Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 62(7): 1744-1758, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34085706

RESUMO

OBJECTIVE: About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hKV ) channel hKV 7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hKV 7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hKV 7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. METHODS: Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. RESULTS: Fourteen resin acid derivatives were tested on hKV 7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hKV 7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hKV 7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hKV 11.1, hNaV 1.5, or hCaV 1.2, or on the amplitude of hKV 11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. SIGNIFICANCE: The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia/prevenção & controle , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Resinas Sintéticas/farmacologia , Convulsões/prevenção & controle , Animais , Carbamatos/farmacologia , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Larva , Oócitos , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Especificidade por Substrato , Xenopus laevis , Peixe-Zebra
2.
Epilepsia ; 61(8): 1678-1690, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32652600

RESUMO

OBJECTIVE: Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS: In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS: Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE: This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.


Assuntos
Anilidas/farmacologia , Anticonvulsivantes/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Cálcio/metabolismo , Carbamatos/farmacologia , Epilepsia/tratamento farmacológico , Canais de Potássio KCNQ/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Convulsões/tratamento farmacológico , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/classificação , Modelos Animais de Doenças , Resistência a Medicamentos/genética , Epilepsia/metabolismo , Técnicas In Vitro , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Proteínas Luminescentes/genética , Potenciais da Membrana , Mutação , Neurônios/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Convulsões/metabolismo , Peixe-Zebra
3.
Pharmacology ; 103(5-6): 257-262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30759446

RESUMO

Osteoarthritic pain has a strong impact on patients' quality of life. Understanding the pathogenic mechanisms underlying osteoarthritic pain will likely lead to the development of more effective treatments. In the present study of osteoarthritic model rats, we observed a reduction of M-current density and a remarkable decrease in the levels of KCNQ2 and KCNQ3 proteins and mRNAs in dorsal root ganglia (DRG) neurons, which were associated with hyperalgesic behaviors. The activation of KCNQ/M channels with flupirtine significantly increased the mechanical threshold and prolonged the withdrawal latency of osteoarthritic model rats at 3-14 days after model induction, and all effects of flupirtine were blocked by KCNQ/M-channel antagonist, XE-991. Together, these results indicate that suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of osteoarthritic pain.


Assuntos
Aminopiridinas/farmacologia , Artrite Experimental/tratamento farmacológico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Analgésicos/farmacologia , Animais , Antracenos/farmacologia , Artrite Experimental/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/metabolismo , Masculino , Osteoartrite/fisiopatologia , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley
4.
J Gen Physiol ; 150(12): 1722-1734, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30373787

RESUMO

Ion channels encoded by KCNQ2-5 generate a prominent K+ conductance in the central nervous system, referred to as the M current, which is controlled by membrane voltage and PIP2. The KCNQ2-5 voltage-gated potassium channels are targeted by a variety of activating compounds that cause negative shifts in the voltage dependence of activation. The underlying pharmacology of these effects is of growing interest because of possible clinical applications. Recent studies have revealed multiple binding sites and mechanisms of action of KCNQ activators. For example, retigabine targets the pore domain, but several compounds have been shown to influence the voltage-sensing domain. An important unexplored feature of these compounds is the influence of channel gating on drug binding or effects. In the present study, we compare the state-dependent actions of retigabine and ICA-069673 (ICA73, a voltage sensor-targeted activator). We assess drug binding to preopen states by applying drugs to homomeric KCNQ2 channels at different holding voltages, demonstrating little or no association of ICA73 with resting states. Using rapid solution switching, we also demonstrate that the rate of onset of ICA73 correlates with the voltage dependence of channel activation. Retigabine actions differ significantly, with prominent drug effects seen at very negative holding voltages and distinct voltage dependences of drug binding versus channel activation. Using similar approaches, we investigate the mechanistic basis for attenuation of ICA73 actions by the voltage-sensing domain mutation KCNQ2[A181P]. Our findings demonstrate different state-dependent actions of pore- versus voltage sensor-targeted KCNQ channel activators, which highlight that subtypes of this drug class operate with distinct mechanisms.


