Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916793

RESUMO

Marine cone snails are predatory gastropods characterized by a well-developed venom apparatus and highly evolved hunting strategies that utilize toxins to paralyze prey and defend against predators. The venom of each species of cone snail has a large number of pharmacologically active peptides known as conopeptides or conotoxins that are usually unique in each species. Nevertheless, venoms of only very few species have been characterized so far by transcriptomic approaches. In this study, we used transcriptome sequencing technologies and mass spectrometric methods to describe the diversity of venom components expressed by a worm-hunting species, Conus bayani. A total of 82 conotoxin sequences were retrieved from transcriptomic data that contain 54 validated conotoxin sequences clustered into 21 gene superfamilies including divergent gene family, 17 sequences clustered to 6 different conotoxin classes, and 11 conotoxins classified as unassigned gene family. Seven new conotoxin sequences showed unusual cysteine patterns. We were also able to identify 19 peptide sequences using mass spectrometry that completely overlapped with the conotoxin sequences obtained from transcriptome analysis. Importantly, herein we document the presence of 16 proteins that include five post-translational modifying enzymes obtained from transcriptomic data. Our results revealed diverse and novel conopeptides of an unexplored species that could be used extensively in biomedical research due to their therapeutic potentials.


Assuntos
Conotoxinas/genética , Caramujo Conus/genética , Enzimas/genética , Perfilação da Expressão Gênica , Venenos de Moluscos/genética , Peptídeos/genética , Proteômica , Animais , Conotoxinas/metabolismo , Caramujo Conus/enzimologia , Bases de Dados Genéticas , Enzimas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Espectrometria de Massas , Venenos de Moluscos/enzimologia , Peptídeos/metabolismo , Proteoma , Transcriptoma
2.
J Proteomics ; 194: 37-48, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30593932

RESUMO

Putative prolyl-4-hydroxylase (P4H) α-subunit sequences have been extracted by mining transcriptomic data obtained from seven cone snail species C. amadis, C. monile, C. araneosus, C. miles, C. litteratus, C. frigidus, and C. ebraeus. Sequences ranging from 518 to 559 residues have been compared with representative animal P4H sequences. The α-subunit consists of an N-terminus double domain, involved in dimerization and substrate binding, while the C-terminus contains the catalytic domain. Definitive functional annotation of the cone snail sequences has been achieved by an analysis of conserved residues responsible for catalytic function, specific conformational features, and subunit interactions, using two independent structures of the double domain, and the catalytic domain, previously reported in the literature. The variability of proline hydroxylation in conotoxins is illustrated by a mass spectrometric analysis of C. amadis venom. Site specific hydroxylation and the presence of peptides with multiple proline residues, resistant to modification, suggests that sequence and conformational effects may determine the substrate specificity of the Conus prolyl-4-hydroxylases. SIGNIFICANCE: Proline hydroxylation is a widely observed post translational modification, with collagen being the pre-eminent example. Hydroxylation of proline is also widely observed in conotoxins, which are a major component of marine cone snail venom. This paper describes newly identified prolyl-4-hydroxylase sequences, using transcriptome data from seven Conus species. The predicted functional annotation of prolyl-4-hydroxylase sequences was carried out using two available crystal structures of independent domains. The mass spectrometric characterisation of proline/hydroxyproline containing peptides in C. amadis venom confirms sequence specific hydroxylation in Conus venom as shown previously by others.


