Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Colloids Surf B Biointerfaces ; 230: 113508, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562121

RESUMO

Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.


Assuntos
Ibuprofeno , Nanopartículas , Ibuprofeno/química , Carbaril , Sistemas de Liberação de Medicamentos , Polímeros/química , Fenômenos Magnéticos , Dióxido de Silício/química , Nanopartículas/química
2.
Biosensors (Basel) ; 12(7)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35884288

RESUMO

Enzymatic electrochemical biosensors play an important role in the agri-food sector due to the need to develop sustainable, low-cost, and easy-to-use analytical devices. Such biosensors can be used to monitor pathogens, endocrine disruptors, and pesticides, such as carbaryl, widely used in many crops. The use of renewable carbon (RC) sources, provided from biomass pyrolysis has been often applied in the fabrication of such sensors. This material is a great candidate for biosensor fabrication due to the presence of surface functional groups, porosity, and moderate surface area. This work describes the functionalization of RC material through an acid treatment with a sulfonitric solution HNO3/H2SO4 (1:3) and the resulting material was characterized by scanning electron microscopy. The obtained RC functionalized (RCF) and the acetylcholinesterase enzyme (AChE) were applied in the construction of the electrochemical biosensor on glassy carbon (GC) electrode and used to detect carbaryl in apple samples. The GC/RCF/AChE biosensor was able to detect the carbaryl pesticide from 5.0 to 30.0 nmol L-1, displaying a LOD of 4.5 nmol L-1. The detection of carbaryl in apple samples presented recoveries between 102.5 to 118.6% through the standard addition method. The proposed biosensor is a promising renewable tool for food safety.


Assuntos
Técnicas Biossensoriais , Praguicidas , Acetilcolinesterase/química , Técnicas Biossensoriais/métodos , Carbaril , Carbono/química , Enzimas Imobilizadas/química
3.
Chemosphere ; 305: 135497, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764110

RESUMO

Boron-doped diamond (BDD) electrodes are regarded as the most promising catalytic materials that are highly efficient and suitable for application in advanced electrochemical oxidation processes targeted at the removal of recalcitrant contaminants in different water matrices. Improving the synthesis of these electrodes through the enhancement of their morphology, structure and stability has become the goal of the material scientists. The present work reports the use of an ultranano-diamond electrode with a highly porous structure (B-UNCDWS/TDNT/Ti) for the treatment of water containing carbaryl. The application of the proposed electrode at current density of 75 mA cm-2 led to the complete removal of the pollutant (carbaryl) from the synthetic medium in 30 min of electrolysis with an electric energy per order of 4.01 kWh m-3 order-1. The results obtained from the time-course analysis of the carboxylic acids and nitrogen-based ions present in the solution showed that the concentrations of nitrogen-based ions were within the established maximum levels for human consumption. Under optimal operating conditions, the proposed electrode was successfully employed for the complete removal of carbaryl in real water. Thus, the findings of this study show that the unique, easy-to-prepare BDD-based electrode proposed in this study is a highly efficient tool which has excellent application potential for the removal of recalcitrant pollutants in water.


Assuntos
Boro , Poluentes Químicos da Água , Boro/química , Carbaril/análise , Eletrodos , Humanos , Nitrogênio/análise , Oxirredução , Porosidade , Água , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 173: 482-493, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30802737

RESUMO

Cholinesterases are frequent targets for toxic effects, namely by insecticides derived from phosphoric and carbamic acids. This effects allows the use of cholinesterase inhibition as a biomarker for contamination of aquatic environments by these specific chemical agents. However, cholinesterases are differently responsive to environmental contaminants, according to their different forms and locations. In addition, cholinesterases seem also to be inhibited by metals, so their use as an environmental criterion requires the prior characterization of their specific forms in each species and tissues, and the study of their sensitivity. The objective of this study was to characterize the cholinesterase isoenzymes present in the brain and dorsal muscle of three tropical fish species, namely Phalloceros harpagos (Lucinda, 2008), Pterygoplichthys pardalis (Castelnau, 1855) and Astyanax altiparanae (Garutti and Britski, 2000). In vitro assays were conducted to quantify the effect of pesticides (dimethoate and carbaryl) and metals (lead and copper) on cholinesterases activity. Although acetylcholinesterase seems to be the most prevalent and abundant form, as commonly described in vertebrates, the here-obtained results showed that three cholinesterase isoenzymes occur in tissues of the three fish species. In addition, the pesticide carbaryl caused a stronger inhibition than dimethoate. Copper caused a significantly higher cholinesterasic inhibition than lead, which is also in line with most results concerning the anticholinesterasic effects by these metals. The here obtained results allowed to conclude that acetylcholinesterase is the predominant form in all tissues from the three analyzed species. In addition, cholinesterases of these three fish were responsive to common environmental contaminants, namely metals and pesticides, similarly to what was already described for fish of temperate areas. This allows using the here proposed fish species in environmental studies for the assessment of the presence of neurotoxicants under neotropical conditions.