Assuntos
Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Células HEK293 , Humanos , Canal de Potássio KCNQ2/genética , Mutação , Técnicas de Patch-Clamp
5.
Mol Pain ; 13: 1744806917724715, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741430

RESUMO

Abstract: Neuropathic pain induced by chemotherapy drugs such as oxaliplatin is a dose-limiting side effect in cancer treatment. The mechanisms underlying chemotherapy-induced neuropathic pain are not fully understood. KCNQ2 channels are low-threshold voltage-gated K+ channels that play a role in controlling neuronal excitability. Downregulation of KCNQ2 channels has been proposed to be an underlying mechanism of sensory hypersensitivity that leads to neuropathic pain. However, it is currently unknown whether KCNQ channels may be downregulated by chemotherapy drugs in trigeminal ganglion neurons to contribute to the pathogenesis of chemotherapy-induced orofacial neuropathic pain. In the present study, mechanical sensitivity in orofacial regions is measured using the operant behavioral test in rats treated with oxaliplatin. Operant behaviors in these animals show the gradual development of orofacial neuropathic pain that manifests with orofacial mechanical allodynia. Immunostaining shows strong KCNQ2 immunoreactivity in small-sized V2 trigeminal ganglion neurons in controls, and the numbers of KCNQ2 immunoreactivity positive V2 trigeminal ganglion neurons are significantly reduced in oxaliplatin-treated animals. Immunostaining is also performed in brainstem and shows strong KCNQ2 immunoreactivity at the trigeminal afferent central terminals innervating the caudal spinal trigeminal nucleus (Vc) in controls, but the KCNQ2 immunoreactivity intensity is significantly reduced in oxaliplatin-treated animals. We further show with the operant behavioral test that oxaliplatin-induced orofacial mechanical allodynia can be alleviated by the KCNQ2 potentiator retigabine. Taken together, these findings suggest that KCNQ2 downregulation may be a cause of oxaliplatin-induced orofacial neuropathic pain and KCNQ2 potentiators may be useful for alleviating the neuropathic pain.


Assuntos
Carbamatos/farmacologia , Dor Facial/tratamento farmacológico , Canal de Potássio KCNQ2/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Fenilenodiaminas/farmacologia , Gânglio Trigeminal/efeitos dos fármacos , Animais , Regulação para Baixo , Dor Facial/patologia , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Masculino , Neuralgia/patologia , Neurônios/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Ratos Sprague-Dawley , Núcleo Inferior Caudal do Nervo Trigêmeo/efeitos dos fármacos , Núcleo Inferior Caudal do Nervo Trigêmeo/patologia , Gânglio Trigeminal/patologia
6.
J Pharmacol Exp Ther ; 362(1): 177-185, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483800

RESUMO

M-channel inhibitors, especially XE991, are being used increasingly in animal experiments; however, insufficient characterization of XE991 at times confounds the interpretation of results when using this compound. Here, we demonstrate that XE991 and linopirdine are state-dependent inhibitors that favor the activated-subunit of neuronal Kv7/KCNQ channels. We performed patch-clamp experiments on homomeric Kv7.2 or heteromeric Kv7.2/3 channels expressed in Chinese hamster ovary cells to characterize XE991 and linopirdine. Neither inhibitor was efficacious around the resting membrane potential of cells in physiologic conditions. Inhibition of Kv7.2 and Kv7.2/3 channels by XE991 was closely related with channel activation. When the voltage dependence of activation was left-shifted by retigabine or right-shifted by the mutation, Kv7.2(R214D), the shift in half-activation voltage proportionally coincided with the shift in the half-effective potential for XE991 inhibition. Inhibition kinetics during XE991 wash-in was facilitated at depolarized potentials. Ten-minute washout of XE991 resulted in ∼30% current recovery, most of which was attributed to surface transport of Kv7.2 channels. Linopirdine also exhibited similar inhibition characteristics, with the exception of near- complete current recovery after washout at depolarized potentials. Inhibition kinetics of both XE991 and linopirdine was not as sensitive to changes in voltage as would be predicted by open- channel inhibition. Instead, they were well explained by binding to a single activated subunit. The characteristics of XE991 and linopirdine should be taken into account when these M-channel inhibitors are used in experiments.


