Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 849
Filtrar
1.
Mycoses ; 67(6): e13750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813959

RESUMO

BACKGROUND: The prevalence of Candida glabrata healthcare-associated infections is on the rise worldwide and in Lebanon, Candida glabrata infections are difficult to treat as a result of their resistance to azole antifungals and their ability to form biofilms. OBJECTIVES: The first objective of this study was to quantify biofilm biomass in the most virulent C. glabrata isolates detected in a Lebanese hospital. In addition, other pathogenicity attributes were evaluated. The second objective was to identify the mechanisms of azole resistance in those isolates. METHODS: A mouse model of disseminated systemic infection was developed to evaluate the degree of virulence of 41 azole-resistant C. glabrata collected from a Lebanese hospital. The most virulent isolates were further evaluated alongside an isolate having attenuated virulence and a reference strain for comparative purposes. A DNA-sequencing approach was adopted to detect single nucleotide polymorphisms (SNPs) leading to amino acid changes in proteins involved in azole resistance and biofilm formation. This genomic approach was supported by several phenotypic assays. RESULTS: All chosen virulent isolates exhibited increased adhesion and biofilm biomass compared to the isolate having attenuated virulence. The amino acid substitutions D679E and I739N detected in the subtelomeric silencer Sir3 are potentially involved- in increased adhesion. In all isolates, amino acid substitutions were detected in the ATP-binding cassette transporters Cdr1 and Pdh1 and their transcriptional regulator Pdr1. CONCLUSIONS: In summary, increased adhesion led to stable biofilm formation since mutated Sir3 could de-repress adhesins, while decreased azole susceptibility could result from mutations in Cdr1, Pdh1 and Pdr1.


Assuntos
Antifúngicos , Biofilmes , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Mutação , Biofilmes/crescimento & desenvolvimento , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candida glabrata/patogenicidade , Candida glabrata/fisiologia , Líbano , Animais , Camundongos , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Humanos , Virulência/genética , Candidíase/microbiologia , Proteínas Fúngicas/genética , Polimorfismo de Nucleotídeo Único , Modelos Animais de Doenças , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Hospitais , Feminino
2.
J Clin Lab Anal ; 38(9): e25042, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38775102

RESUMO

BACKGROUND: The current study aimed to identify Iranian Nakaseomyces (Candida) glabrata complex species in the clinical isolates and determine their antifungal susceptibility profile. METHODS: In total, 320 N. glabrata clinical isolates were collected from patients hospitalized in different geographical regions of Iran. The initial screening was performed by morphological characteristics on CHROMagar Candida. Each isolate was identified by targeting the D1/D2 rDNA using a multiplex-PCR method. To validate the mPCR method and determine genetic diversity, the ITS-rDNA region was randomly sequenced in 40 isolates. Additionally, antifungal susceptibility was evaluated against nine antifungal agents following the CLSI M27-A4 guidelines. RESULTS: All clinical isolates from Iran were identified as N. glabrata. The analysis of ITS-rDNA sequence data revealed the presence of eight distinct ITS clades and 10 haplotypes among the 40 isolates of N. glabrata. The predominant clades identified were Clades VII, V, and IV, which respectively accounted for 22.5%, 17.5%, and 17.5% isolates. The widest MIC ranges were observed for voriconazole (0.016-8 µg/mL) and isavuconazole (0.016-2 µg/mL), whereas the narrowest ranges were seen with itraconazole and amphotericin B (0.25-2 µg/mL). CONCLUSION: Haplotype diversity can be a valuable approach for studying the genetic diversity, transmission patterns, and epidemiology of the N. glabrata complex.


Assuntos
Antifúngicos , Candida glabrata , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Humanos , Irã (Geográfico)/epidemiologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Epidemiologia Molecular , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Candidíase/microbiologia , Candidíase/epidemiologia , Farmacorresistência Fúngica/genética
3.
Microbiol Spectr ; 12(6): e0012124, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38695556

RESUMO

Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE: Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.