Assuntos
Peixes-Gato/metabolismo , Inibidores da Colinesterase/toxicidade , Cobre/toxicidade , Ciprinodontiformes/metabolismo , Chumbo/toxicidade , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Carbaril/toxicidade , Colinesterases/metabolismo , Dimetoato/toxicidade , Feminino , Proteínas de Peixes/metabolismo , Masculino , Músculos/efeitos dos fármacos , Músculos/enzimologia
5.
J Environ Sci Health B ; 53(7): 469-475, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29624471

RESUMO

Chlorpyrifos (O, O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) and carbaryl (1-naphthyl methylcarbamate) are often applied concurrently as insecticides in food production. The aim of this study was to research their migration behavior in a real environment. We researched the leaching of both pesticides by setting up field lysimeters on a farm with the typical soil used in fruit production today. In order to analyze the variables involved in this process, we performed complementary adsorption studies, we performed complementary adsorption studies using batches and undisturbed soil laboratory columns for both compounds. The results for pesticide transport through the lysimeters showed that less than 1% of chlorpyrifos was recovered in the leachates, while almost 17% was recovered for carbaryl. Having completed the experiment in undisturbed laboratory columns, soil analysis showed that chlorpyrifos mainly remained in the first 5 cm, while carbaryl moved down to the lower sections. These results can be explained in view of the sorption coefficient values (KD) obtained in horizons A and B for chlorpyrifos (393 and 184 L kg-1) and carbaryl (3.1 and 4.2 L kg-1), respectively. By integrating the results obtained in the different approaches, we were able to characterize the percolation modes of these pesticides in the soil matrix, thus contributing to the sustainable use of resources.


Assuntos
Carbaril/análise , Clorpirifos/análise , Poluentes do Solo/análise , Solo/química , Adsorção , Carbaril/química , Clorpirifos/química , Inseticidas/análise , Inseticidas/química , Poluentes do Solo/química
6.
Aquat Toxicol ; 199: 276-284, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29689476

RESUMO

Carbamate insecticides such as carbaryl and organophosphates such as azinphos-methyl share the ability to inhibit the activity of B-esterases. This study aimed to (1) assess the inhibitory effects of carbaryl on B-esterase activity in soft tissues and hemolymph of Planorbarius corneus; (2) establish whether binary mixtures of carbaryl and azinphos-methyl depart or not from a model of concentration addition on the inhibition of cholinesterase activity; (3) determine the bioconcentration and elimination of the pesticides. The results showed that exposure of gastropods to increasing concentrations of carbaryl (0.1-5 mg L-1) for 48 h inhibited cholinesterase activity in a concentration-dependent manner, with an EC50 of 1.4 ±â€¯0.3 mg L-1 and 1.2 ±â€¯0.1 mg L-1 for soft tissue and hemolymph, respectively. Carboxylesterase activity, measured with the substrates p-nitrophenyl butyrate and p-nitrophenyl acetate, was between 2.3 and 25 times more sensitive to carbaryl inhibition than cholinesterase activity. Binary mixtures corresponding to 0.5 EC50 carbaryl + 0.5 EC50 azinphos-methyl and 0.75 EC50 carbaryl + 0.75 EC50 azinphos-methyl produced inhibitions of cholinesterase activity similar to those of individual pesticides, following a model of concentration addition. Bioconcentration was analyzed using a one-compartment model. The absorption kinetics (k1) for both pesticides alone (1.4 mg L-1 of carbaryl or 1.8 mg L-1 of azinphos-methyl) or mixed (1.4 mg L-1 of carbaryl + 1.8 mg L-1 of azinphos-methyl) were similar. The elimination kinetics ratio (k2) estimated for the pesticides alone or in the mixtures showed that carbaryl was eliminated 3.5 times faster than azinphos-methyl. These results suggest that exposure of Planorbarius corneus to binary mixtures of carbaryl and azinphos-methyl for 48 h follow a concentration addition model on inhibition of cholinesterase activity and that the pesticide mixtures do not change the toxicokinetic parameters of the parent compounds.


