Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011846, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38489374

RESUMO

In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.


Assuntos
Segmento Inicial do Axônio , Canais de Sódio Disparados por Voltagem , Segmento Inicial do Axônio/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Axônios/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia
2.
Brain Pathol ; 29(5): 675-692, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31106489

RESUMO

Multiple Sclerosis is an autoimmune disorder causing neurodegeneration mostly in young adults. Thereby, myelin is lost in the inflammatory lesions leaving unmyelinated axons at a high risk to degenerate. Oligodendrocyte precursor cells maintain their regenerative capacity into adulthood and are able to remyelinate axons if they are properly activated and differentiate. Neuronal activity influences the success of myelination indicating a close interplay between neurons and oligodendroglia. The myelination profile determines the distribution of voltage-gated ion channels along the axon. Here, we analyze the distribution of the sodium channel subunit Nav1.6 and the ultrastructure of axons after cuprizone-induced demyelination in transgenic mice expressing GFP in oligodendroglial cells. Using this mouse model, we found an increased number of GFP-expressing oligodendroglial cells compared to untreated mice. Analyzing the axons, we found an increase in the number of nodes of Ranvier in mice that had received cuprizone. Furthermore, we found an enhanced portion of unmyelinated axons showing vesicles in the cytoplasm. These vesicles were labeled with VGlut1, indicating that they are involved in axonal signaling. Our results highlight the flexibility of axons towards changes in the glial compartment and depict the structural changes they undergo upon myelin removal. These findings might be considered if searching for new neuroprotective therapies that aim at blocking neuronal activity in order to avoid interfering with the process of remyelination.


Assuntos
Axônios/ultraestrutura , Bainha de Mielina/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.6/fisiologia , Animais , Axônios/metabolismo , Axônios/patologia , Cuprizona/farmacologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Neurônios/patologia , Oligodendroglia/patologia , Nós Neurofibrosos , Remielinização/fisiologia , Canais de Sódio/metabolismo
3.
J Comp Neurol ; 525(16): 3563-3578, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28758202

RESUMO

Voltage-gated Na+ channels (Nav ) modulate neuronal excitability, but the roles of the various Nav subtypes in specific neuronal functions such as synaptic transmission are unclear. We investigated expression of the three major brain Nav subtypes (Nav 1.1, Nav 1.2, Nav 1.6) in area CA1 and dentate gyrus of rat hippocampus. Using light and electron microscopy, we found labeling for all three Nav subtypes on dendrites, dendritic spines, and axon terminals, but the proportion of pre- and post-synaptic labeling for each subtype varied within and between subregions of CA1 and dentate gyrus. In the central hilus (CH) of the dentate gyrus, Nav 1.1 immunoreactivity was selectively expressed in presynaptic profiles, while Nav 1.2 and Nav 1.6 were expressed both pre- and post-synaptically. In contrast, in the stratum radiatum (SR) of CA1, Nav 1.1, Nav 1.2, and Nav 1.6 were selectively expressed in postsynaptic profiles. We next compared differences in Nav subtype expression between CH and SR axon terminals and between CH and SR dendrites and spines. Nav 1.1 and Nav 1.2 immunoreactivity was preferentially localized to CH axon terminals compared to SR, and in SR dendrites and spines compared to CH. No differences in Nav 1.6 immunoreactivity were found between axon terminals of CH and SR or between dendrites and spines of CH and SR. All Nav subtypes in both CH and SR were preferentially associated with asymmetric synapses rather than symmetric synapses. These findings indicate selective presynaptic and postsynaptic Nav expression in glutamatergic synapses of CH and SR supporting neurotransmitter release and synaptic plasticity.


Assuntos
Hipocampo/citologia , Neurônios/fisiologia , Densidade Pós-Sináptica/metabolismo , Terminações Pré-Sinápticas/metabolismo , Subunidades Proteicas/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Células Cultivadas , Embrião de Mamíferos , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Plasticidade Neuronal/genética , Neurônios/ultraestrutura , Densidade Pós-Sináptica/efeitos dos fármacos , Densidade Pós-Sináptica/ultraestrutura , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/ultraestrutura , Subunidades Proteicas/genética , Ratos , Ratos Sprague-Dawley , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/ultraestrutura
4.
J Comp Neurol ; 525(16): 3529-3542, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28734032

RESUMO

The axon initial segment (AIS) is the site of initiation of action potentials and influences action potential waveform, firing pattern, and rate. In view of the fundamental aspects of motor function and behavior that depend on the firing of substantia nigra pars compacta (SNc) dopaminergic neurons, we identified and characterized their AIS in the mouse. Immunostaining for tyrosine hydroxylase (TH), sodium channels (Nav ) and ankyrin-G (Ank-G) was used to visualize the AIS of dopaminergic neurons. Reconstructions of sampled AIS of dopaminergic neurons revealed variable lengths (12-60 µm) and diameters (0.2-0.8 µm), and an average of 50% reduction in diameter between their widest and thinnest parts. Ultrastructural analysis revealed submembranous localization of Ank-G at nodes of Ranvier and AIS. Serial ultrathin section analysis and 3D reconstructions revealed that Ank-G colocalized with TH only at the AIS. Few cases of synaptic innervation of the AIS of dopaminergic neurons were observed. mRNA in situ hybridization of brain-specific Nav subunits revealed the expression of Nav 1.2 by most SNc neurons and a small proportion expressing Nav 1.6. The presence of sodium channels, along with the submembranous location of Ank-G is consistent with the role of AIS in action potential generation. Differences in the size of the AIS likely underlie differences in firing pattern, while the tapering diameter of AIS may define a trigger zone for action potentials. Finally, the conspicuous expression of Nav 1.2 by the majority of dopaminergic neurons may explain their high threshold for firing and their low discharge rate.


Assuntos
Segmento Inicial do Axônio/fisiologia , Neurônios Dopaminérgicos/citologia , Substância Negra/citologia , Potenciais de Ação/fisiologia , Animais , Anquirinas/metabolismo , Anquirinas/ultraestrutura , Segmento Inicial do Axônio/ultraestrutura , Expressão Gênica/fisiologia , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/ultraestrutura , Neuroimagem , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...