Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 30(19): 3880-3888.e5, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795439

RESUMO

Morphological variation is the basis of natural diversity and adaptation. For example, angiosperms (flowering plants) evolved during the Cretaceous period more than 100 mya and quickly colonized terrestrial habitats [1]. A major reason for their astonishing success was the formation of fruits, which exist in a myriad of different shapes and sizes [2]. Evolution of organ shape is fueled by variation in expression patterns of regulatory genes causing changes in anisotropic cell expansion and division patterns [3-5]. However, the molecular mechanisms that alter the polarity of growth to generate novel shapes are largely unknown. The heart-shaped fruits produced by members of the Capsella genus comprise an anatomical novelty, making it particularly well suited for studies on morphological diversification [6-8]. Here, we show that post-translational modification of regulatory proteins provides a critical step in organ-shape formation. Our data reveal that the SUMO protease, HEARTBREAK (HTB), from Capsella rubella controls the activity of the key regulator of fruit development, INDEHISCENT (CrIND in C. rubella), via de-SUMOylation. This post-translational modification initiates a transduction pathway required to ensure precisely localized auxin biosynthesis, thereby facilitating anisotropic cell expansion to ultimately form the heart-shaped Capsella fruit. Therefore, although variation in the expression of key regulatory genes is known to be a primary driver in morphological evolution, our work demonstrates how other processes-such as post-translational modification of one such regulator-affects organ morphology.


Assuntos
Capsella/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Adaptação Fisiológica/genética , Anisotropia , Proteínas de Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Capsella/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Expressão Gênica/genética , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Ubiquitinas/genética , Ubiquitinas/metabolismo
2.
Proc Biol Sci ; 287(1927): 20200463, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32429810

RESUMO

The outcome of species range expansion depends on the interplay of demographic, environmental and genetic factors. Self-fertilizing species usually show a higher invasive ability than outcrossers but selfing and bottlenecks during colonization also lead to an increased genetic load. The relationship between genomic and phenotypic characteristics of expanding populations has, hitherto, rarely been tested experimentally. We analysed how accessions of the shepherd's purse, Capsella bursa-pastoris, from the colonization front or from the core of the natural range performed under increasing density of competitors. First, accessions from the front showed a lower fitness than those from the core. Second, for all accessions, competitor density impacted negatively both vegetative growth and fruit production. However, despite their higher genetic load and lower absolute performances, accessions from the front were less affected by competition than accessions from the core. This seems to be due to phenotypic trade-offs and a shift in phenology that allow accessions from the front to avoid competition.


Assuntos
Capsella/genética , Carga Genética , Capsella/crescimento & desenvolvimento
3.
Plant Cell ; 32(4): 950-966, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31988265

RESUMO

In Arabidopsis (Arabidopsis thaliana), DNA-dependent RNA polymerase IV (Pol IV) is required for the formation of transposable element (TE)-derived small RNA transcripts. These transcripts are processed by DICER-LIKE3 into 24-nucleotide small interfering RNAs (siRNAs) that guide RNA-directed DNA methylation. In the pollen grain, Pol IV is also required for the accumulation of 21/22-nucleotide epigenetically activated siRNAs, which likely silence TEs via post-transcriptional mechanisms. Despite this proposed role of Pol IV, its loss of function in Arabidopsis does not cause a discernible pollen defect. Here, we show that the knockout of NRPD1, encoding the largest subunit of Pol IV, in the Brassicaceae species Capsella (Capsella rubella), caused postmeiotic arrest of pollen development at the microspore stage. As in Arabidopsis, all TE-derived siRNAs were depleted in Capsella nrpd1 microspores. In the wild-type background, the same TEs produced 21/22-nucleotide and 24-nucleotide siRNAs; these processes required Pol IV activity. Arrest of Capsella nrpd1 microspores was accompanied by the deregulation of genes targeted by Pol IV-dependent siRNAs. TEs were much closer to genes in Capsella compared with Arabidopsis, perhaps explaining the essential role of Pol IV in pollen development in Capsella. Our discovery that Pol IV is functionally required in Capsella microspores emphasizes the relevance of investigating different plant models.


