Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.199
Filtrar
1.
Curr Microbiol ; 81(11): 353, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264405

RESUMO

Microalgae are of great interest due to their ability to produce valuable compounds, such as pigments, omega-3 fatty acids, antioxidants, and antimicrobials. The dinoflagellate genus Amphidinium is particularly notable for its amphidinol-like compounds, which exhibit antibacterial and antifungal properties. This study utilized a two-stage cultivation method to grow Amphidinium carterae CCAP 1102/8 under varying conditions, such as blue LED light, increased salinity, and the addition of sodium carbonate or hydrogen peroxide. After cultivation, the biomass was extracted and fractionated using solid-phase extraction, yielding six fractions per treatment. These fractions were analyzed using Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS/MS) to identify their chemical components. Key amphidinol compounds (AM-B, AM-C, AM-22, and AM-A) were identified, with AM-B being the most abundant in Fraction 4, followed by AM-C. Fraction 5 also contained a significant amount of AM-C along with an unknown compound. Fraction 4 returned the highest antimicrobial activity against the pathogens Staphylococcus aureus, Enterococcus faecalis, and Candida albicans, with Minimal Biocidal Concentrations (MBCs) ranging from 1 to 512 µg/mL. Results indicate that the modulation of both amphidinol profile and fraction bioactivity can be induced by adjusting the cultivation parameters used to grow two-stage batch cultures of A. carterae.


Assuntos
Candida albicans , Dinoflagellida , Testes de Sensibilidade Microbiana , Dinoflagellida/química , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Antibacterianos/farmacologia , Antibacterianos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Cromatografia Líquida , Antifúngicos/farmacologia , Antifúngicos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anfidinóis
2.
Malays J Pathol ; 46(2): 295-298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39207006

RESUMO

INTRODUCTION: Candida albicans and Streptococcus mutans co-exist in biofilms in the oral cavity. In this study, the impact of S. mutans on the growth of C. albicans within a mixed-species biofilm was examined. MATERIALS AND METHODS: Single species C. albicans biofilms and mixed species biofilms containing C. albicans and S. mutans at 1:3 and 1:10 ratios were constructed in 6-well microtiter plates. After 24 hours of incubation, the density of resuspended biofilm cells was determined as CFU/ml and used to compare the growth of C. albicans in single species and mixed species biofilms. RESULTS: The CFU/ml of C. albicans in mixed-species biofilms was found to be higher than that in single-species biofilms. CONCLUSION: S. mutans promotes the growth of C. albicans in a co-inhabited biofilm.


Assuntos
Biofilmes , Candida albicans , Streptococcus mutans , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/fisiologia , Humanos , Saúde Bucal , Boca/microbiologia
3.
Cell Host Microbe ; 32(7): 1041-1043, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991499

RESUMO

Multiple host and microbial factors dictate whether Candida albicans can colonize the mammalian gastrointestinal tract. In this issue of Cell Host & Microbe, Savage et al. demonstrate that restoration of intestinal epithelial hypoxia is sufficient to restore Candida albicans colonization resistance, even when other Candida inhibitory effectors remain depleted.


Assuntos
Candida albicans , Candidíase , Trato Gastrointestinal , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Humanos , Trato Gastrointestinal/microbiologia , Candidíase/microbiologia , Animais , Hipóxia/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Interações Hospedeiro-Patógeno , Microbioma Gastrointestinal/fisiologia
4.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999116

RESUMO

The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.


Assuntos
Antifúngicos , Antioxidantes , Porfirinas , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/síntese química , Ácidos Isonicotínicos/química , Ácidos Isonicotínicos/farmacologia , Ácidos Isonicotínicos/síntese química , Estrutura Molecular , Compostos de Bifenilo/química , Picratos/química , Picratos/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Lens (Planta)/química , Germinação/efeitos dos fármacos , Alelopatia
5.
Appl Environ Microbiol ; 90(8): e0036024, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39072650

RESUMO

Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE: Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.