Assuntos
Antracenos/farmacologia , Indóis/farmacologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Piridinas/farmacologia , Animais , Células CHO , Carbamatos/farmacologia , Cricetinae , Cricetulus , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ2/efeitos dos fármacos , Cinética , Potenciais da Membrana/efeitos dos fármacos , Mutação , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Subunidades Proteicas/efeitos dos fármacos , Ratos
7.
Addict Biol ; 21(6): 1097-1112, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26104325

RESUMO

Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Dissuasores de Álcool/farmacologia , Convulsões por Abstinência de Álcool/induzido quimicamente , Animais , Antracenos/farmacologia , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Carbamatos/farmacologia , Condicionamento Operante/efeitos dos fármacos , Genômica , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Masculino , Moduladores de Transporte de Membrana/farmacologia , Microinjeções , Atividade Motora/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Wistar , Sumoilação/efeitos dos fármacos , Percepção Gustatória/efeitos dos fármacos
8.
Nat Commun ; 6: 8116, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26333338

RESUMO

Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.


Assuntos
Anticonvulsivantes/farmacologia , Carbamatos/farmacologia , Canais de Potássio KCNQ/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Animais , Anticonvulsivantes/metabolismo , Carbamatos/metabolismo , Flúor/metabolismo , Humanos , Ligação de Hidrogênio , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Neurônios/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Fenilenodiaminas/metabolismo , Triptofano/metabolismo , Xenopus laevis
9.
J Clin Invest ; 125(10): 3904-14, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348896

RESUMO

Valproic acid (VPA) has been widely used for decades to treat epilepsy; however, its mechanism of action remains poorly understood. Here, we report that the anticonvulsant effects of nonacute VPA treatment involve preservation of the M-current, a low-threshold noninactivating potassium current, during seizures. In a wide variety of neurons, activation of Gq-coupled receptors, such as the m1 muscarinic acetylcholine receptor, suppresses the M-current and induces hyperexcitability. We demonstrated that VPA treatment disrupts muscarinic suppression of the M-current and prevents resultant agonist-induced neuronal hyperexcitability. We also determined that VPA treatment interferes with M-channel signaling by inhibiting palmitoylation of a signaling scaffold protein, AKAP79/150, in cultured neurons. In a kainate-induced murine seizure model, administration of a dose of an M-channel inhibitor that did not affect kainate-induced seizure transiently eliminated the anticonvulsant effects of VPA. Retigabine, an M-channel opener that does not open receptor-suppressed M-channels, provided anticonvulsant effects only when administered prior to seizure induction in control animals. In contrast, treatment of VPA-treated mice with retigabine induced anticonvulsant effects even when administered after seizure induction. Together, these results suggest that receptor-induced M-current suppression plays a role in the pathophysiology of seizures and that preservation of the M-current during seizures has potential as an effective therapeutic strategy.


Assuntos
Anticonvulsivantes/farmacologia , Canal de Potássio KCNQ2/fisiologia , Ácido Valproico/farmacologia , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ancoragem à Quinase A/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antracenos/farmacologia , Anticonvulsivantes/uso terapêutico , Carbamatos/farmacologia , Células Cultivadas , Interações Medicamentosas , Feminino , Hipocampo/citologia , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Ácido Caínico/toxicidade , Lipoilação/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenilenodiaminas/farmacologia , Fosforilação/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M1/fisiologia , Proteínas Recombinantes de Fusão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Gânglio Cervical Superior/citologia , Ácido Valproico/uso terapêutico
10.
Pharmacology ; 96(3-4): 124-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202459

RESUMO

BACKGROUND: Chloroprocaine is a local ester anesthetic, producing excellent sensory block in clinical use. The Kv7/M potassium channel plays an important role in the control of neuronal excitability. In this study, we investigated the effects of the local anesthetic chloroprocaine on Kv7/M channels as well as the effect of retigabine on chloroprocaine-induced seizures. METHODS: A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from rat dorsal root ganglion (DRG) neurons. RESULTS: Chloroprocaine produced a number of effects on Kv7.2/Kv7.3 currents, including a lowering of current amplitudes, a rightward shift in the voltage-dependent activation curves, and a slowing of channel activation. Chloroprocaine had a more selective inhibitory effect on the homomeric Kv7.3 and heteromeric Kv7.2/Kv7.3 channels than on the homomeric Kv7.2 channel. Chloroprocaine also inhibited native M channel currents and induced a depolarization of the DRG neuron membrane potential. CONCLUSION: Taken together, the findings indicate that chloroprocaine concentration dependently inhibited Kv7/M channel currents.


Assuntos
Anestésicos Locais/farmacologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Procaína/análogos & derivados , Animais , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Gânglios Espinais/efeitos dos fármacos , Células HEK293 , Humanos , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fenilenodiaminas/farmacologia , Procaína/farmacologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente
11.
Bipolar Disord ; 17(2): 150-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25041603

RESUMO

OBJECTIVES: Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS: DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS: Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION: The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.