Assuntos
Antifúngicos , Azóis , Candida , Difosfonatos , Farmacorresistência Fúngica , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Azóis/farmacologia , Humanos , Difosfonatos/farmacologia , Candida/efeitos dos fármacos , Animais , Farmacorresistência Fúngica/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Fluconazol/farmacologia , Biofilmes/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
4.
Phytomedicine ; 130: 155569, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795695

RESUMO

BACKGROUND: Extensive antifungal drug use has enhanced fungal resistance, resulting in persistent mycoses. Combining antifungal plant extracts/compounds with these drugs offers good alternatives to increase the activity of both partners, minimize side effects, and overcome drug resistance. In our previous study, Phytolacca tetramera berries extracts demonstrated activity against Candida spp., correlating with the amount of the main constituent phytolaccoside B and its genin, phytolaccagenin. The extracts and phytolaccagenin altered the fungal plasma membrane by binding to ergosterol, whereas phytolaccoside B increased chitin synthase activity. However, the presence of triterpenoid saponins in Phytolacca spp. has been linked to acute toxicity in humans. PURPOSE: This study aimed to evaluate combinations of P. tetramera berries extracts, phytolaccoside B and phytolaccagenin, together with commercial antifungals [amphotericin B, fluconazole, itraconazole, posaconazole, and caspofungin] against Candida albicans and Candida glabrata, to find synergistic effects with multi-target actions, in which the doses of both partners are reduced, and therefore their toxicity. Additionally, we intended to explore their anti-virulence capacity, thereby hindering the development of drug-resistant strains. METHODS: The effects of these combinations were evaluated using both the checkerboard and isobologram methods. Fractional Inhibitory Concentration Index and Dose Reduction Index were calculated to interpret the combination results. To confirm the multi-target effect, studies on mechanisms of action of synergistic mixtures were performed using ergosterol-binding and quantification assays. The ability to inhibit Candida virulence factors, including biofilm formation and eradication from inert surfaces, was also evaluated. Quantification of active markers was performed using a validated UHPLC-ESI-MS method. RESULTS: Eight synergistic combinations of P. tetramera extracts or phytolaccagenin (but not phytolaccoside B) with itraconazole or posaconazole were obtained against C. albicans, including a resistant strain. These mixtures acted by binding to ergosterol, decreasing its whole content, and inhibiting Candida biofilm formation in 96-well microplates and feeding tubes in vitro, but were unable to eradicate preformed biofilms. CONCLUSIONS: This study demonstrated the synergistic and anti-virulence effects of P. tetramera berries extracts and phytolaccagenin with antifungal drugs against Candida spp., providing novel treatment avenues for fungal infections with reduced doses of both natural products and commercial antifungals, thereby mitigating potential human toxicity concerns.


Assuntos
Antifúngicos , Candida albicans , Sinergismo Farmacológico , Frutas , Testes de Sensibilidade Microbiana , Phytolacca , Extratos Vegetais , Antifúngicos/farmacologia , Antifúngicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Candida albicans/efeitos dos fármacos , Phytolacca/química , Candida glabrata/efeitos dos fármacos , Saponinas/farmacologia , Candida/efeitos dos fármacos
5.
Acta Biochim Pol ; 71: 11999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721306

RESUMO

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Assuntos
Antifúngicos , Bacillus subtilis , Candida glabrata , Permeabilidade da Membrana Celular , Lipopeptídeos , Testes de Sensibilidade Microbiana , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
6.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704559

RESUMO

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Candida glabrata , Escherichia coli , Fluconazol , Glucosídeos Iridoides , Iridoides , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Glucosídeos Iridoides/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/fisiologia , Candida glabrata/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Iridoides/farmacologia , Fluconazol/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura
7.
J Dent ; 145: 104984, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583645

RESUMO

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.


Assuntos
Biofilmes , Candida albicans , Bases de Dentadura , Nanopartículas Metálicas , Pseudomonas aeruginosa , Prata , Staphylococcus aureus , Streptococcus mutans , Vanadatos , Molhabilidade , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Vanadatos/farmacologia , Vanadatos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Prata/química , Bases de Dentadura/microbiologia , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Candida glabrata/efeitos dos fármacos , Impressão Tridimensional , Teste de Materiais , Humanos , Nanoestruturas , Compostos de Prata/farmacologia , Compostos de Prata/química , Materiais Dentários/química , Materiais Dentários/farmacologia
8.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621582