Assuntos
Conotoxinas/metabolismo , Caramujo Conus/enzimologia , Prolil Hidroxilases/metabolismo , Transcriptoma , Animais , Domínio Catalítico , Conotoxinas/química , Perfilação da Expressão Gênica , Hidroxilação , Espectrometria de Massas , Prolina/química , Prolina/metabolismo , Prolil Hidroxilases/química
3.
J Proteome Res ; 17(8): 2695-2703, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29947227

RESUMO

The post-translational modification of N-terminal glutamine (Q) to a pyroglutamyl (Z) residue is observed in the conotoxins produced by marine cone snails. This conversion requires the action of the enzyme glutaminyl cyclase (QC). Four complete QC sequences from the species C. araneosus, C. frigidus, C. litteratus, and C. monile and two partial sequences from C. amadis and C. miles have been obtained by analysis of transcriptomic data. Comparisons with mammalian enzyme sequences establish a high level of identity and complete conservation of functional active site residues, including a cluster of hydrogen-bonded acidic side chains. Mass spectrometric analysis of crude venom samples coupled to conotoxin precursor protein sequences obtained from transcriptomic data establishes the presence of pyroglutamyl conotoxins in the venom of C. frigidus and C. amadis. The C. frigidus peptide belongs to the M superfamily, with cysteine framework III, whereas the C. amadis peptide belongs to the divergent superfamily with cysteine framework VI/VII. Additionally, gamma carboxylation of glutamic acid and hydroxylation of proline are observed in the C. frigidus peptide. Mass spectral data are available via ProteomeXchange with identifier PXD009006.


Assuntos
Aminoaciltransferases/química , Conotoxinas/química , Caramujo Conus/química , Ácido Pirrolidonocarboxílico/metabolismo , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Animais , Caramujo Conus/enzimologia , Perfilação da Expressão Gênica , Espectrometria de Massas , Processamento de Proteína Pós-Traducional
4.
PLoS One ; 11(2): e0148390, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26859138

RESUMO

Small peptides isolated from the venom of the marine snails belonging to the genus Conus have been largely studied because of their therapeutic value. These peptides can be classified in two groups. The largest one is composed by peptides rich in disulfide bonds, and referred to as conotoxins. Despite the importance of conotoxins given their pharmacology value, little is known about the protein disulfide isomerase (PDI) enzymes that are required to catalyze their correct folding. To discover the PDIs that may participate in the folding and structural maturation of conotoxins, the transcriptomes of the venom duct of four different species of Conus from the peninsula of Baja California (Mexico) were assembled. Complementary DNA (cDNA) libraries were constructed for each species and sequenced using a Genome Analyzer Illumina platform. The raw RNA-seq data was converted into transcript sequences using Trinity, a de novo assembler that allows the grouping of reads into contigs without a reference genome. An N50 value of 605 was established as a reference for future assemblies of Conus transcriptomes using this software. Transdecoder was used to extract likely coding sequences from Trinity transcripts, and PDI-specific sequence motif "APWCGHCK" was used to capture potential PDIs. An in silico analysis was performed to characterize the group of PDI protein sequences encoded by the duct-transcriptome of each species. The computational approach entailed a structural homology characterization, based on the presence of functional Thioredoxin-like domains. Four different PDI families were characterized, which are constituted by a total of 41 different gene sequences. The sequences had an average of 65% identity with other PDIs. Using MODELLER 9.14, the homology-based three-dimensional structure prediction of a subset of the sequences reported, showed the expected thioredoxin fold which was confirmed by a "simulated annealing" method.


Assuntos
Simulação por Computador , Caramujo Conus/enzimologia , Caramujo Conus/genética , Perfilação da Expressão Gênica , Isomerases de Dissulfetos de Proteínas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Isomerases de Dissulfetos de Proteínas/química , Análise de Sequência de RNA , Especificidade da Espécie
5.
J Proteomics ; 91: 97-105, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23872086