Assuntos
Azinfos-Metil/toxicidade , Carbaril/farmacocinética , Carbaril/toxicidade , Água Doce , Gastrópodes/efeitos dos fármacos , Animais , Carboxilesterase/metabolismo , Colinesterases/metabolismo , Gastrópodes/enzimologia , Hemolinfa/metabolismo , Cinética , Toxicocinética , Poluentes Químicos da Água/toxicidade
7.
Aquat Toxicol ; 188: 72-79, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28460306

RESUMO

During the last years, a carbaryl insecticide was extensively applied in the valley of Río Negro and Neuquén, North Patagonia Argentina, to manage codling moths (Cydia pomonella), the main pest of pear and apple trees. In this study carbaryl susceptibility and B-esterase activity from both insecticide-exposed and non-exposed field populations of amphipods Hyalella curvispina were studied. Two subpopulations, one susceptible to carbaryl (LC50=213±7.5µg/L carbaryl) and one resistant to it (LC50=14,663±2379µg/L carbaryl), were found in the agricultural area selected in this study. Both populations were, in turn, more resistant to carbaryl than the population from a pristine area (LC50=11.31±2.27µg/L carbaryl). The in vivo 48h-IC50 values for cholinesterase (ChE) were close to the corresponding 48h-LC50 values as determined for the non-exposed population (IC50=7.16±0.86µg/L carbaryl) and for the susceptible subpopulation from the insecticide-exposed site (IC50=193±99µg/L carbaryl). Carbaryl exposure of the amphipods from the agricultural area mentioned above produced a significant decrease of carboxylesterase (CabE) activity, at a sublethal concentration (10µg/L) that was not able to significantly inhibit ChE, thereby showing a protective role of CabE and its usefulness as early biomarker. However, at lethal concentrations the inhibition of ChE activity was higher than that of CabE. On the other hand, CabE of amphipods from the pristine site was less sensitive to carbaryl than ChE, suggesting a different participation of CabE in ChE protection in the susceptible population of H. curvispina. Pulse exposure to carbaryl for 2h caused a significant inhibition of ChE in amphipods from both populations, with a fast recovery as expected for a carbamate insecticide. In conclusion, we proved that amphipods from the said agricultural area have developed resistance to carbaryl and showed the presence of two subpopulations with a different response to the insecticide. Moreover, these results reinforce the use of ChE together with CabE inhibition as indicators of carbamate exposure in H. curvispina.


Assuntos
Anfípodes/efeitos dos fármacos , Carbaril/toxicidade , Carboxilesterase/metabolismo , Colinesterases/metabolismo , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Argentina , Biomarcadores/metabolismo , Carboxilesterase/antagonistas & inibidores
8.
Sci Total Environ ; 575: 146-151, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27736697

RESUMO

There is a current tendency to develop and apply environmentally friendly techniques that meet the requirements of green analytical chemistry as an alternative to conventional analytical methods. For toxicity evaluation, these alternatives may be found in bioassays such as Tradescantia. This technique, developed in the 1980s, is highly sensitive to evaluate environmental mutagens, simple and cheap. In this paper, the sensibility of both the Tradescantia micronucleus bioassay (Trad-MCN) and the Tradescantia stamen hair bioassay (Trad-SH) were studied for carbaryl, dimethoate and iprodione, common agricultural and domestic pesticides that are currently used in Chile, which have never been tested with such bioassays. Biomonitor exposures were performed by capillary absorption for each individual pesticide over a wide range of concentrations, from maximum residue limits (trace levels) up to the application dose in agricultural fields. In addition, the organochloride 4,4'-DDE was included but only in the concentration range from 0.01mgL-1 to 1mgL-1, mimicking residue concentrations since it is not a commercial product but, rather, the main breakdown product of the persistent organochloride pesticide 4,4-DDT, whose use was discontinued in Chile in the 1980s. The Trad-MCN bioassay revealed a significant increase in micronucleus frequency at the early tetrads of meiotic pollen mother cells of the biomonitor Tradescantia pallida var. purpurea, induced by 4,4'-DDE (for 1mgL-1), dimethoate (for 40mgL-1, 200mgL-1, 400mg/L-1) and carbaryl (for 889mgL-1). Iprodione did not generate any significant change at the tested concentration. Meanwhile, the Trad-SH bioassay was carried out by analysis of the phenotype variations of the stamen hair cells of the Tradescantia clone KU-20 for the same pesticides and doses. This bioassay was not sufficiently sensitive for toxicity evaluation of most of the pesticides tested, with exception of dimethoate in low doses (2 and 5mg/L-1).