RESUMO

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologia , Parede Celular/genética , Parede Celular/efeitos dos fármacos , Candidíase/microbiologia , Caspofungina/farmacologia , Evolução Molecular , Estresse Oxidativo/genética , Equinocandinas/farmacologia , Fatores de Transcrição/genética
9.
Antimicrob Agents Chemother ; 68(5): e0158423, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526046

RESUMO

Rezafungin is a long-acting, intravenously administered echinocandin for the treatment of candidemia and invasive candidiasis (IC). Non-inferiority of rezafungin vs caspofungin for the treatment of adults with candidemia and/or IC was demonstrated in the Phase 3 ReSTORE study based on the primary endpoints of day 14 global cure and 30-day all-cause mortality. Here, an analysis of ReSTORE data evaluating efficacy outcomes by baseline Candida species is described. Susceptibility testing was performed for Candida species using the Clinical and Laboratory Standards Institute reference broth microdilution method. There were 93 patients in the modified intent-to-treat population who received rezafungin; 94 received caspofungin. Baseline Candida species distribution was similar in the two treatment groups; C. albicans (occurring in 41.9% and 42.6% of patients in the rezafungin and caspofungin groups, respectively), C. glabrata (25.8% and 26.6%), and C. tropicalis (21.5% and 18.1%) were the most common pathogens. Rates of global cure and mycological eradication at day 14 and day 30 all-cause mortality by Candida species were comparable in the rezafungin and caspofungin treatment groups and did not appear to be impacted by minimal inhibitory concentration (MIC) values for either rezafungin or caspofungin. Two patients had baseline isolates with non-susceptible MIC values (both in the rezafungin group: one non-susceptible to rezafungin and one to caspofungin, classified as intermediate); both were candidemia-only patients in whom rezafungin treatment was successful based on the day 30 all-cause mortality endpoint. This analysis of ReSTORE demonstrated the efficacy of rezafungin for candidemia and IC in patients infected with a variety of Candida species.


Assuntos
Antifúngicos , Candidemia , Candidíase Invasiva , Caspofungina , Equinocandinas , Testes de Sensibilidade Microbiana , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidemia/tratamento farmacológico , Candidemia/mortalidade , Candidemia/microbiologia , Candidíase Invasiva/tratamento farmacológico , Candidíase Invasiva/microbiologia , Candidíase Invasiva/mortalidade , Caspofungina/uso terapêutico , Caspofungina/farmacologia , Equinocandinas/uso terapêutico , Equinocandinas/farmacologia , Lipopeptídeos/uso terapêutico , Resultado do Tratamento
10.
Eur J Prosthodont Restor Dent ; 32(2): 203-211, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38373220

RESUMO

Alternatives have been sought to add an antimicrobial property to denture adhesives. This study evaluated the antimicrobial potential of adhesives associated with nanostructured silver vanadate decorated with silver nanoparticles (ß-AgVO3). Specimens in acrylic resin were treated with the adhesives associated with ß-AgVO3 (1%, 2.5%, 5% and 10%). As control, specimens treated only with Ultra Corega Cream (UCC) or Ultra Corega Powder (UCP) adhesive were used. Multispecies biofilm of Candida albicans, Candida glabrata, Streptococcus mutans and Staphylococcus aureus was evaluated by counting colony forming units per milliliter (CFU/mL), colorimetric assay and fluorescence microscopy. The data were analyzed using the two-way analysis of variance (ANOVA) and Bonferroni multiple comparisons test (α=0.05). For both adhesives, a small amount of ß-AgVO3 (1%) completely inhibited S. mutans (P⟨0.05). For the other microorganisms, there was a reduction in metabolic activity and complete inhibition in the groups with intermediate or greater amounts of nanomaterial (P⟨0.05), except for C. albicans, which was reduced (P⟨0.05) but not completely inhibited in UCP. Microscopy that showed less biofilm in the groups with ß-AgVO3 and in the UCC than UCP. Denture adhesives in powder and cream form with ß-AgVO3 showed potential antimicrobial activity against multispecies biofilm. Powder adhesive showed higher biofilm formation.