RESUMO

The venom of marine cone snails is a rich source of pharmacotherapeutic compounds with striking target specificity and functional diversity. Small, disulfide-rich peptide toxins are the most well characterized active compounds in cone snail venom. However, reports on the presence of larger polypeptides have recently emerged. The majority of these studies have focused on the content of the dissected venom gland rather than the injected venom itself. Recent breakthroughs in the sensitivity of protein and nucleotide sequencing techniques allow for the exploration of the proteomic diversity of injected venom. Using mass spectrometric analysis of injected venoms of the two fish-hunting cone snails Conus purpurascens and Conus ermineus, we demonstrate the presence of angiotensin-converting enzyme-1 (ACE-1) and endothelin converting enzyme-1 (ECE-1), metalloproteases that activate potent vasoconstrictive peptides. ACE activity was confirmed in the venom of C. purpurascens and was significantly reduced in venom preincubated with the ACE inhibitor captopril. Reverse-transcription PCR demonstrated that these enzymes are expressed in the venom glands of other cone snail species with different prey preferences. These findings strongly suggest that cone snails employ compounds that cause disruption of cardiovascular function as part of their complex envenomation strategy, leading to the enhancement of neurotropic peptide toxin activity. BIOLOGICAL SIGNIFICANCE: To our knowledge, this is the first study to show the presence of ACE and ECE in the venom of cone snails. Identification of these vasoactive peptide-releasing proteases in the injected venoms of two fish-hunting cone snails highlights their role in envenomation and enhances our understanding of the complex hunting strategies utilized by these marine predators. Our findings on the expression of these enzymes in other cone snail species suggests an important biological role of ACE and ECE in these animals and points towards recruitment into venom from general physiological processes.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Caramujo Conus/enzimologia , Metaloendopeptidases/metabolismo , Venenos de Moluscos/enzimologia , Peptidil Dipeptidase A/metabolismo , Sequência de Aminoácidos , Animais , Sistema Cardiovascular/efeitos dos fármacos , DNA Complementar/metabolismo , Enzimas Conversoras de Endotelina , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Peso Molecular , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Homologia de Sequência de Aminoácidos , Vasoconstrição
6.
Toxicon ; 65: 59-67, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23339854

RESUMO

The venom of cone snails has been the subject of intense studies because it contains small neuroactive peptides of therapeutic value. However, much less is known about their larger proteins counterparts and their role in prey envenomation. Here, we analyzed the proteolytic enzymes in the injected venom of Conus purpurascens and Conus ermineus (piscivorous), and the dissected venom of C. purpurascens, Conus marmoreus (molluscivorous) and Conus virgo (vermivorous). Zymograms show that all venom samples displayed proteolytic activity on gelatin. However, the electrophoresis patterns and sizes of the proteases varied considerably among these four species. The protease distribution also varied dramatically between the injected and dissected venom of C. purpurascens. Protease inhibitors demonstrated that serine and metalloproteases are responsible for the gelatinolytic activity. We found fibrinogenolytic activity in the injected venom of C. ermineus suggesting that this venom might have effects on the hemostatic system of the prey. Remarkable differences in protein and protease expression were found in different sections of the venom duct, indicating that these components are related to the storage granules and that they participate in venom biosynthesis. Consequently, different conoproteases play major roles in venom processing and prey envenomation.


Assuntos
Caramujo Conus/enzimologia , Venenos de Moluscos/enzimologia , Peptídeo Hidrolases/química , Animais , Eletroforese em Gel de Poliacrilamida , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Gelatina/química , Humanos , Concentração de Íons de Hidrogênio , Metaloproteases/química , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Venenos de Moluscos/química , Venenos de Moluscos/toxicidade , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Plasma/química , Plasma/efeitos dos fármacos , Plasma/enzimologia , Inibidores de Proteases/química , Serina Proteases/química , Serina Proteases/metabolismo , Serina Proteases/farmacologia , Temperatura
7.
J Biol Chem ; 287(41): 34288-303, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22891240