Assuntos
Candida albicans , Meios de Cultura , Células Epiteliais , Staphylococcus aureus , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Humanos , Staphylococcus aureus/fisiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Meios de Cultura/química , Células Epiteliais/microbiologia , Linhagem Celular , Boca/microbiologia
6.
mBio ; 15(8): e0153524, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38980041

RESUMO

At human body temperature, the fungal pathogen Candida albicans can transition from yeast to filamentous morphologies in response to host-relevant cues. Additionally, elevated temperatures encountered during febrile episodes can independently induce C. albicans filamentation. However, the underlying genetic pathways governing this developmental transition in response to elevated temperatures remain largely unexplored. Here, we conducted a functional genomic screen to unravel the genetic mechanisms orchestrating C. albicans filamentation specifically in response to elevated temperature, implicating 45% of genes associated with the spliceosome or pre-mRNA splicing in this process. Employing RNA-Seq to elucidate the relationship between mRNA splicing and filamentation, we identified greater levels of intron retention in filaments compared to yeast, which correlated with reduced expression of the affected genes. Intriguingly, homozygous deletion of a gene encoding a spliceosome component important for filamentation (PRP19) caused even greater levels of intron retention compared with wild type and displayed globally dysregulated gene expression. This suggests that intron retention is a mechanism for fine-tuning gene expression during filamentation, with perturbations of the spliceosome exacerbating this process and blocking filamentation. Overall, this study unveils a novel biological process governing C. albicans filamentation, providing new insights into the complex regulation of this key virulence trait.IMPORTANCEFungal pathogens such as Candida albicans can cause serious infections with high mortality rates in immunocompromised individuals. When C. albicans is grown at temperatures encountered during human febrile episodes, yeast cells undergo a transition to filamentous cells, and this process is key to its virulence. Here, we expanded our understanding of how C. albicans undergoes filamentation in response to elevated temperature and identified many genes involved in mRNA splicing that positively regulate filamentation. Through transcriptome analyses, we found that intron retention is a mechanism for fine-tuning gene expression in filaments, and perturbation of the spliceosome exacerbates intron retention and alters gene expression substantially, causing a block in filamentation. This work adds to the growing body of knowledge on the role of introns in fungi and provides new insights into the cellular processes that regulate a key virulence trait in C. albicans.


Assuntos
Candida albicans , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Spliceossomos , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Candida albicans/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Humanos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Morfogênese/genética , Splicing de RNA , Virulência , Hifas/crescimento & desenvolvimento , Hifas/genética , Íntrons/genética
7.
mBio ; 15(8): e0169824, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39058031

RESUMO

A recent study in mBio reports the construction and preliminary screening of a library containing mutants of 99 of the 119 predicted protein kinases in Candida albicans (the majority of the remaining 20 are probably essential) (J. Kramara, M.-J. Kim, T. L. Ollinger, L. C. Ristow, et al., mBio e01249-24, 2024, https://doi.org/10.1128/mbio.01249-24). Using a quantitative competition assay in 10 conditions that represent nutritional, osmotic, cell wall, and pH stresses that are considered to model various aspects of the host environment allowed them to phenotypically cluster kinases, which highlight both the integration and specialization of signaling pathways, suggesting novel functions for many kinases. In addition, they tackle two complex and partially overlapping differentiation events, hyphal morphogenesis and biofilm formation. They find that a remarkable 88% of the viable kinase mutants in C. albicans affect hyphal growth, illustrating how integrated morphogenesis is in the overall biology of this organism, and begin to dissect the regulatory relationships that control this key virulence trait.


Assuntos
Biofilmes , Candida albicans , Hifas , Mutação , Proteínas Quinases , Candida albicans/genética , Candida albicans/enzimologia , Candida albicans/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Hifas/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Transdução de Sinais , Virulência/genética
8.
Front Cell Infect Microbiol ; 14: 1375872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846355

RESUMO

Introduction: Pseudomonas aeruginosa is notorious for its multidrug resistance and its involvement in hospital-acquired infections. In this study, 20 bacterial strains isolated from soil samples near the Hindan River in Ghaziabad, India, were investigated for their biochemical and morphological characteristics, with a focus on identifying strains with exceptional drug resistance and pyocyanin production. Methods: The isolated bacterial strains were subjected to biochemical and morphological analyses to characterize their properties, with a particular emphasis on exopolysaccharide production. Strain GZB16/CEES1, exhibiting remarkable drug resistance and pyocyanin production. Biochemical and molecular analyses, including sequencing of its 16S rRNA gene (accession number LN735036.1), plasmid-curing assays, and estimation of plasmid size, were conducted to elucidate its drug resistance mechanisms and further pyocynin based target the Candida albicans Strain GZB16/CEES1 demonstrated 100% resistance to various antibiotics used in the investigation, with plasmid-curing assays, suggesting plasmid-based resistance gene transmission. The plasmid in GZB16/CEES1 was estimated to be approximately 24 kb in size. The study focused on P. aeruginosa's pyocyanin production, revealing its association with anticandidal activity. The minimum inhibitory concentration (MIC) of the bacterial extract against Candida albicans was 50 µg/ml, with a slightly lower pyocyanin-based MIC of 38.5 µg/ml. Scanning electron microscopy illustrated direct interactions between P. aeruginosa strains and Candida albicans cells, leading to the destruction of the latter. Discussion: These findings underscore the potential of P. aeruginosa in understanding microbial interactions and developing strategies to combat fungal infections. The study highlights the importance of investigating bacterial-fungal interactions and the role of pyocyanin in antimicrobial activity. Further research in this area could lead to the development of novel therapeutic approaches for combating multidrug-resistant infections.