Assuntos
Resinas Acrílicas , Biofilmes , Candida albicans , Prata , Streptococcus mutans , Vanadatos , Biofilmes/efeitos dos fármacos , Vanadatos/farmacologia , Vanadatos/química , Streptococcus mutans/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Prata/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Nanopartículas Metálicas , Propriedades de Superfície , Cimentos Dentários/farmacologia , Compostos de Prata/farmacologia , Candida glabrata/efeitos dos fármacos
11.
J Glob Antimicrob Resist ; 37: 62-68, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408565

RESUMO

OBJECTIVES: This study aimed to identify the resistance mechanisms to micafungin and fluconazole in a clinical isolate of Candida glabrata. METHODS: The isolate was whole-genome sequenced to identify amino acid changes in key proteins involved in antifungal resistance, and the isolate was further characterised by pathogenicity-related phenotypic assays that supported the sequencing results. RESULTS: Amino acid substitutions were detected in 8 of 17 protein candidates. Many of these substitutions were novel, including in CHS3, CHS3B, and KRE5, which are involved in the development of micafungin resistance. Regarding fluconazole resistance, overexpression of efflux pumps was observed. Our isolate did not exhibit an increased virulence potential compared with the control strain; however, a significant increase in chitin content and potential to resist the cell surface disruptant sodium dodecyl sulphate was observed. CONCLUSIONS: This clinical Candida glabrata isolate experienced a change in cell wall architecture, which correlates with the development of micafungin resistance.


Assuntos
Antifúngicos , Candida glabrata , Quitina , Farmacorresistência Fúngica , Micafungina , Testes de Sensibilidade Microbiana , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/isolamento & purificação , Antifúngicos/farmacologia , Humanos , Micafungina/farmacologia , Quitina/metabolismo , Quitina/farmacologia , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Sequenciamento Completo do Genoma , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Substituição de Aminoácidos , Parede Celular
12.
Biochimie ; 220: 167-178, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158037

RESUMO

Candida albicans and C. glabrata express exporters of the ATP-binding cassette (ABC) superfamily and address them to their plasma membrane to expel azole antifungals, which cancels out their action and allows the yeast to become multidrug resistant (MDR). In a way to understand this mechanism of defense, we describe the purification and characterization of Cdr1, the membrane ABC exporter mainly responsible for such phenotype in both species. Cdr1 proteins were functionally expressed in the baker yeast, tagged at their C-terminal end with either a His-tag for the glabrata version, cgCdr1-His, or a green fluorescent protein (GFP) preceded by a proteolytic cleavage site for the albicans version, caCdr1-P-GFP. A membrane Cdr1-enriched fraction was then prepared to assay several detergents and stabilizers, probing their level of extraction and the ATPase activity of the proteins as a functional marker. Immobilized metal-affinity and size-exclusion chromatographies (IMAC, SEC) were then carried out to isolate homogenous samples. Overall, our data show that although topologically and phylogenetically close, both proteins display quite distinct behaviors during the extraction and purification steps, and qualify cgCdr1 as a good candidate to characterize this type of proteins for developing future inhibitors of their azole antifungal efflux activity.


Assuntos
Antifúngicos , Azóis , Candida albicans , Farmacorresistência Fúngica , Proteínas Fúngicas , Proteínas de Membrana Transportadoras , Azóis/farmacologia , Azóis/química , Azóis/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/química
13.
J Biol Chem ; 298(10): 102485, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108742

RESUMO

Invasive fungal infections, which pose a serious threat to human health, are increasingly associated with a high mortality rate and elevated health care costs, owing to rising resistance to current antifungals and emergence of multidrug-resistant fungal species. Candida glabrata is the second to fourth common cause of Candida bloodstream infections. Its high propensity to acquire resistance toward two mainstream drugs, azoles (inhibit ergosterol biosynthesis) and echinocandins (target cell wall), in clinical settings, and its inherent low azole susceptibility render antifungal therapy unsuccessful in many cases. Here, we demonstrate a pivotal role for the SET {suppressor of variegation 3 to 9 [Su(var)3-9], enhancer of zeste [E(z)], and trithorax (Trx)} domain-containing protein, CgSet4, in azole and echinocandin resistance via negative regulation of multidrug transporter-encoding and ergosterol biosynthesis (ERG) genes through the master transcriptional factors CgPdr1 and CgUpc2A, respectively. RNA-Seq analysis revealed that C. glabrata responds to caspofungin (CSP; echinocandin antifungal) stress by downregulation and upregulation of ERG and cell wall organization genes, respectively. Although CgSet4 acts as a repressor of the ergosterol biosynthesis pathway via CgUPC2A transcriptional downregulation, the CSP-induced ERG gene repression is not dependent on CgSet4, as CgSet4 showed diminished abundance on the CgUPC2A promoter in CSP-treated cells. Furthermore, we show a role for the last three enzymes of the ergosterol biosynthesis pathway, CgErg3, CgErg5, and CgErg4, in antifungal susceptibility and virulence in C. glabrata. Altogether, our results unveil the link between ergosterol biosynthesis and echinocandin resistance and have implications for combination antifungal therapy.