Assuntos
Transtorno Bipolar/genética , Metilação de DNA/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Córtex Pré-Frontal/metabolismo , RNA Mensageiro/metabolismo , Adulto , Idoso , Animais , Antimaníacos/farmacologia , Sequência de Bases , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Estudos de Casos e Controles , Linhagem Celular Tumoral , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Compostos de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Córtex Pré-Frontal/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Ácido Valproico/farmacologia
12.
Ann Neurol ; 75(3): 382-94, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24318194

RESUMO

OBJECTIVE: Mutations in KCNQ2 and KCNQ3, encoding the voltage-gated potassium channels KV 7.2 and KV 7.3, are known to cause benign familial neonatal seizures mainly by haploinsufficiency. Here, we set out to determine the disease mechanism of 7 de novo missense KCNQ2 mutations that were recently described in patients with a severe epileptic encephalopathy including pharmacoresistant seizures and pronounced intellectual disability. METHODS: Mutations were inserted into the KCNQ2 cDNA. Potassium currents were recorded using 2-microelectrode voltage clamping, and surface expression was analyzed by a biotinylation assay in cRNA-injected Xenopus laevis oocytes. RESULTS: We observed a clear loss of function for all mutations. Strikingly, 5 of 7 mutations exhibited a drastic dominant-negative effect on wild-type KV 7.2 or KV 7.3 subunits, either by globally reducing current amplitudes (3 pore mutations) or by a depolarizing shift of the activation curve (2 voltage sensor mutations) decreasing potassium currents at the subthreshold level at which these channels are known to critically influence neuronal firing. One mutation significantly reduced surface expression. Application of retigabine, a recently marketed KV 7 channel opener, partially reversed these effects for the majority of analyzed mutations. INTERPRETATION: The development of severe epilepsy and cognitive decline in children carrying 5 of the 7 studied KCNQ2 mutations can be related to a dominant-negative reduction of the resulting potassium current at subthreshold membrane potentials. Other factors such as genetic modifiers have to be postulated for the remaining 2 mutations. Retigabine or similar drugs may be used as a personalized therapy for this severe disease.


Assuntos
Epilepsia Neonatal Benigna/genética , Predisposição Genética para Doença/genética , Canal de Potássio KCNQ2/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Carbamatos/farmacologia , Epilepsia Neonatal Benigna/fisiopatologia , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/fisiologia , Potenciais da Membrana/genética , Mutação de Sentido Incorreto , Oócitos , Fenilenodiaminas/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Xenopus
13.
Toxicol Lett ; 219(3): 211-7, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23542819

RESUMO

Mancozeb (manganese/zinc ethylene bis-dithiocarbamate) is an organometallic fungicide that has been associated with human neurotoxicity and neurodegeneration. In a high-throughput screen for modulators of KCNQ2 channel, a fundamental player modulating neuronal excitability, Mancozeb, was found to significantly potentiate KCNQ2 activity. Mancozeb was validated electrophysiologically as a KCNQ2 activator with an EC50 value of 0.92±0.23µM. Further examination showed that manganese but not zinc ethylene bis-dithiocarbamate is the active component for the positive modulation effects. In addition, the compounds are effective when the metal ions are substituted by iron but lack potentiation activity when the metal ions are substituted by sodium, signifying the importance of the metal ion. However, the iron (Fe(3+)) alone, organic ligands alone or the mixture of iron with the organic ligand did not show any potentiation effect, suggesting as the active ingredient is a specific complex rather than two separate additive or synergistic components. Our study suggests that potentiation on KCNQ2 potassium channels might be the possible mechanism of Mancozeb toxicity in the nervous system.


