Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.838
Filtrar
2.
Exp Dermatol ; 33(6): e15112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840385

RESUMO

Cutaneous squamous cell carcinoma (cSCC) ranks as the second most prevalent skin tumour (excluding melanoma). However, the molecular mechanisms driving cSCC progression remain elusive. This study aimed to investigate GBP1 expression in cSCC and elucidate its potential molecular mechanisms underlying cSCC development. GBP1 expression was assessed across public databases, cell lines and tissue samples. Various assays, including clone formation, CCK8 and EdU were employed to evaluate cell proliferation, while wound healing and transwell assays determined cell migration and invasion. Subcutaneous tumour assays were conducted to assess in vivo tumour proliferation, and molecular mechanisms were explored through western blotting, immunofluorescence and immunoprecipitation. Results identified GBP1 as an oncogene in cSCC, with elevated expression in both tumour tissues and cells, strongly correlating with tumour stage and grade. In vitro and in vivo investigations revealed that increased GBP1 expression significantly enhanced cSCC cell proliferation, migration and invasion. Mechanistically, GBP1 interaction with SP1 promoted STAT3 activation, contributing to malignant behaviours. In conclusion, the study highlights the crucial role of the GBP1/SP1/STAT3 signalling axis in regulating tumour progression in cSCC. These findings provide valuable insights into the molecular mechanisms of cSCC development and offer potential therapeutic targets for interventions against cSCC.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Proliferação de Células , Proteínas de Ligação ao GTP , Invasividade Neoplásica , Fator de Transcrição STAT3 , Neoplasias Cutâneas , Fator de Transcrição Sp1 , Fator de Transcrição STAT3/metabolismo , Humanos , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Fator de Transcrição Sp1/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Linhagem Celular Tumoral , Animais , Camundongos , Transdução de Sinais , Feminino , Camundongos Nus
3.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 78-84, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836678

RESUMO

Macrophages in the tumor microenvironment can polarize into M1 or M2 forms, with M2 macrophages (M2φ) promoting tumor growth and metastasis in cervical squamous cell carcinoma (CESC). This study explored the effects of M2φ on CESC metabolic reprogramming both in vitro and in vivo. Results showed that M2φ secreted CXCL1, which significantly increased CESC migration and metabolic regulation. Further experiments revealed that CXCL1 upregulated KDM6B to enhance PFKFB2 transcriptional activity, thus regulating CESC glucose metabolism. Transcriptome sequencing screened 5 upregulated genes related to glycolysis, with PFKFB2 showing the most significant increase in cells treated with rCXCL1. Dual-luciferase reporter assay confirmed that rCXCL1 enhances PFKFB2 transcriptional activity. Bioinformatics analysis revealed a high correlation between expressions of KDM6B and PFKFB2 in CESC. Mechanistic experiments demonstrated that KDM6B inhibited H3K27me3 modification to activate PFKFB2 transcriptional expression. In conclusion, M2φ secreted CXCL1 to promote CESC cell migration and invasion, and CXCL1 activated KDM6B expression in CESC cells, inhibiting H3K27 protein methylation modification, and enhanced PFKFB2 transcriptional activity to regulate CESC glucose metabolism. These results provided new insights into the complex interplay between the immune system and cancer metabolism, which may have broader implications for understanding and treating other types of cancer.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Quimiocina CXCL1 , Regulação Neoplásica da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji , Macrófagos , Fosfofrutoquinase-2 , Neoplasias do Colo do Útero , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Humanos , Feminino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Macrófagos/metabolismo , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Movimento Celular/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Linhagem Celular Tumoral , Camundongos , Microambiente Tumoral/genética , Glucose/metabolismo , Camundongos Nus , Glicólise/genética , Reprogramação Metabólica
4.
J Cancer Res Clin Oncol ; 150(6): 295, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844723