Assuntos
Monitoramento Ambiental , Praguicidas/toxicidade , Tradescantia/efeitos dos fármacos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/toxicidade , Carbaril/toxicidade , Chile , Diclorodifenil Dicloroetileno , Dimetoato/toxicidade , Hidantoínas/toxicidade , Testes para Micronúcleos , Mutagênicos , Tradescantia/genética
9.
Talanta ; 154: 208-18, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27154667

RESUMO

A study regarding the acquisition and analytical utilization of four-way data acquired by monitoring excitation-emission fluorescence matrices at different elution time points in a fast HPLC procedure is presented. The data were modeled with three well-known algorithms: PARAFAC, U-PLS/RTL and MCR-ALS, the latter conveniently adapted to model third-order data. The second-order advantage was exploited when analyzing samples containing uncalibrated components. The best results were furnished with the algorithm U-PLS/RTL. This fact is indicative of both no peak time shifts occurrence among samples and high colinearity among spectra. Besides, this latent-variable structured algorithm is capable of better handle the need of achieving high sensitivity for the analysis of one of the analytes. In addition, a significant enhancement in both predictions and analytical figures of merit was observed for carbendazim, thiabendazole, fuberidazole, carbofuran, carbaryl and 1-naphtol, when going from second- to third-order data. LODs obtained were ranged between 0.02 and 2.4µgL(-1).


Assuntos
Sucos de Frutas e Vegetais , Calibragem , Carbaril , Cromatografia Líquida de Alta Pressão , Praguicidas , Espectrometria de Fluorescência
10.
Braz J Microbiol ; 46(4): 1087-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26691466

RESUMO

Carbaryl is an important and widely used insecticide that pollutes soil and water systems. Bacteria from the local soil ecosystem of the Gaza Strip capable of utilizing carbaryl as the sole source of carbon and nitrogen were isolated and identified as belonging to Bacillus, Morganella, Pseudomonas, Aeromonas and Corynebacterium genera. Carbaryl biodegradation by Bacillus, Morganella and Corynebacterium isolates was analyzed in minimal liquid media supplemented with carbaryl as the only source of carbon and nitrogen. Bacillus and Morganella exhibited 94.6% and 87.3% carbaryl degradation, respectively, while Corynebacterium showed only moderate carbaryl degradation at 48.8%. These results indicate that bacterial isolates from a local soil ecosystem in the Gaza Strip are able to degrade carbaryl and can be used to decrease the risk of environmental contamination by this insecticide.


Assuntos
Bactérias/metabolismo , Carbaril/metabolismo , Inseticidas/metabolismo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Ecossistema , Oriente Médio , Microbiologia do Solo
11.
Braz. J. Microbiol. ; 46(4): 1087-1091, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-13993

RESUMO

Abstract Carbaryl is an important and widely used insecticide that pollutes soil and water systems. Bacteria from the local soil ecosystem of the Gaza Strip capable of utilizing carbaryl as the sole source of carbon and nitrogen were isolated and identified as belonging to Bacillus, Morganella, Pseudomonas, Aeromonas and Corynebacterium genera. Carbaryl biodegradation by Bacillus, Morganella and Corynebacterium isolates was analyzed in minimal liquid media supplemented with carbaryl as the only source of carbon and nitrogen. Bacillus and Morganella exhibited 94.6% and 87.3% carbaryl degradation, respectively, while Corynebacterium showed only moderate carbaryl degradation at 48.8%. These results indicate that bacterial isolates from a local soil ecosystem in the Gaza Strip are able to degrade carbaryl and can be used to decrease the risk of environmental contamination by this insecticide.(AU)


Assuntos
Bactérias/classificação , Biodegradação Ambiental , Biologia do Solo , Carbaril
12.
Braz. j. microbiol ; Braz. j. microbiol;46(4): 1087-1091, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769654

RESUMO

Abstract Carbaryl is an important and widely used insecticide that pollutes soil and water systems. Bacteria from the local soil ecosystem of the Gaza Strip capable of utilizing carbaryl as the sole source of carbon and nitrogen were isolated and identified as belonging to Bacillus, Morganella, Pseudomonas, Aeromonas and Corynebacterium genera. Carbaryl biodegradation by Bacillus, Morganella and Corynebacterium isolates was analyzed in minimal liquid media supplemented with carbaryl as the only source of carbon and nitrogen. Bacillus and Morganella exhibited 94.6% and 87.3% carbaryl degradation, respectively, while Corynebacterium showed only moderate carbaryl degradation at 48.8%. These results indicate that bacterial isolates from a local soil ecosystem in the Gaza Strip are able to degrade carbaryl and can be used to decrease the risk of environmental contamination by this insecticide.