RESUMO

The oxidative folding of large polypeptides has been investigated in detail; however, comparatively little is known about the enzyme-assisted folding of small, disulfide-containing peptide substrates. To investigate the concerted effect of multiple enzymes on the folding of small disulfide-rich peptides, we sequenced and expressed protein-disulfide isomerase (PDI), peptidyl-prolyl cis-trans isomerase, and immunoglobulin-binding protein (BiP) from Conus venom glands. Conus PDI was shown to catalyze the oxidation and reduction of disulfide bonds in two conotoxins, α-GI and α-ImI. Oxidative folding rates were further increased in the presence of Conus PPI with the maximum effect observed in the presence of both enzymes. In contrast, Conus BiP was only observed to assist folding in the presence of microsomes, suggesting that additional co-factors were involved. The identification of a complex between BiP, PDI, and nascent conotoxins further suggests that the folding and assembly of conotoxins is a highly regulated multienzyme-assisted process. Unexpectedly, all three enzymes contributed to the folding of the ribbon isomer of α-ImI. Here, we identify this alternative disulfide-linked species in the venom of Conus imperialis, providing the first evidence for the existence of a "non-native" peptide isomer in the venom of cone snails. Thus, ER-resident enzymes act in concert to accelerate the oxidative folding of conotoxins and modulate their conformation and function by reconfiguring disulfide connectivities. This study has evaluated the role of a number of ER-resident enzymes in the folding of conotoxins, providing novel insights into the enzyme-guided assembly of these small, disulfide-rich peptides.


Assuntos
Conotoxinas/biossíntese , Caramujo Conus/enzimologia , Glândulas Exócrinas/enzimologia , Proteínas de Choque Térmico/metabolismo , Complexos Multienzimáticos/metabolismo , Peptidilprolil Isomerase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Animais , Chaperona BiP do Retículo Endoplasmático , Oxirredução , Relação Estrutura-Atividade
8.
Mar Drugs ; 10(2): 258-280, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22412800

RESUMO

Cone snail venoms are considered an untapped reservoir of extremely diverse peptides, named conopeptides, displaying a wide array of pharmacological activities. We report here for the first time, the presence of high molecular weight compounds that participate in the envenomation cocktail used by these marine snails. Using a combination of proteomic and transcriptomic approaches, we identified glycosyl hydrolase proteins, of the hyaluronidase type (Hyal), from the dissected and injectable venoms ("injectable venom" stands for the venom variety obtained by milking of the snails. This is in contrast to the "dissected venom", which was obtained from dissected snails by extraction of the venom glands) of a fish-hunting cone snail, Conus consors (Pionoconus clade). The major Hyal isoform, Conohyal-Cn1, is expressed as a mixture of numerous glycosylated proteins in the 50 kDa molecular mass range, as observed in 2D gel and mass spectrometry analyses. Further proteomic analysis and venom duct mRNA sequencing allowed full sequence determination. Additionally, unambiguous segment location of at least three glycosylation sites could be determined, with glycans corresponding to multiple hexose (Hex) and N-acetylhexosamine (HexNAc) moieties. With respect to other known Hyals, Conohyal-Cn1 clearly belongs to the hydrolase-type of Hyals, with strictly conserved consensus catalytic donor and positioning residues. Potent biological activity of the native Conohyals could be confirmed in degrading hyaluronic acid. A similar Hyal sequence was also found in the venom duct transcriptome of C. adamsonii (Textilia clade), implying a possible widespread recruitment of this enzyme family in fish-hunting cone snail venoms. These results provide the first detailed Hyal sequence characterized from a cone snail venom, and to a larger extent in the Mollusca phylum, thus extending our knowledge on this protein family and its evolutionary selection in marine snail venoms.


Assuntos
Caramujo Conus/enzimologia , Glicosídeo Hidrolases/metabolismo , Venenos de Moluscos/enzimologia , Sequência de Aminoácidos , Animais , Caramujo Conus/metabolismo , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/química , Glicosilação , Hialuronoglucosaminidase/química , Hialuronoglucosaminidase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Venenos de Moluscos/metabolismo , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Filogenia , Estrutura Secundária de Proteína , Proteômica/métodos , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
9.
J Proteome Res ; 10(9): 3904-19, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21707029

RESUMO

Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.