Assuntos
Fungicidas Industriais/farmacologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Maneb/farmacologia , Zineb/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Relação Dose-Resposta a Droga , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Manganês/farmacologia , Zinco/farmacologia
14.
Basic Clin Pharmacol Toxicol ; 109(5): 339-42, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21599837

RESUMO

Retigabine is an anti-epileptic drug that inhibits neuronal firing by stabilizing the membrane potential through positive modulation of voltage-dependent KCNQ potassium channels in cortical neurons and in mesencephalic dopamine (DA) neurons. The purpose of this study was to compare the effect of retigabine with other positive KCNQ modulators on the KCl-induced release of DA in rat striatal slices. Retigabine was found to inhibit KCl-dependent release of DA, and the IC(50) was estimated to be 0.7 µM. The KCNQ channel blocker XE-991 enhanced striatal DA release and completely abolished the effect of retigabine. Other compounds of the same class but with some preferences for different KCNQ subtypes such as ICA-27243, BMS-204352 and S-(1) were also tested. All three compounds produced a significant effect albeit weaker than retigabine. The potency of ICA-27243 was in the range of retigabine, and with a lower potency of BMS-204352 and S-(1). This study demonstrates that KCNQ channel openers inhibit KCl-induced DA release at relevant concentrations. The equal potency of ICA-27243 and retigabine suggests that the KCNQ2/3 isoform is likely the dominant subtype mediating this effect.


Assuntos
Carbamatos/farmacologia , Dopamina/metabolismo , Neostriado/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Antracenos/metabolismo , Anticonvulsivantes/farmacologia , Benzamidas/farmacologia , Antagonistas de Dopamina/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Concentração Inibidora 50 , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Masculino , Mesencéfalo/efeitos dos fármacos , Neostriado/metabolismo , Neurônios/efeitos dos fármacos , Dinâmica não Linear , Cloreto de Potássio/antagonistas & inibidores , Cloreto de Potássio/metabolismo , Piridinas/farmacologia , Ratos , Ratos Wistar , Análise de Regressão
15.
Mol Pharmacol ; 76(6): 1279-89, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19726551

RESUMO

Expression of KCNQ2/3 (Kv7.2 and -7.3) heteromers underlies the neuronal M current, a current that is suppressed by activation of a variety of receptors that couple to the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Expression of Kv7.2/7.3 channels in human embryonic kidney (HEK) 293 cells produced a noninactivating potassium current characteristic of M current. Muscarinic receptors endogenous to HEK293 cells were identified as being M3 by pharmacology and Western blotting, producing a rise of intracellular calcium ([Ca2+](i)) upon activation. Activation of these endogenous muscarinic receptors however, failed to suppress expressed Kv7.2/7.3 current. Current suppression was reconstituted by coexpression of HA-tagged muscarinic m1 or m3 receptors. Examination of membrane fractions showed that both expressed receptors and Kv7.2 and -7.3 channel subunits resided within lipid rafts. Disruption of lipid rafts by pretreatment of cells expressing either m1 or m3 muscarinic receptors with methyl-beta-cyclodextrin produced a loss of localization of proteins within lipid raft membrane fractions. This pretreatment also abolished both the increase of [Ca2+](i) and suppression of expressed Kv7.2/7.3 current evoked by activation of expressed m1 or m3 muscarinic receptors. A similar loss of muscarinic receptor-mediated suppression of M current native to rat dorsal root ganglion neurons was observed after incubating dissociated cells with methyl-beta-cyclodextrin. These data suggested that lipid rafts colocalized both muscarinic receptors and channel subunits to enable receptor-mediated suppression of channel activity, a spatial colocalization that enables specificity of coupling between receptor and ion channel.


Assuntos
Microdomínios da Membrana/efeitos dos fármacos , Canais de Potássio/efeitos dos fármacos , Animais , Western Blotting , Cálcio/metabolismo , Carbacol/farmacologia , Linhagem Celular , Colinérgicos/farmacologia , Gânglios Espinais/citologia , Humanos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/metabolismo , Microdomínios da Membrana/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Muscarina/farmacologia , Oxotremorina/farmacologia , Fosfatidilinositol 4,5-Difosfato/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Receptor Muscarínico M3/efeitos dos fármacos , Receptores Muscarínicos/efeitos dos fármacos
16.
Expert Opin Ther Targets ; 12(5): 565-81, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18410240