Assuntos
Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental/classificação , Biodegradação Ambiental/genética , Biodegradação Ambiental/isolamento & purificação , Biodegradação Ambiental/metabolismo , Carbaril/classificação , Carbaril/genética , Carbaril/isolamento & purificação , Carbaril/metabolismo , Ecossistema/classificação , Ecossistema/genética , Ecossistema/isolamento & purificação , Ecossistema/metabolismo , Inseticidas/classificação , Inseticidas/genética , Inseticidas/isolamento & purificação , Inseticidas/metabolismo , Oriente Médio/classificação , Oriente Médio/genética , Oriente Médio/isolamento & purificação , Oriente Médio/metabolismo , Microbiologia do Solo/classificação , Microbiologia do Solo/genética , Microbiologia do Solo/isolamento & purificação , Microbiologia do Solo/metabolismo , Poluentes do Solo/classificação , Poluentes do Solo/genética , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo
13.
Braz J Biol ; 75(3): 759-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26465735

RESUMO

The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.


Assuntos
Carbaril/farmacologia , Inseticidas/farmacologia , Metil Paration/farmacologia , Rotíferos/efeitos dos fármacos , Animais , Inibidores da Colinesterase/farmacologia , Proteínas Qa-SNARE/metabolismo , Rotíferos/enzimologia , Sintaxina 1/metabolismo
14.
Braz. j. biol ; Braz. j. biol;75(3): 759-765, Aug. 2015. ilus
Artigo em Inglês | LILACS | ID: lil-761594

RESUMO

AbstractThe organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.


ResumoOs pesticidas organofosforados e carbamatos metil- paration e carbaril tem um mecanismo de ação comum: eles inibem a enzima acetilcolinesterase, bloqueando a transmissão dos impulsos nervosos. No entanto, eles podem alterar a expressão de proteínas de membrana de exocitose (SNARE), através da modificação da libertação de neurotransmissores e outras substâncias. Este estudo avaliou os efeitos adversos dos pesticidas metil- paration e carbaril sobre a expressão de proteínas SNARE: Sintaxina -1, Sintaxina-4 e SNAP-23 em rotíferos de água doce Brachionus calyciflorus. A expressão destas três proteínas foi analisada antes e depois da exposição a estes dois pesticidas por Western Blot. A expressão das proteínas Sintaxina-1, Sintaxina-4 e SNAP-23 em B. calyciflorus diminui significativamente com o aumento da concentração de ambos os pesticidas. Isto sugere que os organofosfatos e carbamatos têm efeitos adversos sobre a expressão de proteínas de membrana de exocitose, alterando o reconhecimento, de encaixe e fusão de membranas pré-sinápticas e vesiculares envolvidas na exocitose de neurotransmissores. Nossos resultados demonstram que o efeito neurotóxico de pesticidas anticolinesterásicos influencia a interação de sintaxinas e SNAP-25 e a montagem correta do complexo SNARE.


Assuntos
Animais , Carbaril/farmacologia , Inseticidas/farmacologia , Metil Paration/farmacologia , Rotíferos/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Proteínas Qa-SNARE/metabolismo , Rotíferos/enzimologia , Sintaxina 1/metabolismo
15.
Braz. J. Biol. ; 75(3): 759-759, Aug. 2015. ilus
Artigo em Inglês | VETINDEX | ID: vti-341456