Assuntos
Farmacorresistência Fúngica , Ergosterol , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras , Transativadores , Humanos , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Azóis/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Candida glabrata/metabolismo , Farmacorresistência Fúngica/genética , Equinocandinas/metabolismo , Equinocandinas/farmacologia , Ergosterol/biossíntese , Testes de Sensibilidade Microbiana , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
14.
Biomed Pharmacother ; 154: 113569, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35988423

RESUMO

Candida glabrata is the most frequently isolated non-albicans Candida species in clinical samples and is known to develop resistance to commonly used antifungal drugs. Human ß defensins (hBDs) are antimicrobial peptides of immune systems and are active against a broad range of pathogens including Candida species. Herein, the antifungal effect of hBD-1 and its mechanism of action in C. glabrata was studied. The antifungal susceptibility of hBD-1 against C. glabrata was calculated by broth microdilution assay. To study the mechanism of antifungal action, the impact of hBD-1 on cell cycle, expression of oxidative stress enzymes, and membrane disintegration were assessed. The susceptibility results confirmed that hBD-1 possessed the minimum inhibitory concentration of 3.12 µg/mL and prevented the growth and caused yeast cell death to various extents. The peptide at subinhibitory and inhibitory concentrations blocked the cell cycle in C. glabrata in G0/G1 phase and disturbed the activity of primary and secondary antioxidant enzymes. Furthermore, at higher concentrations disruption of membrane integrity was observed. Altogether, hBD-1 showed candidicidal activity against C. glabrata and was able to induce oxidative stress and arrested cell cycle in C. auris and therefore has a potential to be developed as an antifungal drug against C. glabrata.


Assuntos
Candida glabrata , Antifúngicos/farmacologia , Peptídeos Antimicrobianos , Candida , Candida albicans , Candida glabrata/efeitos dos fármacos , Ciclo Celular , Fase G1 , Humanos , Testes de Sensibilidade Microbiana , Estresse Oxidativo , beta-Defensinas
15.
Med Mycol J ; 63(2): 43-47, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35650069

RESUMO

A high incidence of genital infections, such as vulvovaginal candidiasis, has been reported in patients with diabetes treated with sodium-glucose co-transporter type 2 inhibitors. This is because Candida growth and virulence are enhanced in high glucose environments. Our previous study demonstrated that the adhesive interaction between Candida complement receptors and a ligand on vaginal epithelial cells (intracellular adhesion molecule-1: ICAM-1) is a factor for Candida albicans colonization, and the high ICAM-1 expression by vaginal epithelial cells exposed to high glucose conditions increases C. albicans adhesion. In this study, we examined the effect of a sodium-glucose co-transporter type 2 inhibitor, empagliflozin, on Candida glabrata adhesion to human cells (VK2/E6E7). There was no significant difference among four conditions that contained empagliflozin at various concentrations. We demonstrated that empagliflozin does not affect C. glabrata adhesion to VK2/E6E7 cells.


Assuntos
Compostos Benzidrílicos , Candida glabrata , Glucosídeos , Simportadores , Compostos Benzidrílicos/farmacologia , Candida glabrata/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Glucose/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Simportadores/metabolismo , Vagina/citologia , Vagina/microbiologia
16.
Clin Microbiol Infect ; 28(8): 1154.e5-1154.e8, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35427779