RESUMO

BACKGROUND: Neuronal KCNQ channels (K(V)7.2-5) represent attractive targets for the development of therapeutics for chronic and neuropathic pain, migraine, epilepsy and other neuronal hyperexcitability disorders, although there has been only modest progress in translating this potential into useful therapeutics. OBJECTIVE: Compelling evidence of the importance of K(V)7 channels as neuronal regulatory elements, readily amenable to pharmacological modulation, has sustained widespread interest in these channels as drug targets. This review will update readers on key aspects of the characterization of these important ion channel targets, and will discuss possible current barriers to their exploitation for CNS therapeutics. METHODS: This article is based on a review of recent literature, with a focus on data pertaining to the roles of these channels in neurophysiology. In addition, I review some of the regulatory elements that influence the channels and how these may relate to channel pharmacology, and present a review of recent advances in neuronal K(V)7 channel pharmacology. CONCLUSIONS: These channels continue to be valid and approachable targets for CNS therapeutics. However, we may need to understand more about the roles of neuronal K(V)7 channels during the development of disease states, as well as to pay more attention to a detailed analysis of the molecular pharmacology of the different channel subfamily members and the modes of interaction of individual modulators, in order to successfully target these channels for therapeutic development.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Canais de Potássio KCNQ/efeitos dos fármacos , Animais , Ensaios Clínicos Controlados como Assunto , Humanos , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
17.
Mol Pharmacol ; 73(3): 977-86, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18089837

RESUMO

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are voltage-gated K(+) channel subunits that underlie the neuronal M current. In humans, mutations in these genes lead to a rare form of neonatal epilepsy (Biervert et al., 1998; Singh et al., 1998), suggesting that KCNQ2/Q3 channels may be attractive targets for novel antiepileptic drugs. In the present study, we have identified the compound N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243) as a selective activator of the neuronal M current and KCNQ2/Q3 channels. In SH-SY5Y human neuroblastoma cells, ICA-27243 produced membrane potential hyperpolarization that could be prevented by coadministration with the M-current inhibitors 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE-991) and linopirdine. ICA-27243 enhanced both (86)Rb(+) efflux (EC(50) = 0.2 microM) and whole-cell currents in Chinese hamster ovary cells stably expressing heteromultimeric KCNQ2/Q3 channels (EC(50) = 0.4 microM). Activation of KCNQ2/Q3 channels was associated with a hyperpolarizing shift of the voltage dependence of channel activation (V((1/2)) shift of -19 mV at 10 microM). In contrast, ICA-27243 was less effective at activating KCNQ4 and KCNQ3/Q5 and was selective over a wide range of neurotransmitter receptors and ion channels such as voltage-dependent sodium channels and GABA-gated chloride channels. ICA-27243 (1-10 microM) was found to reversibly suppress seizure-like activity in an ex vivo hippocampal slice model of epilepsy and demonstrated in vivo anticonvulsant activity (ED(50) = 8.4 mg/kg) in the mouse maximal electroshock epilepsy model. In conclusion, ICA-27243 represents the first member of a novel chemical class of selective KCNQ2/Q3 activators with anticonvulsant-like activity in experimental models of epilepsy.


Assuntos
Benzamidas/farmacologia , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Piridinas/farmacologia , Animais , Células CHO , Técnicas de Cultura de Células , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Eletrofisiologia , Hipocampo/metabolismo , Humanos , Concentração Inibidora 50 , Rim/citologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Microeletrodos , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Plasmídeos , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
18.
Curr Opin Pharmacol ; 8(1): 65-74, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18061539

RESUMO

The Kv7 potassium channel family encompasses five members (from Kv7.1 to Kv7.5) having distinct expression pattern and functional role. Although Kv7.1 is prevalently expressed in the cardiac muscle, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 are expressed in neural tissue. Mutations in Kv7.2 and/or Kv7.3 genes are responsible for an autosomal-dominant epilepsy of the newborn defined as benign familial neonatal seizures (BFNS), whereas defects in the Kv7.4 gene have been found in families affected by a rare form of nonsyndromic autosomal-dominant hearing loss (DFNA2). Compounds acting as direct activators of neuronal channels formed by Kv7 subunits have been approved for clinical use as analgesics or are in advanced stages of clinical evaluation as anticonvulsants; in addition to these indications, solid preclinical studies reveal their potential usefulness in other diseases characterized by neuronal hyperexcitability. In the present work, we will summarize the available evidence providing proof-of-principles that neuronal Kv7 channels are highly attractive pharmacological targets, review the molecular basis of their peculiar pharmacological sensitivity, introduce some newly synthesized I(KM) openers showing improved pharmacokinetic or pharmacodynamic properties compared to older congeners, and discuss the potential novel therapeutic application of neuronal Kv7 channels in diseases additional to epilepsy.