RESUMO

The organophosphate and carbamate pesticides methyl-parathion and carbaryl have a common action mechanism: they inhibit acetylcholinesterase enzyme by blocking the transmission of nerve impulses. However, they can alter the expression of exocytotic membrane proteins (SNARE), by modifying release of neurotransmitters and other substances. This study evaluated the adverse effects of the pesticides methyl-parathion and carbaryl on expression of SNARE proteins: Syntaxin-1, Syntaxin-4 and SNAP-23 in freshwater rotifer Brachionus calyciflorus. Protein expression of these three proteins was analyzed before and after exposure to these two pesticides by Western Blot. The expression of Syntaxin-1, Syntaxin-4 and SNAP-23 proteins in B. calyciflorussignificantly decreases with increasing concentration of either pesticides. This suggests that organophosphates and carbamates have adverse effects on expression of membrane proteins of exocytosis by altering the recognition, docking and fusion of presynaptic and vesicular membranes involved in exocytosis of neurotransmitters. Our results demonstrate that the neurotoxic effect of anticholinesterase pesticides influences the interaction of syntaxins and SNAP-25 and the proper assembly of the SNARE complex.(AU)


Os pesticidas organofosforados e carbamatos metil- paration e carbaril tem um mecanismo de ação comum: eles inibem a enzima acetilcolinesterase, bloqueando a transmissão dos impulsos nervosos. No entanto, eles podem alterar a expressão de proteínas de membrana de exocitose (SNARE), através da modificação da libertação de neurotransmissores e outras substâncias. Este estudo avaliou os efeitos adversos dos pesticidas metil- paration e carbaril sobre a expressão de proteínas SNARE: Sintaxina -1, Sintaxina-4 e SNAP-23 em rotíferos de água doce Brachionus calyciflorus. A expressão destas três proteínas foi analisada antes e depois da exposição a estes dois pesticidas por Western Blot. A expressão das proteínas Sintaxina-1, Sintaxina-4 e SNAP-23 em B. calyciflorus diminui significativamente com o aumento da concentração de ambos os pesticidas. Isto sugere que os organofosfatos e carbamatos têm efeitos adversos sobre a expressão de proteínas de membrana de exocitose, alterando o reconhecimento, de encaixe e fusão de membranas pré-sinápticas e vesiculares envolvidas na exocitose de neurotransmissores. Nossos resultados demonstram que o efeito neurotóxico de pesticidas anticolinesterásicos influencia a interação de sintaxinas e SNAP-25 e a montagem correta do complexo SNARE.(AU)


Assuntos
Animais , Carbaril/farmacologia , Inseticidas/farmacologia , Metil Paration/farmacologia , Rotíferos , Inibidores da Colinesterase/farmacologia , Proteínas Qa-SNARE/metabolismo , Rotíferos/enzimologia , Sintaxina 1/metabolismo
16.
São Paulo; s.n; s.n; 2015. 156 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-836714

RESUMO

O carbaril (metilcarbamato de naftila), um inseticida de amplo espectro, foi recentemente associado ao desenvolvimento de melanoma cutâneo em estudo epidemiológico de coorte com trabalhadores agrícolas norte-americanos, expostos também à radiação solar, o principal fator etiológico para o desenvolvimento de tumores cutâneos. Apesar de abrangente e bem planejado, aquele estudo epidemiológico não é suficiente para caracterizar a contribuição direta do inseticida e da radiação solar na melanomagênese. Diversos estudos têm explorado o efeito sinérgico de determinadas substâncias químicas à radiação UV, potencializando seus efeitos deletérios sobre a pele, e possivelmente contribuindo para o desenvolvimento de tumores. A hipótese deste trabalho é de que a exposição ao carbaril associada à radiação solar possa estimular a transformação de melanócitos. Esse estudo visou caracterizar melanócitos humanos após exposição individual ou combinada ao carbaril (100uM) e à radiação solar (375 mJ/ cm2). Em ensaio de microarray, o carbaril, mas não a radiação solar, induziu uma importante resposta a estresse oxidativo, evidenciada pelo aumento da expressão de genes antioxidantes, como o Hemeoxigenase-1 (HMOX1), e pela diminuição da expressão do gene MiTF, regulador da atividade melanocítica; os resultados foram confirmados por qRT-PCR. Além disso, tanto o carbaril quanto a radiação solar induziram respostas que sugerem dano ao DNA e alteração de ciclo celular. A expressão dos genes nestas categorias, como p21 e BRCA1/2, foi notavelmente mais intensa no grupo de tratamento combinado e de fato, ensaios por citometria de fluxo demonstraram parada de ciclo celular na fase S, redução do número de células em apoptose e indução mais rápida de lesões do tipo CPD neste grupo experimental. Nossos dados sugerem que o carbaril é genotóxico para melanócitos humanos, especialmente quando associado à radiação solar