RESUMO

OBJECTIVES: Ibrexafungerp is a new inhibitor of Candida spp glucan synthase. We previously set the ibrexafungerp wild-type upper limit (wtUL) against Candida glabrata. We here assessed which FKS2 gene substitutions confer an ibrexafungerp non-wild-type phenotype in C. glabrata isolates. METHODS: We studied a set of C. glabrata (n = 34) isolates showing resistance to micafungin and anidulafungin (n = 28) or only to anidulafungin (n = 6) and harbouring 10 different FKS2 gene substitutions. Antifungal susceptibility to ibrexafungerp was tested according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) E.Def 7.3.2 procedure and isolates were considered ibrexafungerp non-wild type according to the statistical wtUL (minimum inhibitory concentration [MIC] ≥2) or visual wtUL (MIC ≥4). RESULTS: Ibrexafungerp MICs against the isolates ranged from 0.06 to 4 mg/L. Four FKS2 gene substitutions (ΔF659, F659S, E655A, and W715L) were exclusively found in isolates showing an ibrexafungerp MIC above the statistical wtUL (≥2 mg/L) whereas isolates harbouring other substitutions were found to be ibrexafungerp wild type. The use of the visual wtUL (MIC ≥4 mg/L) bisected the population of isolates harbouring such substitutions. DISCUSSION: C. glabrata isolates showing an ibrexafungerp MIC ≥2 mg/L may be considered non-wild type and are prone to harbour ΔF659, F659S, E655A, and W715L substitutions at the FKS2 gene. It is worth noting that substitutions ΔF659 and F659S were located at the beginning of the HS1 of FKS2 gene of C. glabrata. The role of other substitutions on conferring a non-wild-type phenotype to ibrexafungerp is not well elucidated.


Assuntos
Antifúngicos , Candida glabrata , Equinocandinas , Anidulafungina/farmacologia , Antifúngicos/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Farmacorresistência Fúngica/genética , Equinocandinas/farmacologia , Genes Fúngicos , Glicosídeos/farmacologia , Testes de Sensibilidade Microbiana , Triterpenos/farmacologia
17.
Microbiol Spectr ; 10(1): e0183721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107318

RESUMO

Here, we report two paired sets of an index wild-type Candida glabrata bloodstream isolate and subsequent echinocandin-resistant FKS mutant. One paired set exhibited a higher proportion of clumping cells and was more virulent in the invertebrate host Galleria mellonella than the other paired set. No virulence difference between the paired index and FKS strains was observed. These findings imply a potential link of clumping morphology with virulence in C. glabrata that is uncoupled from FKS-mediated echinocandin resistance. IMPORTANCE Candida glabrata is a leading cause of invasive candidiasis. In contrast to other species, it has a high propensity for developing resistance to echinocandins, which are the first-line treatment. Unlike the dimorphic Candida albicans which can grow invasive filamentous hyphae, C. glabrata lacks this ability. Here, we report a link between virulence and clumping cell morphology in two different sets of clinical C. glabrata strains obtained from patients failing echinocandin therapy. One set of paired strains (echinocandin-susceptible and subsequent resistant mutant) had a high proportion of clumping cells in the population and were significantly more virulent than another set which had fewer clumping cells. Additionally, we corroborate that echinocandin resistance does not impart a significant fitness cost. Our findings suggest that clumping morphology may be an important but previously underestimated virulence factor for C. glabrata and also aid our understand for the high prevalence of resistance observed in this species.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/crescimento & desenvolvimento , Candida glabrata/patogenicidade , Candidíase/microbiologia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Animais , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Mariposas/microbiologia
18.
FEMS Yeast Res ; 22(1)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35040997

RESUMO

The increasing prevalence of fluconazole-resistant clinical isolates of Candida spp. strongly hinders the widespread use of the drug. To tackle this problem, great efforts have been made to fully understand the fungal response to fluconazole. In this work, we show that the role of Zap1 in Candida glabrata goes beyond regulating yeast adaptation to zinc deficiency. In line with our previous observation that deletion of ZAP1 makes yeast cells more sensitive to fluconazole, we found that the mutant CgΔzap1 accumulates higher levels of the drug, which correlates well with its lower levels of ergosterol. Surprisingly, Zap1 is a negative regulator of the drug efflux transporter gene CDR1 and of its regulator, PDR1. The apparent paradox of drug accumulation in cells where genes encoding transporters relevant for drug extrusion are being overexpressed led us to postulate that their activity could be impaired. In agreement, Zap1-depleted cells present, in addition to decreased ergosterol levels, an altered composition of membrane phospholipids, which together should impact membrane function and impair the detoxification of fluconazole. Overall, our study brings to light Zap1 as an important hub in Candida glabrata response to fluconazole.