Assuntos
Canais de Potássio KCNQ/efeitos dos fármacos , Canal de Potássio KCNQ1/efeitos dos fármacos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ3/efeitos dos fármacos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Sítios de Ligação , Carbamatos/farmacologia , Carbamatos/uso terapêutico , Epilepsia Neonatal Benigna/tratamento farmacológico , Perda Auditiva/tratamento farmacológico , Perda Auditiva/genética , Humanos , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/fisiologia , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/fisiologia , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/fisiologia , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico
19.
J Gen Physiol ; 130(3): 241-56, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17724161

RESUMO

Activity of KCNQ (Kv7) channels requires binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) from the plasma membrane. We give evidence that Mg(2+) and polyamines weaken the KCNQ channel-phospholipid interaction. Lowering internal Mg(2+) augmented inward and outward KCNQ currents symmetrically, and raising Mg(2+) reduced currents symmetrically. Polyvalent organic cations added to the pipette solution had similar effects. Their potency sequence followed the number of positive charges: putrescine (+2) < spermidine (+3) < spermine (+4) < neomycin (+6) < polylysine (>>+6). The inhibitory effects of Mg(2+) were reversible with sequential whole-cell patching. Internal tetraethylammonium ion (TEA) gave classical voltage-dependent block of the pore with changes of the time course of K(+) currents. The effect of polyvalent cations was simpler, symmetric, and without changes of current time course. Overexpression of phosphatidylinositol 4-phosphate 5-kinase Igamma to accelerate synthesis of PIP(2) attenuated the sensitivity to polyvalent cations. We suggest that Mg(2+) and other polycations reduce the currents by electrostatic binding to the negative charges of PIP(2), competitively reducing the amount of free PIP(2) available for interaction with channels. The dose-response curves could be modeled by a competition model that reduces the pool of free PIP(2). This mechanism is likely to modulate many other PIP(2)-dependent ion channels and cellular processes.


Assuntos
Membrana Celular/metabolismo , Ativação do Canal Iônico , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Magnésio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Poliaminas/metabolismo , Potássio/metabolismo , Animais , Ligação Competitiva , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/efeitos dos fármacos , Canal de Potássio KCNQ3/genética , Potenciais da Membrana , Camundongos , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Neomicina/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Poliaminas/farmacologia , Polilisina/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Putrescina/metabolismo , Ratos , Espermidina/metabolismo , Espermina/metabolismo , Eletricidade Estática , Tetraetilamônio/farmacologia , Fatores de Tempo , Transfecção
20.
Pflugers Arch ; 455(1): 115-24, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17447081

RESUMO

The open state of M(Kv7.2/7.3) potassium channels is maintained by membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)). They can be closed on stimulating receptors that induce PI(4,5)P(2) hydrolysis. In sympathetic neurons, closure induced by stimulating M1-muscarinic acetylcholine receptors (mAChRs) has been attributed to depletion of PI(4,5)P(2), whereas closure by bradykinin B(2)-receptors (B2-BKRs) appears to result from formation of IP(3) and release of Ca(2+), implying that BKR stimulation does not deplete PI(4,5)P(2). We have used a fluorescently tagged PI(4,5)P(2)-binding construct, the C-domain of the protein tubby, mutated to increase sensitivity to PI(4,5)P(2) changes (tubby-R332H-cYFP), to provide an on-line read-out of PI(4,5)P(2) changes in single living sympathetic neurons after receptor stimulation. We find that the mAChR agonist, oxotremorine-M (oxo-M), produces a near-complete translocation of tubby-R332H-cYFP into the cytoplasm, whereas bradykinin (BK) produced about one third as much translocation. However, translocation by BK was increased to equal that produced by oxo-M when synthesis of PI(4,5)P(2) was inhibited by wortmannin. Further, wortmannin 'rescued' M-current inhibition by BK after Ca(2+)-dependent inhibition was reduced by thapsigargin. These results provide the first direct support for the view that BK accelerates PI(4,5)P(2) synthesis in these neurons, and show that the mechanism of BKR-induced inhibition can be switched from Ca(2+) dependent to PI(4,5)P(2) dependent when PI(4,5)P(2) synthesis is inhibited.


Assuntos
Canal de Potássio KCNQ2/efeitos dos fármacos , Canal de Potássio KCNQ2/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiologia , Bloqueadores dos Canais de Potássio , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Bradicinina/farmacologia , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , DNA Complementar/biossíntese , DNA Complementar/genética , Agonistas Muscarínicos/farmacologia , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Gânglio Cervical Superior/citologia , Gânglio Cervical Superior/efeitos dos fármacos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...