Assuntos
Antifúngicos , Candida albicans , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana , Plasmídeos , Pseudomonas aeruginosa , Piocianina , RNA Ribossômico 16S , Microbiologia do Solo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Índia , Plasmídeos/genética , Antibacterianos/farmacologia , Antibiose
9.
Curr Microbiol ; 81(7): 213, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847863

RESUMO

The antimalarial drug Mefloquine has demonstrated antifungal activity against growth and virulence factors of Candida albicans. The current study focused on the identification of Mefloquine's mode of action in C. albicans by performing cell susceptibility assay, biofilm assay, live and dead assay, propidium iodide uptake assay, ergosterol quantification assay, cell cycle study, and gene expression studies by RT-PCR. Mefloquine inhibited the virulence factors in C. albicans, such as germ tube formation and biofilm formation at 0.125 and 1 mg/ml, respectively. Mefloquine-treated cells showed a decrease in the quantity of ergosterol content of cell membrane in a concentration-dependent manner. Mefloquine (0.25 mg/ml) arrested C. albicans cells at the G2/M phase and S phase of the cell cycle thereby preventing the progression of the normal yeast cell cycle. ROS level was measured to find out oxidative stress in C. albicans in the presence of mefloquine. The study revealed that, mefloquine was found to enhance the ROS level and subsequently oxidative stress. Gene expression studies revealed that mefloquine treatment upregulates the expressions of SOD1, SOD2, and CAT1 genes in C. albicans. In vivo, the antifungal efficacy of mefloquine was confirmed in mice for systemic candidiasis and it was found that there was a decrease in the pathogenesis of C. albicans after the treatment of mefloquine in mice. In conclusion, mefloquine can be used as a repurposed drug as an alternative drug against Candidiasis.


Assuntos
Antifúngicos , Candida albicans , Candidíase , Mefloquina , Fatores de Virulência , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/crescimento & desenvolvimento , Animais , Mefloquina/farmacologia , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Ergosterol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Bioprocess Biosyst Eng ; 47(8): 1335-1344, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38767741

RESUMO

Green nanotechnology is one of the most expanding fields that provides numerous novel nanoparticle drug formulations with enhanced bioactivity performance. This study aims to synthesize mesoporous metal organic framework (ZIF-8) phytofabricated with the herb Allium sativum (As) as an indicator system for its antibacterial and antifungal impact. The successful synthesis of ZIF-8 as nanocomposite was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and scanning coupled with energy-dispersive X-ray spectroscopy and transmission electron microscopy (SEM-EDX and TEM) that showed the textural retainment of ZIF-8 on composite formation with A. sativum. The nanocomposite, A. sativum extract, and ZIF-8 were subjected to antimicrobial assays against Shigella flexneri, Candida albicans, and Candida parapsilosis. The comparative results indicated the potential action of nanocomposite against the bacteria and both the Candida sps; however, the antifungal action against the Candida sps was more effective than the bacterium S. flexneri. The findings suggest that plants, being an important component of ecosystems, could be further explored for the novel drug discovery using green nanotechnology to enhance their impact on the drug-resistant pathogens.