Carbaryl (1-naphthyl-methylcarbamate), a broad spectrum insecticide, has recently been associated with the development of cutaneous melanoma in an epidemiological cohort study with U.S. farm workers also exposed to ultraviolet radiation, which is known to be the main etiologic factor for skin carcinogenesis. Although comprehensive and well designed, the epidemiological study is not sufficient to characterize the direct contribution of the insecticide and solar radiation in melanomagenesis. Several studies have explored the synergistic effect of certain chemicals with UV radiation, increasing its deleterious effects on the skin, possibly contributing to tumor development. We hypothesized that Carbaryl exposure associated with UV solar radiation may induce melanocyte transformation. This study aims to characterize human melanocytes after individual or combined exposure to Carbaryl (100uM) and solar radiation (375 mJ/ cm2). In a microarray analysis, Carbaryl, but not solar radiation, induced an important oxidative stress response, evidenced by the upregulation of antioxidant genes, such as Hemeoxygenase-1 (HMOX1), and downregulation of MiTF, the main regulator of melanocytic activity; results were confirmed by qRT-PCR. Moreover, both Carbaryl and solar UV induced a gene response that suggests DNA damage and cell cycle alteration. The expression of genes in these categories, such as p21 and BRCA1/2, was notably more intense in the combined treatment group in an additive manner and in fact, flow cytometry assays demonstrated cell cycle arrest in S phase, reduced apoptosis induction and faster induction of CPD lesions in this experimental group. Our data suggests that carbaryl is genotoxic to human melanocytes, especially when associated with solar radiation


Assuntos
Humanos , Masculino , Carbaril , Inseticidas/efeitos adversos , Melanócitos , Praguicidas , Radiação Solar , Melanoma
17.
Talanta ; 128: 450-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25059185

RESUMO

In the present work a new application of third-order multivariate calibration algorithms is presented, in order to quantify carbaryl, naphthol and propoxur using kinetic spectroscopic data. The time evolution of fluorescence data matrices was measured, in order to follow the alkaline hydrolysis of the pesticides mentioned above. This experimental system has the additional complexity that one of the analytes is the reaction product of another analyte, and this fact generates linear dependency problems between concentration profiles. The data were analyzed by three different methods: parallel factor analysis (PARAFAC), unfolded partial least-squares (U-PLS) and multi-dimensional partial least-squares (N-PLS); these last two methods were assisted with residual trilinearization (RTL) to model the presence of unexpected signals not included in the calibration step. The ability of the different algorithms to predict analyte concentrations was checked with validation samples. Samples with unexpected components, tiabendazole and carbendazim, were prepared and spiked water samples of a natural stream were used to check the recovered concentrations. The best results were obtained with U-PLS/RTL and N-PLS/RTL with an average of the limits of detection of 0.035 for carbaryl, 0.025 for naphthol and 0.090 for propoxur (mg L(-1)), because these two methods are more flexible regarding the structure of the data.


Assuntos
Algoritmos , Carbaril/análise , Naftóis/análise , Propoxur/análise , Espectrometria de Fluorescência/métodos , Benzimidazóis/análise , Calibragem , Carbamatos/análise , Cinética , Análise dos Mínimos Quadrados , Análise Multivariada , Praguicidas/análise , Reprodutibilidade dos Testes , Rios/química , Poluentes Químicos da Água/análise
18.
J Econ Entomol ; 104(2): 636-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21510216

RESUMO

In southern Brazilian apple (Malus spp.) orchards, predominantly organophosphates are used to control the oriental fruit moth, Cydia molesta (Busck) (Lepidoptera: Tortricidae), but control failures often occur. Therefore the susceptibility of three C. molesta Brazilian populations was investigated to five insecticides of different groups and modes of action, in comparison with a susceptible laboratory strain mass reared in southern France for >10 yr. At the same time, comparative biochemical and genetic analysis were performed, assessing the activities of the detoxification enzymatic systems and sequencing a gene of insecticide molecular target to find out markers associated with resistance. The three Brazilian populations were significantly resistant to chlorpyrifos ethyl compared with the reference strain. One of the field populations that had been frequently exposed to deltamethrin treatments showed significant decreasing susceptibility to this compound, whereas none of the three populations had loss of susceptibility to tebufenozide and thiacloprid compared with the reference strain. All three populations had slight but significant increases of glutathione transferase and carboxylesterases activities and significant decrease of specific acetylcholinesterase activities compared with the reference. Only the most resistant population to chlorpyriphos exhibited a significantly higher mixed function oxidase activity than the reference. The acetylcholinesterase of females was significantly less inhibited by carbaryl in the Brazilian populations than in the reference strain (1.7-2.5-fold), and this difference was not expressed in the male moth. However, no mutation in the MACE locus was detected. These biological and molecular characterizations of adaptive response to insecticides in C. molesta provide tools for early detection of insecticide resistance in field populations of this pest.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética , Acetilcolinesterase/genética , Animais , Brasil , Carbaril/farmacologia , Clorpirifos , Hidrazinas/farmacologia , Malus/parasitologia , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Neonicotinoides , Nitrilas/farmacologia , Compostos Organotiofosforados/farmacologia , Piretrinas/farmacologia , Piridinas/farmacologia , Análise de Sequência de DNA , Tiazinas/farmacologia
19.
Artigo em Inglês | MEDLINE | ID: mdl-20709623