Assuntos
Conotoxinas/análise , Caramujo Conus/química , Proteoma/análise , Sequência de Aminoácidos , Animais , Conotoxinas/metabolismo , Caramujo Conus/enzimologia , Caramujo Conus/metabolismo , Eletroforese em Gel Bidimensional , Histocitoquímica , Dados de Sequência Molecular , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Proteínas/análise , Proteínas/química , Proteoma/química , Proteômica , Especificidade da Espécie
10.
Vitam Horm ; 78: 157-84, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18374194

RESUMO

The vitamin K-dependent carboxylase carries out the posttranslational modification of specific glutamate residues in proteins to gamma-carboxy glutamic acid (Gla) in the presence of reduced vitamin K, molecular oxygen, and carbon dioxide. In the process, reduced vitamin K is converted to vitamin K epoxide, which is subsequently reduced to vitamin K, by vitamin K epoxide reductase (VKOR) for use in the carboxylation reaction. The modification has a wide range of physiological implications, including hemostasis, bone calcification, and signal transduction. The enzyme interacts with a high affinity gamma-carboxylation recognition sequence (gamma-CRS) of the substrate and carries out multiple modifications of the substrate before the product is released. This mechanism ensures complete carboxylation of the Gla domain of the coagulation factors, which is essential for their biological activity. gamma-Carboxylation, originally discovered in mammals, is widely distributed in the animal kingdom. It has been characterized in sea squirt (Ciona intestinalis), in flies (Drosophila melanogaster), and in marine snails (Conus textile), none of which have a blood coagulation system similar to mammals. The cone snails express a large array of gamma-carboxylated peptides that modulate the activity of ion channels. These findings have led to the suggestion that gamma-carboxylation is an extracellular posttranslational modification that antedates the divergence of molluscs, arthropods, and chordates. I will first summarize recent understanding of gamma-carboxylase and gamma-carboxylation gleaned from experiments using the mammalian enzyme, and then I will briefly describe the available information on gamma-carboxylation in D. melanogaster and C. textile.


Assuntos
Carbono-Carbono Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Vitamina K/farmacologia , Animais , Sítios de Ligação , Carbono-Carbono Ligases/genética , Caramujo Conus/enzimologia , Drosophila/enzimologia , Ácido Glutâmico/metabolismo , Humanos , Oxigenases de Função Mista/genética , Mutação , Relação Estrutura-Atividade , Especificidade por Substrato , Urocordados/enzimologia , Vitamina K/metabolismo , Vitamina K Epóxido Redutases
11.
Mol Ecol ; 17(3): 885-901, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18179424

RESUMO

Isolated oceanic islands are excellent natural laboratories to test the relative role of historical contingency and determinism in evolutionary diversification. Endemics of the marine venomous snail Conus in the Cape Verde archipelago were originated from at least two independent colonizations of 'small' and 'large' shelled species separated by 12 million years. In this study, we have reconstructed phylogenetic relationships within large-shelled Conus (C. ateralbus, C. pseudonivifer, C. trochulus, and C. venulatus) based on mitochondrial cox1 and nad4 haplotype sequences. The reconstructed molecular phylogeny revealed three well-supported and relatively divergent clades (A, B, and C) that do not correspond to current species classification based on shell colour and banding patterns. Clade A grouped specimens assigned either to C. pseudonivifer or C. trochulus, clade B is composed of specimens assigned to C. venulatus, and clade C comprises specimens assigned either to C. venulatus or C. ateralbus. Geometric morphometric analyses found significant differences between the radular teeth shape of C. pseudonivifer/C. trochulus and C. venulatus/C. ateralbus. In clades A and B, northwestern Boavista and Maio specimens cluster together to the exclusion of eastern Boavista samples. In Sal, populations form a monophyletic island assemblage (clade C). The large-shelled Conus have remarkably replicated biogeographical patterns of diversification of small-shelled Conus. Similar selective forces (i.e. nonplanktonic lecithotrophy with limited larval dispersal and allopatric diversification) together with repeated instances of low sea level stands during glacial maxima that allowed connection between islands, have overcome the effect of historical contingency, and explain the observed recurring biogeographical patterns.