Assuntos
Alho , Estruturas Metalorgânicas , Nanocompostos , Nanocompostos/química , Alho/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Shigella flexneri/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Difração de Raios X , Candida parapsilosis/efeitos dos fármacos , Imidazóis
11.
Microbiol Spectr ; 12(6): e0035324, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38717160

RESUMO

Candida albicans (C. albicans) and Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) are frequently identified in various niches, but their dual-species interaction, especially with C. albicans in yeast form, remains unclear. This study aimed to investigate the dual-species interaction of L. plantarum and C. albicans, including proliferation, morphology, and transcriptomes examined by selective agar plate counting, microscopy, and polymicrobial RNA-seq, respectively. Maintaining a stable and unchanged growth rate, L. plantarum inhibited C. albicans yeast cell proliferation but not hyphal growth. Combining optical microscopy and atomic force microscopy, cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed during dual-species interaction. Reduced C. albicans yeast cell proliferation in mixed culture was partially due to L. plantarum cell-free culture supernatant but not the acidic environment. Upon polymicrobial transcriptomics analysis, interesting changes were identified in both L. plantarum and C. albicans gene expression. First, two L. plantarum quorum-sensing systems showed contrary changes, with the activation of lamBDCA and repression of luxS. Second, the upregulation of stress response-related genes and downregulation of cell cycle, cell survival, and cell integrity-related pathways were identified in C. albicans, possibly connected to the stress posed by L. plantarum and the reduced yeast cell proliferation. Third, a large scale of pathogenesis and virulence factors were downregulated in C. albicans, indicating the potential interruption of pathogenic activities by L. plantarum. Fourth, partial metabolism and transport pathways were changed in L. plantarum and C. albicans. The information in this study might aid in understanding the behavior of L. plantarum and C. albicans in dual-species interaction.IMPORTANCEThe anti-Candida albicans activity of Lactiplantibacillus plantarum has been explored in the past decades. However, the importance of C. albicans yeast form and the effect of C. albicans on L. plantarum had also been omitted. In this study, the dual-species interaction of L. plantarum and C. albicans was investigated with a focus on the transcriptomes. Cell-to-cell direct contact and co-aggregation with L. plantarum cells surrounding C. albicans yeast cells were observed. Upon polymicrobial transcriptomics analysis, interesting changes were identified, including contrary changes in two L. plantarum quorum-sensing systems and reduced cell survival-related pathways and pathogenesis determinants in C. albicans.


Assuntos
Candida albicans , Interações Microbianas , Percepção de Quorum , Candida albicans/genética , Candida albicans/patogenicidade , Candida albicans/fisiologia , Candida albicans/metabolismo , Candida albicans/crescimento & desenvolvimento , Percepção de Quorum/genética , Virulência/genética , Lactobacillus plantarum/genética , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/fisiologia , Regulação Fúngica da Expressão Gênica , Transcriptoma , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
12.
Braz J Microbiol ; 55(3): 2047-2056, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38789908

RESUMO

Candida albicans is a polymorphic human fungal pathogen and the prime etiological agent responsible for candidiasis. The main two aspects of C. albicans virulence that have been suggested are yeast-to-hyphal (Y-H) morphological transitions and biofilm development. Anti-fungal agents targeting these virulence attributes enhances the antifungal drug development process. Repositioning with other non-fungal drugs offered a one of the new strategies and a potential alternative option to counter the urgent need for antifungal drug development. In the current study, an antiviral drug ganciclovir was screened as an antifungal agent against ATCC 90028, 10231 and clinical isolate (C1). Ganciclovir at 0.5 mg/ml concentration reduced 50% hyphal development on a silicon-based urinary catheter and was visualized using scanning electron microscopy. Ganciclovir reduced ergosterol biosynthesis in both strains and C1 isolate of C. albicans in a concentration-dependent manner. Additionally, a gene expression profile study showed that ganciclovir treatment resulted in upregulation of hyphal-specific repressors MIG1, TUP1, and NRG1 in C. albicans. Additionally, an in vivo study on the Bombyx mori silkworm model further evidenced the virulence inhibitory ability of ganciclovir (0.5 mg/ml) against C. albicans. This is the first report that explore the novel anti-morphogenic activities of ganciclovir against the pathogenic C. albicans strains, along with clinical isolates. Further, ganciclovir may be considered for therapeutic purpose after combinations with standard antifungal agents.