RESUMO

BACKGROUND: The DIAPH2 gene is one of the genes commonly associated with laryngeal squamous cell carcinoma (LSCC). In our study, we considered the four polymorphisms of this gene, i.e. rs5920828, rs4322175, rs12851931 and rs5921830 as potential genetic risk factors for LSCC. METHODS: We determined the genotyping of the genetic variants of DIAPH2 in 230 male patients with histologically confirmed LSCC compared to the European population. Demographic and environmental exposure data of each subject were examined. To conduct the genetic tests, extraction of total DNA was performed. We genotyped all four variants in each patient and determined their frequencies. RESULTS: In the case of the rs12851931 polymorphism in the DIAPH2 gene, a significant difference was observed in the distribution of the T stage depending on the polymorphism. Heterozygotes were more often associated with T2 stage, while homozygotes were more likely to have higher tumor stages. The rs12851931 homozygotes of DIAPH2 were statistically significantly more prevalent in smokers. The results suggested that rs12851931 polymorphism in DIAPH2 could increase the onset risk of LSCC. CONCLUSIONS: Our results provide further information on the role of the DIAPH2 gene in the pathogenesis of LSCC.


Assuntos
Forminas , Predisposição Genética para Doença , Neoplasias Laríngeas , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/epidemiologia , Neoplasias Laríngeas/patologia , Pessoa de Meia-Idade , Forminas/genética , Idoso , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Fatores de Risco , Genótipo , Adulto
5.
Sci Rep ; 14(1): 13058, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844774

RESUMO

The incidence of vulvar carcinoma varies by race; however, it is a rare disease, and its genomic profiles remain largely unknown. This study examined the characteristics of vulvar squamous cell carcinoma (VSCC) in Japanese patients, focusing on genomic profiles and potential racial disparities. The study included two Japanese groups: the National Cancer Center Hospital (NCCH) group comprised 19 patients diagnosed between 2015 and 2023, and the Center for Cancer Genomics and Advanced Therapeutics group comprised 29 patients diagnosed between 2019 and 2022. Somatic mutations were identified by targeted or panel sequencing, and TP53 was identified as the most common mutation (52-81%), followed by HRAS (7-26%), CDKN2A (21-24%), and PIK3CA (5-10%). The mutation frequencies, except for TP53, were similar to those of Caucasian cohorts. In the NCCH group, 16 patients of HPV-independent tumors were identified by immunohistochemistry and genotyping. Univariate analysis revealed that TP53-mutated patients were associated with a poor prognosis (log-rank test, P = 0.089). Japanese VSCC mutations resembled those of Caucasian vulvar carcinomas, and TP53 mutations predicted prognosis regardless of ethnicity. The present findings suggest potential molecular-targeted therapies for select VSCC patients.


Assuntos
Carcinoma de Células Escamosas , Mutação , Proteína Supressora de Tumor p53 , Neoplasias Vulvares , Humanos , Feminino , Neoplasias Vulvares/genética , Neoplasias Vulvares/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Pessoa de Meia-Idade , Idoso , Proteína Supressora de Tumor p53/genética , Japão/epidemiologia , Idoso de 80 Anos ou mais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Prognóstico , Adulto , Povo Asiático/genética , Genômica/métodos , Proteínas Proto-Oncogênicas p21(ras)/genética , População do Leste Asiático
6.
Sci Rep ; 14(1): 12732, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831004

RESUMO

Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.


Assuntos
Neoplasias Pulmonares , Mutação , Seleção Genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Mutação de Sentido Incorreto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia
7.
J Gene Med ; 26(6): e3694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847309

RESUMO

BACKGROUND: Immune checkpoint blockade has emerged as a key strategy to the therapy landscape of non-small cell lung cancer (NSCLC). However, notable differences in immunotherapeutic outcomes exist between the two primary NSCLC subtypes: lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). This disparity may stem from the tumor immune microenvironment's heterogeneity at the transcriptome level. METHODS: By integrative analysis of transcriptomic characterization of 38 NSCLC patients by single-cell RNA sequencing, the present study revealed a distinct tumor microenvironment (TME) between LUAD and LUSC, with relevant results further confirmed in bulk transcriptomic and multiplex immunofluorescence (mIF) validation cohort of neoadjuvant immunotherapy patients. RESULTS: LUAD exhibited a more active immune microenvironment compared to LUSC. This included highly expression of HLA I/II in cancer cells, reinforced antigen presentation potential of dendritic cells and enhanced cytotoxic activity observed in T/NK cells. In LUSC, cancer cells highly expressed genes belonging to the aldo-keto reductases, glutathione S-transferases and aldehyde dehydrogenase family, negatively correlating with immunotherapy outcomes in the validation cohort of our center. Further analysis revealed elevated infiltrated cancer-associated fibroblasts (CAFs) in LUSC, which was corroborated in The Cancer Genome Atlas cohort. Corresponding increased infiltration of ADH1B+ CAFs in major pathologic response (MPR) patients and the higher presence of FAP+ CAFs in non-MPR patients were demonstrated by multiplex mIF. Moreover, upregulating immunosuppressive extracellular matrix remodeling was identified in LUSC. CONCLUSIONS: These comprehensive analyses advance the understanding of the differences in TME between LUAD and LUSC, offering insights for patient selection and developing subtype-specific treatment strategies.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica , Imunoterapia , Neoplasias Pulmonares , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Imunoterapia/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/terapia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/patologia , Perfilação da Expressão Gênica , Masculino , Feminino , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Pessoa de Meia-Idade , Idoso
9.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725862

RESUMO

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Mitocôndrias , Piroptose , Espécies Reativas de Oxigênio , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Animais , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Camundongos Nus , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Membranas Mitocondriais/metabolismo , Proliferação de Células
10.
Medicine (Baltimore) ; 103(19): e38116, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728474

RESUMO

RNA editing, as an epigenetic mechanism, exhibits a strong correlation with the occurrence and development of cancers. Nevertheless, few studies have been conducted to investigate the impact of RNA editing on cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). In order to study the connection between RNA editing and CESC patients' prognoses, we obtained CESC-related information from The Cancer Genome Atlas (TCGA) database and randomly allocated the patients into the training group or testing group. An RNA editing-based risk model for CESC patients was established by Cox regression analysis and least absolute shrinkage and selection operator (LASSO). According to the median score generated by this RNA editing-based risk model, patients were categorized into subgroups with high and low risks. We further constructed the nomogram by risk scores and clinical characteristics and analyzed the impact of RNA editing levels on host gene expression levels and adenosine deaminase acting on RNA. Finally, we also compared the biological functions and pathways of differentially expressed genes (DEGs) between different subgroups by enrichment analysis. In this risk model, we screened out 6 RNA editing sites with significant prognostic value. The constructed nomogram performed well in forecasting patients' prognoses. Furthermore, the level of RNA editing at the prognostic site exhibited a strong correlation with host gene expression. In the high-risk subgroup, we observed multiple biological functions and pathways associated with immune response, cell proliferation, and tumor progression. This study establishes an RNA editing-based risk model that helps forecast patients' prognoses and offers a new understanding of the underlying mechanism of RNA editing in CESC.


Assuntos
Nomogramas , Edição de RNA , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Feminino , Edição de RNA/genética , Prognóstico , Medição de Risco/métodos , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/genética , Adenocarcinoma/genética , Adenosina Desaminase/genética
12.
Rev Invest Clin ; 76(2): 116-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38740381