Assuntos
Caramujo Conus/genética , Evolução Molecular , Animais , Ilhas Atlânticas , Sequência de Bases , Teorema de Bayes , Caramujo Conus/anatomia & histologia , Caramujo Conus/enzimologia , DNA Mitocondrial/química , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Variação Genética , Haplótipos/genética , Dados de Sequência Molecular , NADH Desidrogenase/química , NADH Desidrogenase/genética , Filogenia , Reação em Cadeia da Polimerase , Dente/anatomia & histologia
12.
FEBS J ; 274(18): 4778-87, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17697113

RESUMO

The oxidative folding of disulfide-rich conotoxins is essential for their biological functions. In vivo, disulfide bond formation is mainly catalyzed by protein disulfide isomerase. To elucidate the physiologic roles of protein disulfide isomerase in the folding of conotoxins, we have cloned a novel full-length protein disulfide isomerase from Conus marmoreus. Its ORF encodes a 500 amino acid protein that shares sequence homology with protein disulfide isomerases from other species, and 70% homology with human protein disulfide isomerase. Enzymatic analyses of recombinant C. marmoreus protein disulfide isomerase showed that it shared functional similarities with human protein disulfide isomerase. Using conotoxins tx3a and sTx3.1 as substrate, we analyzed the oxidase and isomerase activities of the C. marmoreus protein disulfide isomerase and found that it was much more efficient than glutathione in catalyzing oxidative folding and disulfide isomerization of conotoxins. We further demonstrated that macromolecular crowding had little effect on the protein disulfide isomerase-catalyzed oxidative folding and disulfide isomerization of conotoxins. On the basis of these data, we propose that the C. marmoreus protein disulfide isomerase plays a key role during in vivo folding of conotoxins.


Assuntos
Caramujo Conus/enzimologia , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Catálise , Clonagem Molecular , Conotoxinas/química , Conotoxinas/metabolismo , Caramujo Conus/genética , Dissulfetos/química , Dissulfetos/metabolismo , Evolução Molecular , Humanos , Isomerismo , Dados de Sequência Molecular , Muramidase/química , Muramidase/metabolismo , Oxirredução , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/química , Dobramento de Proteína , Especificidade por Substrato
13.
Mol Biosyst ; 3(8): 554-66, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17639131

RESUMO

Protein disulfide isomerase (PDI) has been identified in a protein extract from the venom duct of the marine snail C. amadis. In-gel tryptic digestion of a thick protein band at approximately 55 kDa yields a mixture of peptides. Analysis of tryptic fragments by MALDI-MS/MS and LC-ESI-MS/MS methods permits sequence assignment. Three tryptic fragments yield two nine residue sequences (FVQDFLDGK and EPQLGDRVR ) and an eleven residue sequence (DQESTGALAFK ). Database analysis using peptides and were consistent with the sequence of PDI and peptide appears to be derived from a co-migrating protein. In identifying proteins based on the characterization of short peptide sequences the question arises about the reliability of identification using peptide fragments. Here we have also demonstrated the minimum length of peptide fragment necessary for unambiguous protein identification using fragments obtained from the experimentally derived sequences. Sequences of length > or =7 residues provide unambiguous identification in conjunction with protein molecular mass as a filter. The length of sequence necessary for unambiguous protein identification is also established using randomly chosen tryptic fragments from a standard dataset of proteins. The results are of significance in the identification of proteins from organisms with unsequenced genomes.


Assuntos
Caramujo Conus/enzimologia , Fragmentos de Peptídeos/química , Isomerases de Dissulfetos de Proteínas/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos , Dados de Sequência Molecular , Isomerases de Dissulfetos de Proteínas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...