Assuntos
Antifúngicos , Candida albicans , Proteínas Fúngicas , Ganciclovir , Hifas , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Antifúngicos/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ganciclovir/farmacologia , Animais , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Testes de Sensibilidade Microbiana , Neuregulina-1/genética , Neuregulina-1/metabolismo , Virulência/efeitos dos fármacos , Humanos , Morfogênese/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791366

RESUMO

The rise in the antibiotic resistance of bacteria has increased scientific interest in the study of materials with unique mechanisms of antimicrobial action. This paper presents the results of studies on the antimicrobial activity of carbon materials and textiles decorated with them. A comparative analysis of the bactericidal and fungicidal activities of graphene oxide, electrochemically exfoliated multigraphene, carbon dots, and their combinations was performed. Microbiological studies on reference strains of E. coli, S. aureus, and C. albicans showed that graphene oxide inhibited growth with up to 98% efficiency. Electrochemically exfoliated multigraphene was less effective (up to 40%). This study found no significant antimicrobial activity of carbon dots and the combination of carbon dots with graphene oxide significantly weakened their effectiveness. However, the combination of electrochemically exfoliated multigraphene and carbon dots exhibits a synergistic effect (up to 76%). A study on the antimicrobial activity of decorated cotton textiles demonstrated the effectiveness of antimicrobial textiles with graphene oxide, electrochemically exfoliated multigraphene, and a combination of carbon dots with electrochemically exfoliated multigraphene.


Assuntos
Anti-Infecciosos , Fibra de Algodão , Grafite , Grafite/química , Grafite/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Carbono/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Têxteis , Pontos Quânticos/química
14.
Can J Microbiol ; 70(9): 384-393, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38754137

RESUMO

Boric acid is a broad-spectrum antimicrobial used to treat vulvovaginal candidiasis when patients relapse on the primary azole drug fluconazole. Candida albicans is the most common cause of vulvovaginal candidiasis, colloquially referred to as a "vaginal yeast infection". Little is known about the propensity of C. albicans to develop BA resistance or tolerance (the ability of a subpopulation to grow slowly in high levels of drug). We evolved 96 replicates from eight diverse C. albicans strains to increasing BA concentrations to test the evolvability of BA resistance and tolerance. Replicate growth was individually assessed daily, with replicates passaged when they had reached an optical density consistent with exponential growth. Many replicates went extinct quickly. Although some replicates could grow in much higher levels of BA than the ancestral strains, evolved populations isolated from the highest terminal BA levels (after 11 weeks of passages) surprisingly showed only modest growth improvements and only at low levels of BA. No large increases in resistance or tolerance were observed in the evolved replicates. Overall, our findings illustrate that there may be evolutionary constraints limiting the emergence of BA resistance and tolerance, which could explain why it remains an effective treatment for recurrent yeast infections.


Assuntos
Antifúngicos , Ácidos Bóricos , Candida albicans , Farmacorresistência Fúngica , Ácidos Bóricos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Humanos , Candidíase Vulvovaginal/microbiologia , Candidíase Vulvovaginal/tratamento farmacológico
15.
Bioprocess Biosyst Eng ; 47(8): 1293-1306, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38568262

RESUMO

Plant-mediated solution casting is used to develop eco-friendly polymer blend nanocomposites from polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) doped with Silver (Ag), Ferrous (Fe) monometallic and Silver-Ferrous (Ag-Fe) bimetallic nanoparticles (NPs). These nanocomposites were studied to understand their electromagnetic interface (EMI) shielding efficiency and antimicrobial activities, besides evaluating their physical and chemical properties. The Fourier transform infrared (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and energy dispersive X-ray (EDX) characterization techniques were used to examine the interactions between the polymers, the presence of silver and ferrous particles in the composites, the crystallinity shift, the surface morphology, the shape and size of the nanoparticles and the distribution of the nanoparticles in the composites. The FTIR spectra showed the interactions among the components of the composites. According to XRD spectra, the incorporation of nanoparticles into the PVA polymer significantly reduced the crystalline character of the polymer from 0.38 to 0.24 for the composition consisting of silver and iron nanoparticles in equal proportion. The results from SEM, EDX and XRD corroborate the presence of nanoparticle forms. The thermogravimetric analysis (TGA) tests reveal that the thermal stability of bimetallic composites is greater than that of monometallic composites. The tensile properties showed that the addition of nanoparticles to the PVA/PVP polymer matrix increased its mechanical strength from 59.3 MPa to 85.5 MPa. We examined its efficacy against Escherichia coli, Staphylococcus aureus and Candida albicans as microorganisms. Good antibacterial and antifungal activity was observed. The bimetallic composites demonstrated greater activity than monometallic composites against these bacterial and fungal species. All bimetallic nanocomposites have shown enhanced, loss due to reflection, loss due to absorption, and the total EMI shielding efficiency at 8 GHz (X-band) and 16 GHz (Ku-band) frequency. All these results ratify, that these newly developed bio nanocomposites are most suitable in many applications, in EMI shielding, nanotechnology, and medical fields.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Nanocompostos , Prata , Nanocompostos/química , Nanopartículas Metálicas/química , Prata/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Biopolímeros/química , Álcool de Polivinil/química , Ferro/química , Química Verde , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
16.
J Cell Mol Med ; 28(9): e18354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38686557