RESUMO

UNASSIGNED: Background: Since to the prognosis of lung squamous cell carcinoma is generally poor, there is an urgent need to innovate new prognostic biomarkers and therapeutic targets to improve patient outcomes. Objectives: Our goal was to develop a novel multi-gene prognostic model linked to neutrophils for predicting lung squamous cell carcinoma prognosis. Methods: We utilized messenger RNA expression profiles and relevant clinical data of lung squamous cell carcinoma patients from the Cancer Genome Atlas database. Through K-means clustering, least absolute shrinkage and selection operator regression, and univariate/multivariate Cox regression analyses, we identified 12 neutrophil-related genes strongly related to patient survival and constructed a prognostic model. We verified the stability of the model in the Cancer Genome Atlas database and gene expression omnibus validation set, demonstrating the robust predictive performance of the model. Results: Immunoinfiltration analysis revealed remarkably elevated levels of infiltration for natural killer cells resting and monocytes in the high-risk group compared to the low-risk group, while macrophages had considerably lower infiltration in the high risk group. Most immune checkpoint genes, including programmed cell death protein 1 and cytotoxic T-lymphocyte-associated antigen 4, exhibited high expression levels in the high risk group. Tumor immune dysfunction and exclusion scores and immunophenoscore results suggested a potential inclination toward immunotherapy in the "RIC" version V2 revised high risk group. Moreover, prediction results from the CellMiner database revealed great correlations between drug sensitivity (e.g., Vinorelbine and PKI-587) and prognostic genes. Conclusion: Overall, our study established a reliable prognostic risk model that possessed significant value in predicting the overall survival of lung squamous cell carcinoma patients and may guide personalized treatment strategies. (Rev Invest Clin. 2024;76(2):116-31).


Assuntos
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Neutrófilos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Prognóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico , Masculino , Feminino , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Idoso , Regulação Neoplásica da Expressão Gênica , RNA Mensageiro/genética
13.
Am J Pathol ; 194(6): 1106-1125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749608

RESUMO

Zinc finger protein 471 (ZNF471) is a member of the Krüppel-related domain zinc finger protein family, and has recently attracted attention because of its anti-cancer effects. N-glycosylation regulates expression and functions of the protein. This study aimed to investigate the effects of ZNF471 N-glycosylation on the proliferation, invasion, and docetaxel sensitivity of tongue squamous cell carcinoma (TSCC). It analyzed the expression, function, and prognostic significance of ZNF471 in TSCC using bioinformatics techniques such as gene differential expression analysis, univariate Cox regression analysis, functional enrichment analysis, and gene set enrichment analysis. Using site-specific mutagenesis, this study generated three mutant sites for ZNF471 N-glycosylation to determine the effect of N-glycosylation on ZNF471 protein levels and function. Quantitative real-time PCR, Western blot analysis, and immunohistochemistry tests confirmed the down-regulation of ZNF471 expression in TSCC. Low expression of ZNF471 is associated with poor prognosis of patients with TSCC. Overexpression of ZNF471 in vitro retarded the proliferation of TSCC cells and suppressed cell invasion and migration ability. Asparagine 358 was identified as a N-glycosylation site of ZNF471. Suppressing N-glycosylation of ZNF471 enhanced the protein stability and promoted the translocation of protein to the cell nucleus. ZNF471 binding to c-Myc gene promoter suppressed oncogene c-Myc expression, thereby playing the anti-cancer effect and enhancing TSCC sensitivity to docetaxel. In all, N-glycosylation of ZNF471 affects the proliferation, invasion, and docetaxel sensitivity of TSCC via regulation of c-Myc.


Assuntos
Proliferação de Células , Docetaxel , Invasividade Neoplásica , Proteínas Proto-Oncogênicas c-myc , Neoplasias da Língua , Docetaxel/farmacologia , Humanos , Neoplasias da Língua/patologia , Neoplasias da Língua/metabolismo , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Proliferação de Células/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Prognóstico , Feminino , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Movimento Celular/efeitos dos fármacos , Masculino
14.
J Pak Med Assoc ; 74(4): 762-768, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38751274

RESUMO

Cancer of the oral cavity has numerous types and, among all, oral squamous cell carcinoma represents >90% of all cancers of the oral area. Oral squamous cell carcinoma arises from the squamous lining of the oral cavity. Across the globe, most commonly it develops in the regions of tongue followed by floor of the mouth, and lower lip. Neurogenic locus notch homolog protein 1 gene has its association with oral squamous cell carcinoma and is known to be associated with both oncogenic and tumour suppressor roles. The current narrative review comprised literature published from 2013 to 2023. It was searched on Google Scholar, PubMed and Google databases. Globally, neurogenic locus notch homolog protein 1 mutations are associated with the development of oral squamous cell carcinoma. Most of the mutations are linked to ligand bind epidermal growth factor-like repeat region of extracellular domain of neurogenic locus notch homolog protein 1. Once activated, the pathway is involved in tumour progression and metastasis. The Asians compared to Caucasians are more affected by neurogenic locus notch homolog protein 1 mutations.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Mutação , Receptor Notch1 , Humanos , Receptor Notch1/genética , Neoplasias Bucais/genética , Carcinoma de Células Escamosas/genética
15.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702644

RESUMO

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Assuntos
Carcinoma de Células Escamosas , Proliferação de Células , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Feminino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Camundongos , Fosforilação , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Ensaios Antitumorais Modelo de Xenoenxerto , Sistema de Sinalização das MAP Quinases , Camundongos Nus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
16.
Commun Biol ; 7(1): 567, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745046

RESUMO

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Assuntos
Carcinoma de Células Escamosas , Movimento Celular , Mitocôndrias , Neoplasias Bucais , Receptores de Prostaglandina E Subtipo EP4 , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Mitocôndrias/metabolismo , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/genética , Animais , Camundongos , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
17.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748808

RESUMO

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Assuntos
Carcinoma de Células Escamosas , Matriz Extracelular , Hidrogéis , Organoides , Neoplasias do Colo do Útero , Humanos , Feminino , Organoides/metabolismo , Organoides/patologia , Organoides/efeitos dos fármacos , Matriz Extracelular/metabolismo , Hidrogéis/química , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética , Colo do Útero/patologia , Colo do Útero/metabolismo , Microambiente Tumoral , Transdução de Sinais , Animais , Proteômica/métodos , Camundongos
18.
Nat Commun ; 15(1): 4124, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750026

RESUMO

Basal progenitor cells are crucial for maintaining foregut (the esophagus and forestomach) homeostasis. When their function is dysregulated, it can promote inflammation and tumorigenesis. However, the mechanisms underlying these processes remain largely unclear. Here, we employ genetic mouse models to reveal that Jag1/2 regulate esophageal homeostasis and foregut tumorigenesis by modulating the function of basal progenitor cells. Deletion of Jag1/2 in mice disrupts esophageal and forestomach epithelial homeostasis. Mechanistically, Jag1/2 deficiency impairs activation of Notch signaling, leading to reduced squamous epithelial differentiation and expansion of basal progenitor cells. Moreover, Jag1/2 deficiency exacerbates the deoxycholic acid (DCA)-induced squamous epithelial injury and accelerates the initiation of squamous cell carcinoma (SCC) in the forestomach. Importantly, expression levels of JAG1/2 are lower in the early stages of human esophageal squamous cell carcinoma (ESCC) carcinogenesis. Collectively, our study demonstrates that Jag1/2 are important for maintaining esophageal and forestomach homeostasis and the onset of foregut SCC.


Assuntos
Carcinogênese , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esôfago , Homeostase , Proteína Jagged-1 , Proteína Jagged-2 , Células-Tronco , Animais , Proteína Jagged-1/metabolismo , Proteína Jagged-1/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Esôfago/patologia , Esôfago/metabolismo , Células-Tronco/metabolismo , Camundongos , Proteína Jagged-2/metabolismo , Proteína Jagged-2/genética , Humanos , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Camundongos Knockout , Transdução de Sinais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Receptores Notch/metabolismo , Receptores Notch/genética , Diferenciação Celular , Masculino , Feminino
19.
Mol Cancer ; 23(1): 104, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755637

RESUMO

BACKGROUND: The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS: The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS: We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3ß collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS: Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Animais , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Camundongos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Transdução de Sinais , Proliferação de Células
20.
Eur J Med Res ; 29(1): 293, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773551

RESUMO

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.


Assuntos
Apoptose , Artesunato , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Artesunato/farmacologia , Artesunato/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Animais , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Camundongos , Linhagem Celular Tumoral , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos Nus , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Dano ao DNA/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...