Assuntos
Candida glabrata , Fluconazol , Proteínas Fúngicas , Antifúngicos/farmacologia , Candida , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética , Farmacorresistência Fúngica , Ergosterol , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Testes de Sensibilidade Microbiana
19.
Clin Microbiol Infect ; 28(1): 140.e1-140.e4, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34619396

RESUMO

OBJECTIVES: Ibrexafungerp is a new oral glucan synthase inhibitor with in vivo and in vitro activity against Candida spp., including echinocandin- and azole-resistant isolates. We studied the in vitro activity of ibrexafungerp against Candida species isolated from blood cultures and assessed wild-type upper limits against the five Candida species most frequently associated to candidaemia. METHODS: Isolates (n = 958) causing incident episodes of candidaemia in patients admitted to Gregorio Marañón hospital (Madrid, Spain) between January 2007 and April 2021 were studied. Antifungal susceptibility to ibrexafungerp, fluconazole, micafungin and anidulafungin was tested (EUCAST E.Def 7.3.2) and wild-type upper limits determined against C. albicans (n = 462), C. glabrata (n = 120), C. parapsilosis (n = 249), C. tropicalis (n = 73) and C. krusei (n = 24). fksgene sequencing was carried out in non-wild-type isolates. RESULTS: Ibrexafungerp showed antifungal in vitro activity against the studied isolates. Wild-type upper limits for ibrexafungerp were >0.25 mg/L against C. albicans, >1 mg/L against C. parapsilosis, C. glabrata, and C. tropicalis, and >2 mg/L against C. krusei. Percentages of ibrexafungerp non-wild-type isolates were low (C. parapsilosis and C. krusei, 0%; C. albicans, 0.22% (1/462); C. glabrata, 0.83% (1/120); and C. tropicalis, 1.37% (1/73)). Ibrexafungerp proved in vitro activity against fluconazole- or echinocandin-resistant isolates. DISCUSSION: We show in vitro activity of ibrexafungerp against the tested Candida species. Furthermore, we provide ibrexafungerp wild-type upper limits, which allows defining the wild-type populations of the five most relevant Candida species.


Assuntos
Antifúngicos , Candida , Glicosídeos/farmacologia , Triterpenos/farmacologia , Antifúngicos/farmacologia , Hemocultura , Candida/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Candidemia , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Fluconazol , Humanos , Testes de Sensibilidade Microbiana
20.
Mycoses ; 65(1): 79-87, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34709674

RESUMO

BACKGROUND: Recent studies have shown low caspofungin concentrations in critically ill patients. In some patients, the therapeutic target, area under the total plasma concentration curve in relation to the minimal inhibition concentration (AUCtot /MIC), seems not to be achieved and therapeutic drug monitoring (TDM) has been proposed. Caspofungin is highly protein-bound and the effect of reduced plasma protein levels on pharmacodynamics has not been investigated. OBJECTIVES: Fungal killing activity of caspofungin in vitro was investigated under varying levels of human plasma protein. METHODS: Time-kill studies were performed with clinically relevant caspofungin concentrations of 1-9 mg/L on four blood isolates of C. glabrata, three susceptible and one strain with reduced susceptibility, in human plasma and plasma diluted to 50% and 25% using Ringer's acetate. RESULTS: Enhanced fungal killing of the three susceptible strains was observed in plasma with lower protein content (p < .001). AUCtot /MIC required for a 1 log10 CFU/ml kill at 24 h in 50% and 25% plasma was reduced with 36 + 12 and 80 + 9%, respectively. The maximum effect was seen at total caspofungin concentrations of 4-9 × MIC. For the strain with reduced susceptibility, growth was significantly decreased at lower protein levels. CONCLUSIONS: Reduced human plasma protein levels increase the antifungal activity of caspofungin in vitro, most likely by increasing the free concentration. Low plasma protein levels in critically ill patients with candidemia might explain a better response to caspofungin than expected from generally accepted target attainment and should be taken into consideration when assessing TDM based on total plasma concentrations.


Assuntos
Antifúngicos , Proteínas Sanguíneas , Caspofungina/farmacocinética , Estado Terminal , Antifúngicos/farmacocinética , Candida glabrata/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...