Assuntos
Capsella/enzimologia , Capsella/crescimento & desenvolvimento , DNA Polimerase beta/metabolismo , Proteínas de Plantas/metabolismo , Pólen/enzimologia , Pólen/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , DNA Polimerase beta/química , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Mutação/genética , Tamanho do Órgão , Proteínas de Plantas/química , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo , Sementes/anatomia & histologia , Transcrição Gênica
4.
Curr Biol ; 29(6): 1038-1046.e4, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30827915

RESUMO

Evolution of gene-regulatory sequences is considered the primary driver of morphological variation [1-3]. In animals, the diversity of body plans between distantly related phyla is due to the differential expression patterns of conserved "toolkit" genes [4]. In plants, variation in expression domains similarly underlie most of the reported diversity of organ shape both in natural evolution and in the domestication of crops [5-9]. The heart-shaped fruit from members of the Capsella genus is a morphological novelty that has evolved after Capsella diverged from Arabidopsis ∼8 mya [10]. Comparative studies of fruit growth in Capsella and Arabidopsis revealed that the difference in shape is caused by local control of anisotropic growth [11]. Here, we show that sequence variation in regulatory domains of the fruit-tissue identity gene, INDEHISCENT (IND), is responsible for expansion of its expression domain in the heart-shaped fruits from Capsella rubella. We demonstrate that expression of this CrIND gene in the apical part of the valves in Capsella contributes to the heart-shaped appearance. While studies on morphological diversity have revealed the importance of cis-regulatory sequence evolution, few examples exist where the downstream effects of such variation have been characterized in detail. We describe here how CrIND exerts its function on Capsella fruit shape by binding sequence elements of auxin biosynthesis genes to activate their expression and ensure auxin accumulation into highly localized maxima in the fruit valves. Thus, our data provide a direct link between changes in expression pattern and altered hormone homeostasis in the evolution of morphological novelty.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Capsella/genética , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Capsella/crescimento & desenvolvimento , Frutas/genética , Proteínas de Plantas/metabolismo
5.
Sci Rep ; 8(1): 10120, 2018 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973685

RESUMO

Many plants derive nutrients by attracting, ensnaring and killing invertebrates, a process that is described as "protocarnivory". This has been observed in seeds of the weed Capsella bursa-pastoris, but it is unclear as to whether it confers any material benefit in terms of germination, establishment and development. In the present study, seeds were germinated in zero, low, medium and high nutrient soils in both the presence and absence of nematodes (Steinernema feltiae). Nematodes were attracted to the seeds, with many dying within three days. Germination rates and seedling fresh masses were higher at all nutrient levels, and seedling fresh lengths were higher in all but the zero nutrient treatment, in the presence of nematodes. After transplantation, young plant fresh root lengths and dried leaf and root masses were generally higher in plants that had been germinated in the presence of nematodes across all nutrient levels, with the majority of significant differences being observed in the low-nutrient treatment. Our findings suggest that protocarnivory may play a role in the germination, establishment and early development of C. bursa-pastoris, and that this process may be facultative, since differences between nematode and non-nematode treatments were generally more pronounced in soils with low nutrient levels.


Assuntos
Capsella/fisiologia , Interações Hospedeiro-Parasita , Sementes/parasitologia , Animais , Capsella/crescimento & desenvolvimento , Capsella/parasitologia , Germinação , Nematoides/patogenicidade , Fotossíntese , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
6.
Dev Cell ; 44(2): 192-203.e5, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29275992

RESUMO

Understanding the molecular basis of morphological change remains a central challenge in evolutionary-developmental biology. The transition from outbreeding to selfing is often associated with a dramatic reduction in reproductive structures and functions, such as the loss of attractive pheromones in hermaphroditic Caenorhabditis elegans and a reduced flower size in plants. Here, we demonstrate that variation in the level of the brassinosteroid-biosynthesis enzyme CYP724A1 contributes to the reduced flower size of selfing Capsella rubella compared with its outbreeding ancestor Capsella grandiflora. The primary transcript of the C. rubella allele is spliced more efficiently than that of C. grandiflora, resulting in higher brassinosteroid levels. These restrict organ growth by limiting cell proliferation. More efficient splicing of the C. rubella allele results from two de novo mutations in the selfing lineage. Thus, our results highlight the potentially widespread importance of differential splicing efficiency and higher-than-optimal hormone levels in generating phenotypic variation.