RESUMO

Organophosphate (OP) and carbamate pesticides are anticholinesterasic agents also able to alter antioxidant defenses in different organisms. Amphibian larvae are naturally exposed to these pesticides in their aquatic environments located within agricultural areas. We studied the effect of the carbamate carbaryl (CB) and the OP azinphos methyl (AM), compounds extensively used in Northern Patagonian agricultural areas, on reduced glutathione (GSH) levels and the activities of esterases and antioxidant enzymes of the toad Rhinella arenarum larvae. Larvae were exposed 48 h to AM 3 and 6 mg/L or CB 10 and 20 mg/L. Cholinesterase and carboxylesterases were strongly inhibited by CB and AM. In insecticide-exposed larvae, carboxylesterases may serve as alternative targets protecting cholinesterase from inhibition. GSH-S-transferase (GST) activity was significantly increased by CB and AM. Superoxide dismutase activity increased in tadpoles exposed to 6 mg/L AM. Conversely, catalase (CAT) was significantly inhibited by both pesticides. GSH levels, GSH reductase and GSH peroxidase activities were not significantly affected by pesticide exposure. GST increase constitutes an important adaptive response to CB and AM exposure, as this enzyme has been related to pesticide tolerance in amphibian larvae. Besides, the ability to sustain GSH levels in spite of CAT inhibition indicates quite a good antioxidant response. In R. arenarum larvae, CAT and GST activities together with esterases could be used as biomarkers of CB and AM exposure.


Assuntos
Azinfos-Metil/toxicidade , Bufonidae/metabolismo , Carbaril/toxicidade , Inibidores da Colinesterase/toxicidade , Esterases/antagonistas & inibidores , Animais , Antioxidantes/metabolismo , Catalase/antagonistas & inibidores , Catalase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa/metabolismo , Larva/enzimologia , Superóxido Dismutase/antagonistas & inibidores , Superóxido Dismutase/metabolismo
20.
J Environ Biol ; 32(6): 793-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22471218

RESUMO

Studies were done to see the effects of five toxic baits based on metaldehyde and/or carbaryl on the taxonomic composition of soil meso and macrofauna, and determined the density of beneficial organisms in soybean under no tillage. Six treatments were tested and soil monoliths were taken before application and at 45 and 75 days after application (DAA). Before application, 1601 individuals were recorded, belonging 1086 to mesofauna and 515 to macrofauna. In soil mesofauna such as Annelida: Enchytraeidae (44%), Nematoda (33%) and Arthropoda (23%) were found. In the macrofauna Arthropoda 93% and Annelida: Oligochaeta, Megadrilli 7% were observed. No differences were observed among the treatments (p>0.05) in the total mesofauna density, at 45 and 75 DAA. The density of enchytraeids, mites, collembolans and symphylids showed no differences at45 and 75 DAA (p > 0.05). The total macrofauna density showed differences (p < 0.05) at 45 and 75 DAA. The highest density was obtained with 4 kg ha(-1) MataBibos Acay at 45 and 75 DAA. Earthworm and diplopod densities at45 and 75 DAA showed no differences (p>0.05). The diversity of meso and macrofauna was not affected at 45 and 75 DAA. Bait application did not affect either the abundance or the diversity of soil beneficial invertebrates.


Assuntos
Acetaldeído/análogos & derivados , Carbaril/farmacologia , Glycine max , Invertebrados/efeitos dos fármacos , Solo , Acetaldeído/farmacologia , Animais , Monitoramento Ambiental , Inseticidas/farmacologia , Moluscocidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA