Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.587
Filtrar
1.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844957

RESUMO

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Quinase 2 de Adesão Focal , Neoplasias Pulmonares , Fator de Transcrição STAT3 , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Quinase 2 de Adesão Focal/metabolismo , Quinase 2 de Adesão Focal/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Proliferação de Células/genética , Camundongos , Movimento Celular/genética , Camundongos Nus , Linhagem Celular Tumoral , Transdução de Sinais/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Endogâmicos BALB C
2.
AAPS PharmSciTech ; 25(5): 129, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844700

RESUMO

Lung carcinoma, including both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), remains a significant global health challenge due to its high morbidity and mortality rates. The objsective of this review is to meticulously examine the current advancements and strategies in the delivery of CRISPR-Cas9 gene-editing technology for the treatment of lung carcinoma. This technology heralds a new era in molecular biology, offering unprecedented precision in genomic modifications. However, its therapeutic potential is contingent upon the development of effective delivery mechanisms that ensure the efficient and specific transport of gene-editing tools to tumor cells. We explore a variety of delivery approaches, such as viral vectors, lipid-based nanoparticles, and physical methods, highlighting their respective advantages, limitations, and recent breakthroughs. This review also delves into the translational and clinical significance of these strategies, discussing preclinical and clinical studies that investigate the feasibility, efficacy, and safety of CRISPR-Cas9 delivery for lung carcinoma. By scrutinizing the landscape of ongoing clinical trials and offering translational perspectives, we aim to elucidate the current state and future directions of this rapidly evolving field. The review is structured to first introduce the problem and significance of lung carcinoma, followed by an overview of CRISPR-Cas9 technology, a detailed examination of delivery strategies, and an analysis of clinical applications and regulatory considerations. Our discussion concludes with future perspectives and challenges, such as optimizing delivery strategies, enhancing specificity, mitigating immunogenicity concerns, and addressing regulatory issues. This comprehensive overview seeks to provide insights into the potential of CRISPR-Cas9 as a revolutionary approach for targeted therapies and personalized medicine in lung carcinoma, emphasizing the importance of delivery strategy development in realizing the full potential of this groundbreaking technology.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias Pulmonares , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/genética , Edição de Genes/métodos , Animais , Terapia Genética/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Técnicas de Transferência de Genes , Sistemas de Liberação de Medicamentos/métodos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/genética , Nanopartículas
3.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830868

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Peptidilprolil Isomerase , Estabilidade Proteica , Ubiquitinação , Animais , Feminino , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Progressão da Doença , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Camundongos Nus , Fator 2 Relacionado a NF-E2/metabolismo , Proteólise , Peptidilprolil Isomerase/metabolismo
4.
PLoS One ; 19(6): e0298721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837980

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) remains a significant global health concern, with EGFR mutations playing a pivotal role in guiding treatment decisions. This prospective study investigated the prevalence and clinical implications of EGFR mutations in Moroccan NSCLC patients. METHODS: A cohort of 302 NSCLC patients was analyzed for EGFR mutations using multiple techniques. Demographic, clinical, and pathological characteristics were assessed, and overall survival (OS) outcomes were compared among different EGFR mutation subtypes. RESULTS: EGFR mutations were present in 23.5% of patients, with common mutations (81.69%) dominating. Common mutations showed strong associations with female gender and non-smoking status, while rare mutations were associated with a positive smoking history. Patients with EGFR mutations receiving tyrosine kinase inhibitors (TKIs) had significantly improved OS compared to wild-type EGFR patients. Notably, patients with common EGFR mutations had the highest OS, while those with rare mutations had a shorter survival period, albeit not statistically significant. CONCLUSION: This study highlights the relevance of EGFR mutation status in NSCLC patients, particularly in therapeutic decision-making. The association between smoking history and rare mutations suggests the need for tailored approaches. The survival advantage for patients with common EGFR mutations underscores the significance of personalized treatment strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Masculino , Receptores ErbB/genética , Pessoa de Meia-Idade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Marrocos/epidemiologia , Prognóstico , Idoso , Adulto , Estudos Prospectivos , Idoso de 80 Anos ou mais
6.
Respir Res ; 25(1): 233, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840238

RESUMO

BACKGROUND: There is inconclusive evidence to suggest that the expression of programmed cell death ligand 1 (PD-L1) is a putative predictor of response to EGFR-TKI therapy in advanced EGFR-mutant non-small cell lung cancer (NSCLC). We evaluated the heterogeneity in PD-L1 expression in the primary lung site and metastatic lymph nodes to analyze the association between PD-L1 expression and response for patients treated with EGFR-TKI. METHODS: This study reviewed 184 advanced NSCLC patients with EGFR mutations who received first-generation EGFR-TKI as first-line treatment from 2020 to 2021 at Shanghai Chest Hospital. The patients were divided into the primary lung site group (n = 100) and the metastatic lymph nodes group (n = 84) according to the biopsy site. The patients in each group were divided into TPS < 1%, TPS 1-49%, and TPS ≥ 50% groups according to PD-L1 expression. RESULTS: The median PFS was 7 (95% CI: 5.7-8.3) months, and the median OS was 26 (95% CI: 23.5-28.5) months for all patients. No correlation existed between PFS or OS and PD-L1 expression. The median PFS in the primary lung site group was 11 months (95% CI: 9.6-12.4) in the TPS < 1% group, 8 months (95% CI: 6.6-9.4) in TPS 1-49% group, and 4 months (95% CI: 3.2-4.8) in TPS ≥ 50% group, with statistically significant differences (p = 0.000). The median OS of the TPS < 1% group and TPS ≥ 50% group showed a statistically significant difference (p = 0.008) in the primary lung site group. In contrast, PD-L1 expression in the lymph nodes of EGFR-mutant patients was unrelated to PFS or OS after EGFR-TKI therapy. CONCLUSION: PD-L1 expression from the primary lung site might predict clinical benefit from EGFR-TKI, whereas PD-L1 from metastatic lymph nodes did not. TRIAL REGISTRATION: This retrospective study was approved by the Ethics Committee of Shanghai Chest Hospital (ID: IS23060) and performed following the Helsinki Declaration of 1964 (revised 2008).


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Metástase Linfática , Inibidores de Proteínas Quinases , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Receptores ErbB/biossíntese , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Idoso , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Retrospectivos , Linfonodos/patologia , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Adulto , Idoso de 80 Anos ou mais , Resultado do Tratamento , Valor Preditivo dos Testes , Mutação , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise
7.
Pan Afr Med J ; 47: 116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828424

RESUMO

Non-small cell lung cancer (NSCLC) is a significant global health issue with diverse molecular profiles affecting treatment responses. Yet, NSCLC's molecular epidemiology in Morocco is largely unexplored. This study focuses on NSCLC genetic mutations, specifically in adenocarcinoma, among Moroccan patients to contribute to understanding NSCLC in this population. Ninety-four patients diagnosed with lung adenocarcinoma were analyzed. Formalin-fixed paraffin-embedded tissue samples were processed, and deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) was extracted using standardized protocols. Mutations were detected using the AmoyDx Pan Lung Cancer Polymerase Chain Reaction (PCR) Panel kit, and their frequencies were assessed through statistical analysis. Epidermal Growth Factor Receptor (EGFR) mutations were detected in 22.34% of patients, predominantly exon 19 deletions (66.66%) and exon 21 L858R mutations (23.80%). Anaplastic lymphoma kinase (ALK) gene fusion was observed in 3.19% of patients, and KRAS mutations in 1.06%. No mutations were found in other tested genes. A slightly higher mutation rate was noted in females (54.16%) compared to males (45.84%). The study reveals a distinct mutation profile in Moroccan NSCLC patients, with a notable prevalence of EGFR mutations, albeit lower than in some Asian populations. The significance of EGFR mutations in treatment response aligns with global findings, highlighting the importance of understanding regional molecular variations for personalized therapy. Despite limitations in sample size and clinical data, this study sheds light on the genetic landscape of NSCLC in Morocco. The observed mutation rates, particularly in EGFR, underscore the potential for targeted therapies in Moroccan NSCLC patients, emphasizing the need for further research to refine treatment strategies tailored to this population.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Mutação , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Marrocos , Masculino , Feminino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Receptores ErbB/genética , Idoso , Adulto , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Quinase do Linfoma Anaplásico/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Reação em Cadeia da Polimerase , Idoso de 80 Anos ou mais , Taxa de Mutação , Fatores Sexuais
8.
JCO Precis Oncol ; 8: e2300721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38848521

RESUMO

PURPOSE: Patients with metastatic ROS1 fusion-positive non-small cell lung cancer (NSCLC) are effectively treated with entrectinib, a multikinase inhibitor. Whether serial targeted gene panel sequencing of cell-free DNA (cfDNA) can identify response and progression along with mechanisms of acquired resistance to entrectinib is underexplored. METHODS: In patients with ROS1 fusion-positive NSCLC, coclinical trial plasma samples were collected before treatment, after two cycles, and after progression on entrectinib (global phase II clinical trial, ClinicalTrials.gov identifier: NCT02568267). Samples underwent cfDNA analysis using MSK-ACCESS. Variant allele frequencies of detectable alterations were correlated with objective response per RECIST v1.1 criteria. RESULTS: Twelve patients were included, with best response as partial response (n = 9, 75%), stable disease (n = 2, 17%), and progressive disease (PD; n = 1, 8%). A ROS1 fusion was variably detected in cfDNA; however, patients without a ROS1 fusion in cfDNA had no other somatic alterations detected, indicative of possible low cfDNA shedding. Clearance of the enrolling ROS1 fusion or concurrent non-ROS1 alterations (TP53, CDH1, NF1, or ARID1A mutations) was observed in response to entrectinib therapy. Radiologic PD was accompanied by redemonstration of a ROS1 fusion or non-ROS1 alterations. On-target resistance was rare; only one patient acquired ROS1 G2032R at the time of progression. Several patients acquired new off-target likely oncogenic alterations, including a truncating alteration in NF1. CONCLUSION: Serial cfDNA monitoring may complement radiographic assessments as determinants of response and resistance to entrectinib in ROS1 fusion-positive lung cancers in addition to detecting putative resistance mechanisms on progression.


Assuntos
Benzamidas , Carcinoma Pulmonar de Células não Pequenas , Indazóis , Neoplasias Pulmonares , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Indazóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Proteínas Proto-Oncogênicas/genética , Feminino , Pessoa de Meia-Idade , Benzamidas/uso terapêutico , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/antagonistas & inibidores , Idoso , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Adulto , Proteínas de Fusão Oncogênica/genética , Análise de Sequência de DNA/métodos
10.
J Gene Med ; 26(6): e3694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847309

RESUMO

BACKGROUND: Immune checkpoint blockade has emerged as a key strategy to the therapy landscape of non-small cell lung cancer (NSCLC). However, notable differences in immunotherapeutic outcomes exist between the two primary NSCLC subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This disparity may stem from the tumor immune microenvironment's heterogeneity at the transcriptome level. METHODS: By integrative analysis of transcriptomic characterization of 38 NSCLC patients by single-cell RNA sequencing, the present study revealed a distinct tumor microenvironment (TME) between LUAD and LUSC, with relevant results further confirmed in bulk transcriptomic and multiplex immunofluorescence (mIF) validation cohort of neoadjuvant immunotherapy patients. RESULTS: LUAD exhibited a more active immune microenvironment compared to LUSC. This included highly expression of HLA I/II in cancer cells, reinforced antigen presentation potential of dendritic cells and enhanced cytotoxic activity observed in T/NK cells. In LUSC, cancer cells highly expressed genes belonging to the aldo-keto reductases, glutathione S-transferases and aldehyde dehydrogenase family, negatively correlating with immunotherapy outcomes in the validation cohort of our center. Further analysis revealed elevated infiltrated cancer-associated fibroblasts (CAFs) in LUSC, which was corroborated in The Cancer Genome Atlas cohort. Corresponding increased infiltration of ADH1B+ CAFs in major pathologic response (MPR) patients and the higher presence of FAP+ CAFs in non-MPR patients were demonstrated by multiplex mIF. Moreover, upregulating immunosuppressive extracellular matrix remodeling was identified in LUSC. CONCLUSIONS: These comprehensive analyses advance the understanding of the differences in TME between LUAD and LUSC, offering insights for patient selection and developing subtype-specific treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Neoplasias Pulmonares , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Perfilação da Expressão Gênica , Masculino , Feminino , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pessoa de Meia-Idade , Idoso
11.
Sci Rep ; 14(1): 13069, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844820

RESUMO

Insertion mutations in exon 20 of the epidermal growth factor receptor gene (EGFR exon20ins) are rare, heterogeneous alterations observed in non-small cell lung cancer (NSCLC). With a few exceptions, they are associated with primary resistance to established EGFR tyrosine kinase inhibitors (TKIs). As patients carrying EGFR exon20ins may be eligible for treatment with novel therapeutics-the bispecific antibody amivantamab, the TKI mobocertinib, or potential future innovations-they need to be identified reliably in clinical practice for which quality-based routine genetic testing is crucial. Spearheaded by the German Quality Assurance Initiative Pathology two international proficiency tests were run, assessing the performance of 104 participating institutes detecting EGFR exon20ins in tissue and/or plasma samples. EGFR exon20ins were most reliably identified using next-generation sequencing (NGS). Interestingly, success rates of institutes using commercially available mutation-/allele-specific quantitative (q)PCR were below 30% for tissue samples and 0% for plasma samples. Most of these mutation-/allele-specific (q)PCR assays are not designed to detect the whole spectrum of EGFR exon20ins mutations leading to false negative results. These data suggest that NGS is a suitable method to detect EGFR exon20ins in various types of patient samples and is superior to the detection spectrum of commercially available assays.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias Pulmonares , Humanos , Receptores ErbB/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Ensaio de Proficiência Laboratorial , Anticorpos Biespecíficos/uso terapêutico , Mutagênese Insercional , Inibidores de Proteínas Quinases/uso terapêutico
12.
Mol Biol Rep ; 51(1): 703, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822881

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the leading cause of cancer morbidity and mortality worldwide, and new diagnostic markers are urgently needed. We aimed to investigate the mechanism by which hsa_circ_0096157 regulates autophagy and cisplatin (DDP) resistance in NSCLC. METHODS: A549 cells were treated with DDP (0 µg/mL or 3 µg/mL). Then, the autophagy activator rapamycin (200 nm) was applied to the A549/DDP cells. Moreover, hsa_circ_0096157 and Nrf2 were knocked down, and Nrf2 was overexpressed in A549/DDP cells. The expression of Hsa_circ_0096157, the Nrf2/ARE pathway-related factors Nrf2, HO-1, and NQO1, and the autophagy-related factors LC3, Beclin-1, and p62 was evaluated by qRT‒PCR or western blotting. Autophagosomes were detected through TEM. An MTS assay was utilized to measure cell proliferation. The associated miRNA levels were also tested by qRT‒PCR. RESULTS: DDP (3 µg/mL) promoted hsa_circ_0096157, LC3 II/I, and Beclin-1 expression and decreased p62 expression. Knocking down hsa_circ_0096157 resulted in the downregulation of LC3 II/I and Beclin-1 expression, upregulation of p62 expression, and decreased proliferation. Rapamycin reversed the effect of interfering with hsa_circ_0096157. Keap1 expression was lower, and Nrf2, HO-1, and NQO1 expression was greater in the A549/DDP group than in the A549 group. HO-1 expression was repressed after Nrf2 interference. In addition, activation of the Nrf2/ARE pathway promoted autophagy in A549/DDP cells. Moreover, hsa_circ_0096157 activated the Nrf2/ARE pathway. The silencing of hsa_circ_0096157 reduced Nrf2 expression by releasing miR-142-5p or miR-548n. Finally, we found that hsa_circ_0096157 promoted A549/DDP cell autophagy by activating the Nrf2/ARE pathway. CONCLUSION: Knockdown of hsa_circ_0096157 inhibits autophagy and DDP resistance in NSCLC cells by downregulating the Nrf2/ARE signaling pathway.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Cisplatino/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células A549 , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Linhagem Celular Tumoral , Elementos de Resposta Antioxidante/genética , Antineoplásicos/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo
13.
Cancer Med ; 13(11): e7283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826095

RESUMO

BACKGROUND: Lung cancer remains the foremost reason of cancer-related mortality, with invasion and metastasis profoundly influencing patient prognosis. N-acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)-acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non-small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. METHODS: We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT-PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK-8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient-derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. RESULTS: Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E-cadherin level whereas decreased N-cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Acetiltransferase N-Terminal E , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animais , Camundongos , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal E/genética , Masculino , Feminino , Progressão da Doença , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Pessoa de Meia-Idade , Acetiltransferases N-Terminal
14.
J Manag Care Spec Pharm ; 30(6): 581-587, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824630

RESUMO

BACKGROUND: Larotrectinib is approved for patients with advanced NTRK gene fusion-positive solid tumors. Prior studies demonstrated promising results with larotrectinib compared with other systemic therapy. However, comparisons to checkpoint inhibitors, such as nivolumab or pembrolizumab, have not been done. OBJECTIVE: To estimate and compare expected life-years (LYs) and quality-adjusted LYs (QALYs) for patients with nonsmall cell lung cancer (NSCLC) eligible for larotrectinib vs patients with unknown NTRK gene fusion status on nivolumab or pembrolizumab. We also assessed patients with metastatic differentiated thyroid cancer (DTC), as pembrolizumab may be considered in certain circumstances. METHODS: We developed partitioned survival models to project long-term comparative effectiveness of larotrectinib vs nivolumab or pembrolizumab. Larotrectinib survival data were derived from an updated July 2021 analysis of 21 adult patients (≥18 years of age) with metastatic NTRK gene fusion-positive NSCLC and 21 with DTC. Survival inputs for nivolumab and pembrolizumab were obtained from published articles. Progression-free and overall survival were estimated using survival distributions (Exponential, Weibull, Log-logistic, and Log-normal). Exponential fits were chosen based on goodness-of-fit and clinical plausibility. RESULTS: In NSCLC, larotrectinib resulted in gains of 5.87 and 5.91 LYs compared to nivolumab and pembrolizumab, respectively, which translated to gains of 3.53 and 3.56 QALYs. In DTC, larotrectinib resulted in a gain of 5.23 LYs and 4.24 QALYs compared to pembrolizumab. CONCLUSIONS: In metastatic NSCLC and DTC, larotrectinib may produce substantial life expectancy and QALY gains compared to immune checkpoint inhibitors. Additional data with longer follow-up will further inform this comparison.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Nivolumabe , Pirazóis , Pirimidinas , Anos de Vida Ajustados por Qualidade de Vida , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Nivolumabe/uso terapêutico , Pirimidinas/uso terapêutico , Pirazóis/uso terapêutico , Masculino , Feminino , Anticorpos Monoclonais Humanizados/uso terapêutico , Pessoa de Meia-Idade , Adulto , Idoso , Resultado do Tratamento
15.
Cell Biol Toxicol ; 40(1): 45, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864940

RESUMO

MALT1 has been implicated as an upstream regulator of NF-κB signaling in immune cells and tumors. This study determined the regulatory mechanisms and biological functions of MALT1 in non-small cell lung cancer (NSCLC). In cell culture and orthotopic xenograft models, MALT1 suppression via gene expression interference or protein activity inhibition significantly impaired malignant phenotypes and enhanced radiation sensitivity of NSCLC cells. CSN5, the core subunit of COP9 signalosome, was firstly verified to stabilize MALT1 via disturbing the interaction with E3 ligase FBXO3. Loss of FBXO3 in NSCLC cells reduced MALT1 ubiquitination and promoted its accumulation, which was reversed by CSN5 interference. An association between CSN5/FBXO3/MALT1 regulatory axis and poor prognosis in NSCLC patients was identified. Our findings revealed the detail mechanism of continuous MALT1 activation in NF-κB signaling, highlighting its significance as predictor and potential therapeutic target in NSCLC.


Assuntos
Complexo do Signalossomo COP9 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , NF-kappa B , Transdução de Sinais , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Complexo do Signalossomo COP9/metabolismo , Complexo do Signalossomo COP9/genética , NF-kappa B/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Nus , Ubiquitinação , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Progressão da Doença , Camundongos Endogâmicos BALB C , Feminino , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Peptídeos e Proteínas de Sinalização Intracelular
16.
Sci Rep ; 14(1): 13542, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866824

RESUMO

Non-small cell lung cancer (NSCLC) has constituted over 80% of the lung cancer population with a poor prognosis. Over the past decade, immunotherapy has been constructed in the enlargement of immune checkpoint inhibitors as a promising approach for NSCLC treatment. Evading the immune system using the PD-1/PD-L1 axis is an intelligent way for cancers, and T cells cannot respond fully and confront cancer. Recently, the miR-138 was reported as a PD-L1 regulator in NSCLC. However, its inhibitory impact on T-cell exhaustion has not been characterized. The present study aims to impair PD-L1 (B7-H1) expression in Adenocarcinoma cell lines using miR-138-5p and determines how it prevents Jurak cell exhaustion. To gain the purpose, first, 18 highly significant dysregulated miRNAs containing hsa-miR-138 and CD274-mRNA network were detected in NSCLC based on bioinformatics analysis. Moreover, our study revealed a high level of miR-138-5p could make significant changes like PDL1 downregulation, proliferation, and mortality rate in A549/Calu6 cells. We also simulate cancer environmental conditions by culturing Jurak cells and NSCLC cell lines under the influence of stimulator cytokines to show how miR-138-5p survives Jurak cells by targeting PD-L1/PD-1pathway.


Assuntos
Antígeno B7-H1 , Carcinoma Pulmonar de Células não Pequenas , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células Jurkat , Células A549 , Sobrevivência Celular , Proliferação de Células , Linhagem Celular Tumoral
17.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38870055

RESUMO

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proliferação de Células , Progressão da Doença , Neoplasias Pulmonares , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuínas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
18.
J Immunother Cancer ; 12(6)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38857914

RESUMO

BACKGROUND: Despite the impressive outcomes with immune checkpoint inhibitor (ICI) in non-small cell lung cancer (NSCLC), only a minority of the patients show long-term benefits from ICI. In this study, we used retrospective cohorts of ICI treated patients with NSCLC to discover and validate spatially resolved protein markers associated with resistance to programmed cell death protein-1 (PD-1) axis inhibition. METHODS: Pretreatment samples from 56 patients with NSCLC treated with ICI were collected and analyzed in a tissue microarray (TMA) format in including four different tumor regions per patient using the GeoMx platform for spatially informed transcriptomics. 34 patients had assessable tissue with tumor compartment in all 4 TMA spots, 22 with leukocyte compartment and 12 with CD68 compartment. The patients' tissue that was not assessable in fourfold redundancy in each compartment was designated as the validation cohort; cytokeratin (CK) (N=22), leukocytes CD45 (N=31), macrophages, CD68 (N=43). The human whole transcriptome, represented by~18,000 individual genes assessed by oligonucleotide-tagged in situ hybridization, was sequenced on the NovaSeq platform to quantify the RNAs present in each region of interest. RESULTS: 54,000 gene variables were generated per case, from them 25,740 were analyzed after removing targets with expression lower than a prespecified frequency. Cox proportional-hazards model analysis was performed for overall and progression-free survival (OS, PFS, respectively). After identifying genes significantly associated with limited survival benefit (HR>1)/progression per spot per patient, we used the intersection of them across the four TMA spots per patient. This resulted in a list of 12 genes in the tumor-cell compartment (RPL13A, GNL3, FAM83A, CYBA, ACSL4, SLC25A6, EPAS1, RPL5, APOL1, HSPD1, RPS4Y1, ADI1). RPL13A, GNL3 in tumor-cell compartment were also significantly associated with OS and PFS, respectively, in the validation cohort (CK: HR, 2.48; p=0.02 and HR, 5.33; p=0.04). In CD45 compartment, secreted frizzled-related protein 2, was associated with OS in the discovery cohort but not in the validation cohort. Similarly, in the CD68 compartment ARHGAP and PNN interacting serine and arginine rich protein were significantly associated with PFS and OS, respectively, in the majority but not all four spots per patient. CONCLUSION: This work highlights RPL13A and GNL3 as potential indicative biomarkers of resistance to PD-1 axis blockade that might help to improve precision immunotherapy strategies for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Perfilação da Expressão Gênica , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Feminino , Imunoterapia/métodos , Pessoa de Meia-Idade , Resistencia a Medicamentos Antineoplásicos/genética , Idoso , Estudos Retrospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Biomarcadores Tumorais/genética
19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 841-850, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862441

RESUMO

OBJECTIVE: To explore the molecular mechanism by which FEZF1-AS1 overexpression promotes progression of nonsmall cell lung cancer (NSCLC) via the miR-130a-5p/CCND1 axis. METHODS: TCGA database was used to analyze FEZF1-AS1 expression levels in NSCLC. FEZF1-AS1 expression was detected by qRT-PCR in clinical specimens of NSCLC tissues and NSCLC cell lines, and its correlation with clinical features of the patients were analyzed. The binding sites of FEZF1-AS1 with hsa-miR-130a-5p and those of hsa-miR-130a-5p with CCND1 were predicted. CCK8 assay, clone formation assay, scratch assay, and Transwell assay were employed to examine the effects of FEZF1-AS1 knockdown and hsa-miR-130a-5p inhibitor on proliferation, invasion, and migration abilities of lung cancer cell lines. Dual luciferase assay was used to verify the binding of FEZF1-AS1 with hsa-miR-130a-5p and the binding of hsa-miR-130a-5p with CCND1. Western blotting was performed to detect the changes in CCND1 protein expression level in H1299 and H358 cells following FEZF1-AS1 knockdown and treatment with hsa-miR-130a-5p inhibitor. RESULTS: FEZF1-AS1 was highly expressed in NSCLC tissues in close correlation with lymph node metastasis and also in H1299 and H358 cell lines (all P < 0.05). FEZF1-AS1 knockdown obviously reduced proliferation, migration, and invasion abilities of NSCLC cells (P < 0.05). Dual luciferase assay confirmed the binding of hsa-miR-130a-5p with FEZF1-AS1 and CCND1 (P < 0.05), and hsa-miR-130a-5p inhibitor significantly inhibited proliferation, migration, and invasion of NSCLC cells (P < 0.05). FEZF1-AS1 knockdown significantly reduced CCND1 protein expression in NSCLC cells, and this effect was strongly inhibited by treatment with hsa-miR-130a-5p inhibitor (P < 0.05). CONCLUSION: FEZF1-AS1 is highly expressed in NSCLC tissue in close correlation with lymph node metastasis to promote cancer progression through the miR-130a-5p/CCND1 axis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Ciclina D1 , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclina D1/metabolismo , Ciclina D1/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras
20.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 42-47, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836682

RESUMO

This study aimed to explore the mechanism of action of LINC01133 in non-small cell lung cancer. LINC01133 expression in NSCLC patient tissues and cells was detected by qRT-PCR. After transfecting siRNA-LINC01133 in NSCLC cells, the proliferation and invasive migration ability of the cells were assessed via CCK-8 and Transwell assay, respectively. The sublocalization of LINC01133 in NSCLC cells was analyzed by bioinformatics prediction and nucleoplasm separation assay and RNA-FISH assay. Analysis of the binding relationship between LINC01133, FOXA1 and miR-30b-5p was all through bioinformatics website analysis, dual-luciferase reporter and RNA Pulldown assay. Functional rescue experiments confirmed the character of miR-30b-5p and FOXA1 in LINC01133 regulating the NSCLC cells biological behavior. LINC01133 high expressions were found in NSCLC tissues and cells. siRNA-LINC01133 treatment inhibited NSCLC cells malignant behavior. Mechanistically: LINC01133 promoted FOXA1 expression through adsorption binding of miR-30b-5p. Knocking down miR-30b-5p expression or up-regulating FOXA1 expression was able to reverse siRNA-LINC01133 inhibitory effect of tumor cell malignant behavior. LINC01133 promoted FOX1 expression by competitively binding miR-30b-5p, which attenuated the targeting inhibitory effect of miR-30b-5p on FOXA1 and ultimately promoted proliferation and invasive migration of NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Fenótipo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...