esquerda/prevenção & controle , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia
17.
Proc Natl Acad Sci U S A ; 121(19): e2317753121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687794

RESUMO

Type 1 voltage-activated calcium channels (CaV1) in the plasma membrane trigger calcium release from the sarcoplasmic reticulum (SR) by two mechanisms. In voltage-induced calcium release (VICR), CaV1 voltage sensing domains are directly coupled to ryanodine receptors (RYRs), an SR calcium channel. In calcium-induced calcium release (CICR), calcium ions flowing through activated CaV1 channels bind and activate RYR channels. VICR is thought to occur exclusively in vertebrate skeletal muscle while CICR occurs in all other muscles (including all invertebrate muscles). Here, we use calcium-activated SLO-2 potassium channels to analyze CaV1-SR coupling in Caenorhabditis elegans body muscles. SLO-2 channels were activated by both VICR and external calcium. VICR-mediated SLO-2 activation requires two SR calcium channels (RYRs and IP3 Receptors), JPH-1/Junctophilin, a PDZ (PSD95, Dlg1, ZO-1 domain) binding domain (PBD) at EGL-19/CaV1's carboxy-terminus, and SHN-1/Shank (a scaffolding protein that binds EGL-19's PBD). Thus, VICR occurs in invertebrate muscles.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Canais de Cálcio , Cálcio , Proteínas de Membrana Transportadoras , Proteínas Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cálcio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Músculos/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Proteínas de Membrana/metabolismo , Sinalização do Cálcio/fisiologia
18.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644198

RESUMO

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Assuntos
Bloqueadores dos Canais de Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cálcio/metabolismo , Relação Dose-Resposta a Droga , Descoberta de Drogas , Células HEK293 , Estrutura Molecular , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Relação Estrutura-Atividade , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacologia , Antiarrítmicos/química , Antiarrítmicos/farmacologia , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética
19.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621141

RESUMO

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Assuntos
Taquicardia Ventricular , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Arritmias Cardíacas/genética , Flecainida , Mutação de Sentido Incorreto , Morte Súbita Cardíaca , Mutação
20.
Nat Commun ; 15(1): 3528, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664444

RESUMO

Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Envelhecimento , Miocárdio , Proteínas do Tecido Nervoso , Canal de Liberação de Cálcio do Receptor de Rianodina , Proteínas Supressoras de Tumor , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Masculino , Envelhecimento/metabolismo , Camundongos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Miocárdio/metabolismo , Miocárdio/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Técnicas de Silenciamento de Genes , Endossomos/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Coração/fisiopatologia , Camundongos Endogâmicos C57BL , Humanos , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética , Sístole
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...