RESUMO

Infections caused by Candida species, especially Candida albicans, threaten the public health and create economic burden. Shortage of antifungals and emergence of drug resistance call for new antifungal therapies while natural products were attractive sources for developing new drugs. In our study, fangchinoline, a bis-benzylisoquinoline alkaloid from Chinese herb Stephania tetrandra S. Moore, exerted antifungal effects on planktonic growth of several Candida species including C. albicans, with MIC no more than 50 µg/mL. In addition, results from microscopic, MTT and XTT reduction assays showed that fangchinoline had inhibitory activities against the multiple virulence factors of C. albicans, such as adhesion, hyphal growth and biofilm formation. Furthermore, this compound could also suppress the metabolic activity of preformed C. albicans biofilms. PI staining, followed by confocal laser scanning microscope (CLSM) analysis showed that fangchinoline can elevate permeability of cell membrane. DCFH-DA staining suggested its anti-Candida mechanism also involved overproduction of intracellular ROS, which was further confirmed by N-acetyl-cysteine rescue tests. Moreover, fangchinoline showed synergy with three antifungal drugs (amphotericin B, fluconazole and caspofungin), further indicating its potential use in treating C. albicans infections. Therefore, these results indicated that fangchinoline could be a potential candidate for developing anti-Candida therapies.


Assuntos
Antifúngicos , Benzilisoquinolinas , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Antifúngicos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Benzilisoquinolinas/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento
17.
Z Naturforsch C J Biosci ; 79(7-8): 179-186, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38454808

RESUMO

The current study describes the chemical composition, antifungal, antibiofilm, antibacterial and molecular docking studies of Syzygium dyerianum growing in Malaysia. The essential oil was obtained through hydrodistillation and characterized using gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The antifungal and antibacterial activities were developed using the broth microdilution assay, whereas the effect on the microbial biofilms was determined using a semi-quantitative static biofilm assay. A total of 31 components were identified, which represent 99.5 % of the essential oil. The results revealed that the essential oil consisted mainly of ß-pinene (15.6 %), α-terpineol (13.3 %), α-pinene (11.1 %), caryophyllene oxide (8.8 %), limonene (8.1 %), borneol (6.0 %) and viridiflorol (5.1 %). The results of the microdilution method showed that essential oil exhibited activity against Candida albicans and Streptococcus mutans with minimal inhibitory concentration values of 125 and 250 µg/mL, respectively. Furthermore, essential oil decreased the biofilm of C. albicans and S. mutans by 20.11 ± 0.27 % and 32.10 ± 4.81 % when treated with 250 µg/mL. The best docking energy was observed with viridiflorol (-29.7 kJ/mol). This study highlights that essential oil can potentially be a natural antifungal, antibacterial, and antibiofilm agent that could be applied in the pharmaceutical and food industries.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Óleos Voláteis , Syzygium , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Syzygium/química , Antibacterianos/farmacologia , Antibacterianos/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas
18.
Nature ; 627(8004): 620-627, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448595

RESUMO

The fungus Candida albicans frequently colonizes the human gastrointestinal tract, from which it can disseminate to cause systemic disease. This polymorphic species can transition between growing as single-celled yeast and as multicellular hyphae to adapt to its environment. The current dogma of C. albicans commensalism is that the yeast form is optimal for gut colonization, whereas hyphal cells are detrimental to colonization but critical for virulence1-3. Here, we reveal that this paradigm does not apply to multi-kingdom communities in which a complex interplay between fungal morphology and bacteria dictates C. albicans fitness. Thus, whereas yeast-locked cells outcompete wild-type cells when gut bacteria are absent or depleted by antibiotics, hyphae-competent wild-type cells outcompete yeast-locked cells in hosts with replete bacterial populations. This increased fitness of wild-type cells involves the production of hyphal-specific factors including the toxin candidalysin4,5, which promotes the establishment of colonization. At later time points, adaptive immunity is engaged, and intestinal immunoglobulin A preferentially selects against hyphal cells1,6. Hyphal morphotypes are thus under both positive and negative selective pressures in the gut. Our study further shows that candidalysin has a direct inhibitory effect on bacterial species, including limiting their metabolic output. We therefore propose that C. albicans has evolved hyphal-specific factors, including candidalysin, to better compete with bacterial species in the intestinal niche.