Assuntos
Capsella/genética , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Flores/genética , Splicing de RNA , Alelos , Brassinosteroides/biossíntese , Capsella/anatomia & histologia , Capsella/crescimento & desenvolvimento , Cromossomos de Plantas , Sistema Enzimático do Citocromo P-450/biossíntese , Éxons , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Mutação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
7.
Pestic Biochem Physiol ; 143: 239-245, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183598

RESUMO

Shepherd's purse is a troublesome dicot weed that occurs in the major wheat-producing areas in China. Twenty-eight shepherd's purse populations were collected from winter wheat-planting areas in Henan Province and used to evaluate tribenuron-methyl resistance and acetohydroxyacid synthase (AHAS) gene-mutation diversity. The results indicate that all 28 shepherd's purse populations were resistant to tribenuron-methyl at different levels compared with the susceptible population. Mutation of the 197 codon (CCT) changed proline (Pro) into tyrosine (Tyr), histidine (His), leucine (Leu), serine (Ser), arginine (Arg), alanine (Ala) and threonine (Thr), whereas mutation of the 574 codon (TGG) changed tryptophan (Trp) into leucine (Leu). Among these amino acid changes, a co-concurrence of Pro197Leu and Trp574Leu substitutions was identified for the first time in resistant weed species. Furthermore, Pro197Tyr, Pro197Arg and Pro197Ala substitutions have not been previously reported in shepherd's purse. The results of the in vitro AHAS assay suggest that an insensitive AHAS is likely involved in the resistance to tribenuron-methyl in the R populations with AHAS gene mutations, and the non-target-site based resistance might exist in some populations.


Assuntos
Acetolactato Sintase/genética , Sulfonatos de Arila/toxicidade , Capsella/efeitos dos fármacos , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Proteínas de Plantas/genética , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Capsella/crescimento & desenvolvimento , Capsella/metabolismo , China , Mutação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(48): 13911-13916, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849572

RESUMO

Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.


Assuntos
Capsella/genética , Magnoliopsida/genética , Locos de Características Quantitativas/genética , Reprodução/genética , Seleção Genética/genética , Evolução Biológica , Capsella/crescimento & desenvolvimento , Elementos Facilitadores Genéticos/genética , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/crescimento & desenvolvimento , Especificidade de Órgãos , Fenótipo , Polinização/genética , Autofertilização/genética
9.
Plant Reprod ; 29(1-2): 149-63, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27016361

RESUMO

KEY MESSAGE: Diversity in fruit shape. Angiosperms (flowering plants) evolved during the Cretaceous Period more than 100 million years ago and quickly colonized all terrestrial habitats on the planet. A major reason for their success was the formation of fruits that would protect and nurture the developing seeds. Moreover, a massive range of diversity in fruit shape occurred during a relatively short time, which allowed for the development of ingenious ways of fertilization as well as strategies for efficient seed dispersal. The Brassicaceae family more than any exemplifies the diversity in fruit morphologies, thus providing an ideal group of plants to study how specific shapes are established. Although many genes controlling fruit patterning in the model plant Arabidopsis thaliana have been identified, the processes of carpel and fruit morphogenesis are still poorly understood. Moreover, Arabidopsis fruits are relatively simple in their structure and are therefore not ideally suited for analyzing processes of morphology determination without comparison to species with differently shaped fruits. Here, we review the diversity of fruit shape within the Brassicaceae family. As an example we describe the close relative of Arabidopsis, Capsella rubella that develops flat, heart-shaped fruits showing and highlighting its potential as a model system for research into organ shape. Recent progress in genomics including fast and cheap genome sequencing and annotation as well as development of mutant populations has opened entirely new and exciting possibilities of studying the mechanisms and processes underlying fruit formation in angiosperms.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Capsella/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/ultraestrutura , Capsella/ultraestrutura , Frutas/classificação , Frutas/ultraestrutura , Morfogênese , Óvulo Vegetal/metabolismo , Dispersão de Sementes
11.
Genetics ; 192(2): 729-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22865739

RESUMO

Capsella rubella is an inbreeding annual forb closely related to Arabidopsis thaliana, a model species widely used for studying natural variation in adaptive traits such as flowering time. Although mutations in dozens of genes can affect flowering of A. thaliana in the laboratory, only a handful of such genes vary in natural populations. Chief among these are FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). Common and rare FRI mutations along with rare FLC mutations explain a large fraction of flowering-time variation in A. thaliana. Here we document flowering time under different conditions in 20 C. rubella accessions from across the species' range. Similar to A. thaliana, vernalization, long photoperiods and elevated ambient temperature generally promote flowering. In this collection of C. rubella accessions, we did not find any obvious loss-of-function FRI alleles. Using mapping-by-sequencing with two strains that have contrasting flowering behaviors, we identified a splice-site mutation in FLC as the likely cause of early flowering in accession 1408. However, other similarly early C. rubella accessions did not share this mutation. We conclude that the genetic basis of flowering-time variation in C. rubella is complex, despite this very young species having undergone an extreme genetic bottleneck when it split from C. grandiflora a few tens of thousands of years ago.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Capsella , Evolução Molecular , Flores , Proteínas de Ligação a RNA/genética , Alelos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Capsella/genética , Capsella/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Filogenia , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA/metabolismo , Seleção Genética , Análise de Sequência de DNA
12.
Gene ; 507(2): 99-105, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22846365

RESUMO

KIN genes are crucial members of the cold-regulated (COR) gene family, and are exclusively involved in normal developmental processes in many organs and respond to a variety of abiotic stresses in plants. Here, we cloned and sequenced not only two completely-spliced KIN transcripts (CbKIN1-S and CbKIN2-S), but also two intron-containing KIN transcripts (CbKIN1-U and CbKIN2-U), from Capsella bursa-pastoris, a widespread plant of the Brassicaceae family. The CbKIN1-U and CbKIN2-U transcripts each contained one additional intron in the coding region compared to the corresponding CbKIN1-S and CbKIN2-S transcripts. In addition, the two intron-containing KIN transcripts were found by rapid amplification of cDNA 3' ends (3' RACE) analysis with specific primers to have variable 3' untranslated regions (3' UTRs). We also analyzed CbKIN1-U and CbKIN2-U levels in different organs and embryonic stages by quantitative polymerase chain reaction (qPCR). They were found to be expressed in middle-stage embryos and flowers. After abscisic acid (ABA) treatment, CbKIN1-U and CbKIN2-U showed strong responses in young leaves and weak responses in flowers. Levels of the two intron-containing KIN transcripts were markedly increased in young leaves when plants were exposed to cold and heat stress. Both of them showed stronger responses to ABA treatment and cold stress than that to heat stress. CbKIN1-U and CbKIN2-U share similar gene expression profiles in development and in response to exposure to different stresses, suggesting that they probably play similar biological roles in C. bursa-pastoris.


Assuntos
Capsella/genética , Genes de Plantas , Regiões 3' não Traduzidas , Ácido Abscísico/farmacologia , Aclimatação/genética , Aclimatação/fisiologia , Processamento Alternativo , Sequência de Aminoácidos , Sequência de Bases , Brassicaceae/classificação , Brassicaceae/genética , Capsella/efeitos dos fármacos , Capsella/crescimento & desenvolvimento , Capsella/fisiologia , Temperatura Baixa , DNA de Plantas/genética , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Temperatura Alta , Íntrons , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Estresse Fisiológico
13.
Ann Bot ; 109(2): 419-27, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22112439

RESUMO

BACKGROUND AND AIMS: Myxospermy is a term which describes the ability of a seed to produce mucilage upon hydration. The mucilage is mainly comprised of plant cell-wall polysaccharides which are deposited during development of those cells that comprise the seed coat (testa). Myxospermy is more prevalent among those plant species adapted to surviving on arid sandy soils, though its significance in determining the ecological fitness of plants is unclear. In this study, the first mathematical model of myxospermous seed mucilage expansion is presented based on seeds of the model plant species Capsella bursa-pastoris (shepherd's purse). METHODS: The structures underpinning the expansion process were described using light, electron and time-lapse confocal micrographs. The data and experimental observations were used to create a mathematical model of myxospermous seed mucilage expansion based on diffusion equations. KEY RESULTS: The mucilage expansion was rapid, taking 5 s, during which the cell mucilage volume increased 75-fold. At the level of the seed, this represented a 6-fold increase in seed volume and a 2·5-fold increase in seed surface area. These increases were shown to be a function of water uptake (16 g water g(-1) mucilage dry weight), and relaxation of the polymers which comprised the mucilage. In addition, the osmotic pressure of the seed mucilage, estimated by assessing the mucilage expansion of seeds hydrated in solutions of varying osmotic pressure, was -0·54 MPa (equivalent to 0·11 M or 6·6 g L(-1) NaCl). CONCLUSIONS: The results showed that the mucilage may be characterized as hydrogel and seed-mucilage expansion may be modelled using the diffusion equation described. The potential of myxospermous seeds to affect the ecological services provided by soil is discussed briefly.


Assuntos
Capsella/metabolismo , Modelos Biológicos , Polissacarídeos/metabolismo , Sementes/metabolismo , Capsella/crescimento & desenvolvimento , Parede Celular/química , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento
14.
Ann Bot ; 109(2): 481-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22147546

RESUMO

BACKGROUND AND AIMS: The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. METHODS: Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. KEY RESULTS: Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. CONCLUSIONS: In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.


Assuntos
Capsella/crescimento & desenvolvimento , Capsella/genética , Germinação/genética , Dormência de Plantas/genética , Aclimatação , Adaptação Fisiológica , Flores/genética , Flores/crescimento & desenvolvimento , Variação Genética , Genótipo , Plantas Daninhas/genética , Plantas Daninhas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
15.
Plant Cell ; 23(9): 3156-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954462

RESUMO

The change from outbreeding to selfing is one of the most frequent evolutionary transitions in flowering plants. It is often accompanied by characteristic morphological and functional changes to the flowers (the selfing syndrome), including reduced flower size and opening. Little is known about the developmental and genetic basis of the selfing syndrome, as well as its adaptive significance. Here, we address these issues using the two closely related species Capsella grandiflora (the ancestral outbreeder) and red shepherd's purse (Capsella rubella, the derived selfer). In C. rubella, petal size has been decreased by shortening the period of proliferative growth. Using interspecific recombinant inbred lines, we show that differences in petal size and flower opening between the two species each have a complex genetic basis involving allelic differences at multiple loci. An intraspecific cross within C. rubella suggests that flower size and opening have been decreased in the C. rubella lineage before its extensive geographical spread. Lastly, by generating plants that likely resemble the earliest ancestors of the C. rubella lineage, we provide evidence that evolution of the selfing syndrome was at least partly driven by selection for efficient self-pollination. Thus, our studies pave the way for a molecular dissection of selfing-syndrome evolution.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Capsella/genética , Polinização/genética , Alelos , Capsella/crescimento & desenvolvimento , Quimera/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Flores/anatomia & histologia , Flores/genética , Flores/crescimento & desenvolvimento , Geografia , Locos de Características Quantitativas , Análise de Sequência de DNA
16.
Genetics ; 183(1): 337-45, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19581451

RESUMO

The long-term fates of duplicate genes are well studied both empirically and theoretically, but how the short-term evolution of duplicate genes contributes to phenotypic variation is less well known. Here, we have studied the genetic basis of flowering time variation in the disomic tetraploid Capsella bursa-pastoris. We sequenced four duplicate candidate genes for flowering time and 10 background loci in samples from western Eurasia and China. Using a mixed-model approach that accounts for population structure, we found that polymorphisms at one homeolog of two candidate genes, FLOWERING LOCUS C (FLC) and CRYPTOCHROME1 (CRY1), were associated with natural flowering time variation. No potentially causative polymorphisms were found in the coding region of CRY1; however, at FLC two splice site polymorphisms were associated with early flowering. Accessions harboring nonconsensus splice sites expressed an alternatively spliced transcript or did not express this FLC homeolog. Our results are consistent with the function of FLC as a major repressor of flowering in Arabidopsis thaliana and imply that nonfunctionalization of duplicate genes could provide an important source of phenotypic variation.


Assuntos
Processamento Alternativo/genética , Capsella/genética , Flores/crescimento & desenvolvimento , Flores/genética , Homologia de Sequência , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Capsella/crescimento & desenvolvimento , Criptocromos/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética/fisiologia , Geografia , Proteínas de Domínio MADS/genética , Dados de Sequência Molecular , Poliploidia , Fatores de Tempo
17.
Gene ; 409(1-2): 11-9, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18164559

RESUMO

Capsella bursa-pastoris is an attractive model system for evolutionary and developmental biology. To facilitate future studies on gene function, the 'floral dip' method was adapted to achieve germline transformation of C. bursa-pastoris. The GFP and BASTA-resistance (BAR (r)) genes were used as markers for screening or selecting, respectively, putative transgenic C. bursa-pastoris plants and the beta-glucuronidase (GUS) gene as well as the GFP gene for monitoring transgene expression level. We tested two Agrobacterium strains, LBA4404 and GV3101, for their ability to transform C. bursa-pastoris. In contrast to Arabidopsis thaliana, for which both strains were able to transform different ecotypes, only GV3101 gave satisfactory transformation rates with C. bursa-pastoris. Furthermore, we evaluated the effects of different concentrations of sucrose and the surfactant Silwet L-77 on the efficiency to generate transgenic C. bursa-pastoris plants and identified an efficient medium containing 10% (w/v) sucrose and 0.02-0.05% (v/v) Silwet L-77. Using Southern hybridisation, we confirmed the integration of the marker gene in the plant genome and the stable heredity of the introduced genes in the next generation.


Assuntos
Capsella/genética , Genes de Plantas , Transformação Genética , Arabidopsis/genética , Capsella/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Rhizobium/genética , Transgenes
18.
J Exp Bot ; 57(13): 3531-42, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17018770

RESUMO

Capsella is a small genus within the mustard family (Brassicaceae). Its three species, however, show many evolutionary trends also observed in other Brassicaceae (including Arabidopsis) and far beyond, including transitions from a diploid, self-incompatible, obligatory outcrossing species with comparatively large and attractive flowers but a restricted distribution to a polyploid, self-compatible, predominantly selfing, invasive species with floral reductions. All these evolutionary transitions may have contributed to the fact that Capsella bursa-pastoris (shepherd's purse) has become one of the most widely distributed flowering plants on our planet. In addition, Capsella bursa-pastoris shows a phenomenon that, although rare, could be of great evolutionary importance, specifically the occurrence of a homeotic variety found in relatively stable populations in the wild. Several lines of evidence suggest that homeotic changes played a considerable role in floral evolution, but how floral homeotic varieties are established in natural populations has remained a highly controversial topic among evolutionary biologists. Due to its close relationship with the model plant Arabidopsis thaliana, numerous experimental tools are available for studying the genus Capsella, and further tools are currently being developed. Hence, Capsella provides great opportunities to investigate the evolution of flower development from molecular developmental genetics to field ecology and biogeography, and from morphological refinements to major structural transitions.


Assuntos
Evolução Biológica , Capsella/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Capsella/anatomia & histologia , Capsella/genética , Flores/anatomia & histologia , Flores/genética , Genes Homeobox , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...