Assuntos
Candida albicans , Proteínas Fúngicas , Microbioma Gastrointestinal , Hifas , Intestinos , Micotoxinas , Simbiose , Animais , Feminino , Humanos , Masculino , Camundongos , Bactérias/crescimento & desenvolvimento , Bactérias/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal/imunologia , Hifas/crescimento & desenvolvimento , Hifas/imunologia , Hifas/metabolismo , Imunoglobulina A/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Micotoxinas/metabolismo , Virulência
19.
Macromol Biosci ; 24(6): e2300507, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38332467

RESUMO

Hydrogels from natural sources are attracting increasing interest due to their ability to protect biologically active molecules. Starch extracted from cassava tubers is a promising material for synthesizing these hydrogels. Copolymerization of cassava gum and incorporation of chlorhexidine digluconate (CLX) into the hydrogels is confirmed by changes in the crystallographic profile, as observed through X-ray diffraction, and a shift in the 1000 cm-1 band in the Fourier-transform infrared spectroscopy spectrum. The differential scanning calorimetry reveals changes in the decomposition temperature of the synthesized hydrogels related to CLX volatility. Micrographs illustrate the material's porosity. Release tests indicate a constant linear release over 72 h, while antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans is satisfactory, with 100% effectiveness from 0.5% CLX and the formation of inhibition halos. Toxicity and biocompatibility studies show no cytotoxicity. The continuous release of chlorhexidine is promising for components of biomedical implants and applications as it can ensure antimicrobial action according to specific therapeutic needs.


Assuntos
Anti-Infecciosos , Candida albicans , Clorexidina , Escherichia coli , Hidrogéis , Manihot , Staphylococcus aureus , Clorexidina/farmacologia , Clorexidina/química , Clorexidina/análogos & derivados , Manihot/química , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Gomas Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Testes de Sensibilidade Microbiana , Liberação Controlada de Fármacos
20.
Front Cell Infect Microbiol ; 12: 960884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36004328

RESUMO

The alternate growth of Candida albicans between a unicellular yeast form and a multicellular hyphal form is crucial for its ability to cause disease. Interestingly, both morphological forms support distinct functions during proliferation in the human host. We previously identified ORF19.217 (C2_08890W_A), encoding a zinc-finger transcription factor of the C2H2 family, in a systematic screen of genes whose overexpression contributes to C. albicans' morphological changes. Conditional overexpression of ORF19.217 with the strong tetracycline-inducible promoter (P TET ) resulted in a hyperfilamentous phenotype. We examined growth of the orf19.217 knockout-mutant in different hypha-inducing conditions and found that the mutant still formed hyphae under standard hypha-inducing conditions. To further investigate the function of Orf19.217 in C. albicans, we combined genome-wide expression (RNA-Seq) and location (ChIP-Seq) analyses. We found that Orf19.217 is involved in regulatory processes comprising hyphal morphogenesis and iron acquisition. Comparative analysis with existing C. albicans hyphal transcriptomes indicates that Orf19.217-mediated filamentation is distinct from a true hyphal program. Further, the orf19.217 knockout-mutant did not show increased sensitivity to iron deprivation, but ORF19.217 overexpression was able to rescue the growth of a hap5-mutant, defective in a subunit of the CCAAT-complex, which is essential for iron acquisition. This suggested that Orf19.217 is involved in regulation of iron acquisition genes during iron deprivation and acts in a parallel pathway to the established CCAAT-complex. Interestingly, the orf19.217-mutant turned out to be defective in its ability to form filaments under iron-deficiency. Taken together our findings propose that the transcription factor Orf19.217 stimulates expression of the hyphal regulators EFG1 and BRG1 to promote filamentous growth under iron deprivation conditions, allowing the fungus to escape these iron-depleted conditions. The transcription factor therefore appears to be particularly important for adaptation of C. albicans to diverse environmental conditions in the human host. In regard to the newly identified functions, we have given the regulator the name Irf1, Iron-dependent Regulator of Filamentation.


Assuntos
Candida albicans , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Ferro , Humanos , Candida albicans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Homeostase , Hifas , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Ferro/metabolismo , Morfogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA