Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.708
Filtrar
1.
J Chem Phys ; 161(1)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38949588

RESUMO

Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.


Assuntos
Cardiolipinas , Corantes Fluorescentes , Lipossomas Unilamelares , Cardiolipinas/química , Corantes Fluorescentes/química , Lipossomas Unilamelares/química , Propriedades de Superfície , Lipossomos/química , Cloreto de Sódio/química , Tensoativos/química , Estrutura Molecular
2.
EMBO J ; 43(14): 2979-3008, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839991

RESUMO

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.


Assuntos
Cardiolipinas , Translocases Mitocondriais de ADP e ATP , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Cardiolipinas/metabolismo , Sítios de Ligação , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Humanos , Translocases Mitocondriais de ADP e ATP/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/química , Fosforilação Oxidativa , Translocador 1 do Nucleotídeo Adenina/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Mitocôndrias/metabolismo , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Mutação , Mutação de Sentido Incorreto
3.
Anal Chem ; 96(25): 10426-10433, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859611

RESUMO

Lipids are critical modulators of membrane protein structure and function. However, it is challenging to investigate the thermodynamics of protein-lipid interactions because lipids can simultaneously bind membrane proteins at different sites with different specificities. Here, we developed a native mass spectrometry (MS) approach using single and double mutants to measure the relative energetic contributions of specific residues on Aquaporin Z (AqpZ) toward cardiolipin (CL) binding. We first mutated potential lipid-binding residues on AqpZ, and mixed mutant and wild-type proteins together with CL. By using native MS to simultaneously resolve lipid binding to the mutant and wild-type proteins in a single spectrum, we directly determined the relative affinities of CL binding, thereby revealing the relative Gibbs free energy change for lipid binding caused by the mutation. Comparing different mutants revealed that W14 contributes to the tightest CL binding site, with R224 contributing to a lower affinity site. Using double mutant cycling, we investigated the synergy between W14 and R224 sites on CL binding. Overall, this novel native MS approach provides unique insights into the binding of lipids to specific sites on membrane proteins.


Assuntos
Aquaporinas , Cardiolipinas , Espectrometria de Massas , Mutação , Cardiolipinas/química , Cardiolipinas/metabolismo , Aquaporinas/química , Aquaporinas/metabolismo , Aquaporinas/genética , Sítios de Ligação , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Termodinâmica , Modelos Moleculares , Proteínas de Escherichia coli
4.
PLoS Genet ; 20(6): e1011335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913742

RESUMO

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.


Assuntos
Proteínas de Escherichia coli , Fosfolipídeos , Fosfolipídeos/metabolismo , Fosfolipídeos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte Biológico/genética , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Baixa , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo
5.
Biomed Pharmacother ; 176: 116936, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38878685

RESUMO

Myocardial reperfusion injury occurs when blood flow is restored after ischemia, an essential process to salvage ischemic tissue. However, this phenomenon is intricate, characterized by various harmful effects. Tissue damage in ischemia-reperfusion injury arises from various factors, including the production of reactive oxygen species, the sequestration of proinflammatory immune cells in ischemic tissues, the induction of endoplasmic reticulum stress, and the occurrence of postischemic capillary no-reflow. Secretory phospholipase A2 (sPLA2) plays a crucial role in the eicosanoid pathway by releasing free arachidonic acid from membrane phospholipids' sn-2 position. This liberated arachidonic acid serves as a substrate for various eicosanoid biosynthetic enzymes, including cyclooxygenases, lipoxygenases, and cytochromes P450, ultimately resulting in inflammation and an elevated risk of reperfusion injury. Therefore, the activation of sPLA2 directly correlates with the heightened and accelerated damage observed in myocardial ischemia-reperfusion injury (MIRI). Presently, clinical trials are in progress for medications aimed at sPLA2, presenting promising avenues for intervention. Cardiolipin (CL) plays a crucial role in maintaining mitochondrial function, and its alteration is closely linked to mitochondrial dysfunction observed in MIRI. This paper provides a critical analysis of CL modifications concerning mitochondrial dysfunction in MIRI, along with its associated molecular mechanisms. Additionally, it delves into various pharmacological approaches to prevent or alleviate MIRI, whether by directly targeting mitochondrial CL or through indirect means.


Assuntos
Cardiolipinas , Traumatismo por Reperfusão Miocárdica , Humanos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Animais , Cardiolipinas/metabolismo , Fosfolipases A2 Secretórias/metabolismo
6.
Sci Rep ; 14(1): 13655, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871974

RESUMO

Barth syndrome (BTHS) is a lethal rare genetic disorder, which results in cardiac dysfunction, severe skeletal muscle weakness, immune issues and growth delay. Mutations in the TAFAZZIN gene, which is responsible for the remodeling of the phospholipid cardiolipin (CL), lead to abnormalities in mitochondrial membrane, including alteration of mature CL acyl composition and the presence of monolysocardiolipin (MLCL). The dramatic increase in the MLCL/CL ratio is the hallmark of patients with BTHS, which is associated with mitochondrial bioenergetics dysfunction and altered membrane ultrastructure. There are currently no specific therapies for BTHS. Here, we showed that cardiac mitochondria isolated from TAFAZZIN knockdown (TazKD) mice presented abnormal ultrastructural membrane morphology, accumulation of vacuoles, pro-fission conditions and defective mitophagy. Interestingly, we found that in vivo treatment of TazKD mice with a CL-targeted small peptide (named SS-31) was able to restore mitochondrial morphology in tafazzin-deficient heart by affecting specific proteins involved in dynamic process and mitophagy. This agrees with our previous data showing an improvement in mitochondrial respiratory efficiency associated with increased supercomplex organization in TazKD mice under the same pharmacological treatment. Taken together our findings confirm the beneficial effect of SS-31 in the amelioration of tafazzin-deficient dysfunctional mitochondria in a BTHS animal model.


Assuntos
Aciltransferases , Síndrome de Barth , Cardiolipinas , Modelos Animais de Doenças , Mitocôndrias Cardíacas , Mitofagia , Animais , Síndrome de Barth/metabolismo , Síndrome de Barth/genética , Síndrome de Barth/patologia , Síndrome de Barth/tratamento farmacológico , Mitofagia/efeitos dos fármacos , Camundongos , Aciltransferases/metabolismo , Aciltransferases/genética , Cardiolipinas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Lisofosfolipídeos/metabolismo , Camundongos Knockout , Oligopeptídeos
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892409

RESUMO

Renal ischemia/reperfusion is a serious condition that not only causes acute kidney injury, a severe clinical syndrome with high mortality, but is also an inevitable part of kidney transplantation or other kidney surgeries. Alterations of oxygen levels during ischemia/reperfusion, namely hypoxia/reoxygenation, disrupt mitochondrial metabolism and induce structural changes that lead to cell death. A signature mitochondrial phospholipid, cardiolipin, with many vital roles in mitochondrial homeostasis, is one of the key players in hypoxia/reoxygenation-induced mitochondrial damage. In this study, we analyze the effect of hypoxia/reoxygenation on human renal proximal tubule epithelial cell (RPTEC) cardiolipins, as well as their metabolism and mitochondrial functions. RPTEC cells were placed in a hypoxic chamber with a 2% oxygen atmosphere for 24 h to induce hypoxia; then, they were replaced back into regular growth conditions for 24 h of reoxygenation. Surprisingly, after 24 h, hypoxia cardiolipin levels substantially increased and remained higher than control levels after 24 h of reoxygenation. This was explained by significantly elevated levels of cardiolipin synthase and lysocardiolipin acyltransferase 1 (LCLAT1) gene expression and protein levels. Meanwhile, hypoxia/reoxygenation decreased ADP-dependent mitochondrial respiration rates and oxidative phosphorylation capacity and increased reactive oxygen species generation. Our findings suggest that hypoxia/reoxygenation induces cardiolipin remodeling in response to reduced mitochondrial oxidative phosphorylation in a way that protects mitochondrial function.


Assuntos
Cardiolipinas , Hipóxia Celular , Mitocôndrias , Oxigênio , Espécies Reativas de Oxigênio , Humanos , Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxigênio/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Túbulos Renais Proximais/citologia , Fosforilação Oxidativa , Rim/metabolismo , Rim/patologia , Linhagem Celular , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Proteínas de Membrana
8.
Cell Rep ; 43(5): 114237, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753484

RESUMO

Cardiac dysfunction, an early complication of endotoxemia, is the major cause of death in intensive care units. No specific therapy is available at present for this cardiac dysfunction. Here, we show that the N-terminal gasdermin D (GSDMD-N) initiates mitochondrial apoptotic pore and cardiac dysfunction by directly interacting with cardiolipin oxidized by complex II-generated reactive oxygen species (ROS) during endotoxemia. Caspase-4/11 initiates GSDMD-N pores that are subsequently amplified by the upregulation and activation of NLRP3 inflammation through further generation of ROS. GSDMD-N pores form prior to BAX and VDAC1 apoptotic pores and further incorporate into BAX and VDAC1 oligomers within mitochondria membranes to exacerbate the apoptotic process. Our findings identify oxidized cardiolipin as the definitive target of GSDMD-N in mitochondria of cardiomyocytes during endotoxin-induced myocardial dysfunction (EIMD), and modulation of cardiolipin oxidation could be a therapeutic target early in the disease process to prevent EIMD.


Assuntos
Cardiolipinas , Endotoxemia , Peptídeos e Proteínas de Sinalização Intracelular , Miócitos Cardíacos , Oxirredução , Proteínas de Ligação a Fosfato , Espécies Reativas de Oxigênio , Cardiolipinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Endotoxemia/metabolismo , Endotoxemia/patologia , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Masculino , Apoptose , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Mitocôndrias/metabolismo , Gasderminas
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159510, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759921

RESUMO

Abrupt aggregation of amyloid ß1-42 (Aß1-42) peptide in the frontal lobe is the expected underlying cause of Alzheimer's disease (AD). ß-Sheet-rich oligomers and fibrils formed by Aß1-42 exert high cell toxicity. A growing body of evidence indicates that lipids can uniquely alter the secondary structure and toxicity of Aß1-42 aggregates. At the same time, underlying molecular mechanisms that determine this difference in toxicity of amyloid aggregates remain unclear. Using a set of molecular and biophysical assays to determine the molecular mechanism by which Aß1-42 aggregates formed in the presence of cholesterol, cardiolipin, and phosphatidylcholine exert cell toxicity. Our findings demonstrate that rat neuronal cells exposed to Aß1-42 fibrils formed in the presence of lipids with different chemical structure exert drastically different magnitude and dynamic of unfolded protein response (UPR) in the endoplasmic reticulum (ER) and mitochondria (MT). We found that the opposite dynamics of UPR in MT and ER in the cells exposed to Aß1-42: cardiolipin fibrils and Aß1-42 aggregates formed in a lipid-free environment. We also found that Aß1-42: phosphatidylcholine fibrils upregulated ER UPR simultaneously downregulating the UPR response of MT, whereas Aß1-42: cholesterol fibrils suppressed the UPR response of ER and upregulated UPR response of MT. We also observed progressively increasing ROS production that damages mitochondrial membranes and other cell organelles, ultimately leading to cell death.


Assuntos
Peptídeos beta-Amiloides , Mitocôndrias , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Ratos , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Cardiolipinas/metabolismo , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/química , Humanos , Espécies Reativas de Oxigênio/metabolismo
10.
J Colloid Interface Sci ; 669: 844-855, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38749223

RESUMO

Lamellarity and shape are important factors in the formation of vesicles and determine their role in biological systems and pharmaceutical applications. Cardiolipin (CL) is a major lipid in many biological membranes and exerts a great influence on their structural organization due to its particular structure and physico-chemical properties. Here, we used small-angle X-ray and neutron scattering to study the effects of CL with different acyl chain lengths and saturations (CL14:0, CL18:1, CL18:2) on vesicle morphology and lamellarity in membrane models containing mixtures of phosphatidylcholine and phosphatidylethanolamine with different acyl chain lengths and saturations (C14:0 and C 18:1). Measurements were performed in the presence of Phosphate Buffer Saline (PBS), at 37°C, to better reflect physiological conditions, which resulted in strong effects on vesicle morphology, depending on the type and amount of CL used. The presence of small quantities of CL (from 2.5%) reduced inter-membrane correlations and increased perturbation of the membrane, an effect which is enhanced in the presence of matched shorter saturated acyl chains, and mainly unilamellar vesicles (ULV) are formed. In extruded vesicles, employed for SANS experiments, flattened vesicles are observed partly due to the hypertonic effect of PBS, but also influenced by the type of CL added. Our experimental data from SAXS and SANS revealed a strong dependence on CL content in shaping the membrane microstructure, with an apparent optimum in the PC:CL mixture in terms of promoting reduced correlations, preferred curvature and elongation. However, the use of PBS caused distinct differences from previously published studies in water in terms of vesicle shape, and highlights the need to investigate vesicle formation under physiological conditions in order to be able to draw conclusions about membrane formation in biological systems.


Assuntos
Cardiolipinas , Lipossomos , Espalhamento a Baixo Ângulo , Cardiolipinas/química , Lipossomos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Difração de Raios X , Tamanho da Partícula , Difração de Nêutrons
11.
J Phys Chem B ; 128(18): 4414-4427, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38690887

RESUMO

This study elucidated the mechanism of formation of a tripartite complex containing daptomycin (Dap), lipid II, and phospholipid phosphatidylglycerol in the bacterial septum membrane, which was previously reported as the cause of the antibacterial action of Dap against gram-positive bacteria via molecular dynamics and enhanced sampling methods. Others have suggested that this transient complex ushers in the inhibition of cell wall synthesis by obstructing the downstream polymerization and cross-linking processes involving lipid II, which is absent in the presence of cardiolipin lipid in the membrane. In this work, we observed that the complex was stabilized by Ca2+-mediated electrostatic interactions between Dap and lipid head groups, hydrophobic interaction, hydrogen bonds, and salt bridges between the lipopeptide and lipids and was associated with Dap concentration-dependent membrane depolarization, thinning of the bilayer, and increased lipid tail disorder. Residues Orn6 and Kyn13, along with the DXDG motif, made simultaneous contact with constituent lipids, hence playing a crucial role in the formation of the complex. Incorporating cardiolipin into the membrane model led to its competitively displacing lipid II away from the Dap, reducing the lifetime of the complex and the nonexistence of lipid tail disorder and membrane depolarization. No evidence of water permeation inside the membrane hydrophobic interior was noted in all of the systems studied. Additionally, it was shown that using hydrophobic contacts between Dap and lipids as collective variables for enhanced sampling gave rise to a free energy barrier for the translocation of the lipopeptide. A better understanding of Dap's antibacterial mechanism, as studied through this work, will help develop lipopeptide-based antibiotics for rising Dap-resistant bacteria.


Assuntos
Antibacterianos , Daptomicina , Simulação de Dinâmica Molecular , Fosfolipídeos , Daptomicina/farmacologia , Daptomicina/química , Antibacterianos/farmacologia , Antibacterianos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Fosfatidilgliceróis/química , Interações Hidrofóbicas e Hidrofílicas , Cardiolipinas/química , Cardiolipinas/metabolismo
12.
Genet Med ; 26(7): 101138, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38602181

RESUMO

PURPOSE: Evaluate long-term efficacy and safety of elamipretide during the open-label extension (OLE) of the TAZPOWER trial in individuals with Barth syndrome (BTHS). METHODS: TAZPOWER was a 28-week randomized, double-blind, and placebo-controlled trial followed by a 168-week OLE. Patients entering the OLE continued elamipretide 40 mg subcutaneous daily. OLE primary endpoints were safety and tolerability; secondary endpoints included change from baseline in the 6-minute walk test (6MWT) and BarTH Syndrome Symptom Assessment (BTHS-SA) Total Fatigue score. Muscle strength, physician- and patient-assessed outcomes, echocardiographic parameters, and biomarkers, including cardiolipin (CL) and monolysocardiolipin (MLCL), were assessed. RESULTS: Ten patients entered the OLE; 8 reached the week 168 visit. Elamipretide was well tolerated, with injection-site reactions being the most common adverse events. Significant improvements from OLE baseline on 6MWT occurred at all OLE time points (cumulative 96.1 m of improvement [week 168, P = .003]). Mean BTHS-SA Total Fatigue scores were below baseline (improved) at all OLE time points. Three-dimensional (3D) left ventricular stroke, end-diastolic, and end-systolic volumes improved, showing significant trends for improvement from baseline to week 168. MLCL/CL values showed improvement, correlating to important clinical outcomes. CONCLUSION: Elamipretide was associated with sustained long-term tolerability and efficacy, with improvements in functional assessments and cardiac function in BTHS.


Assuntos
Síndrome de Barth , Oligopeptídeos , Humanos , Síndrome de Barth/tratamento farmacológico , Masculino , Feminino , Adulto , Método Duplo-Cego , Resultado do Tratamento , Oligopeptídeos/uso terapêutico , Oligopeptídeos/efeitos adversos , Oligopeptídeos/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Força Muscular/efeitos dos fármacos , Fadiga/tratamento farmacológico , Cardiolipinas , Adolescente
13.
Cells ; 13(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38607048

RESUMO

Cardiolipin (CL) is a mitochondria-exclusive phospholipid synthesized in the inner mitochondrial membrane. CL plays a key role in mitochondrial membranes, impacting a plethora of functions this organelle performs. Consequently, it is conceivable that abnormalities in the CL content, composition, and level of oxidation may negatively impact mitochondrial function and dynamics, with important implications in a variety of diseases. This review concentrates on papers published in recent years, combined with basic and underexplored research in CL. We capture new findings on its biological functions in the mitochondria, as well as its association with neurodegenerative diseases such as Alzheimer's disease or Parkinson's disease. Lastly, we explore the potential applications of CL as a biomarker and pharmacological target to mitigate mitochondrial dysfunction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Cardiolipinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Mitocôndrias , Membranas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo
14.
PLoS One ; 19(4): e0301990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625851

RESUMO

Cardiac remodeling is the primary pathological feature of chronic heart failure (HF). Exploring the characteristics of cardiac remodeling in the very early stages of HF and identifying targets for intervention are essential for discovering novel mechanisms and therapeutic strategies. Silent mating type information regulation 2 homolog 3 (SIRT3), as a major mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, is required for mitochondrial metabolism. However, whether SIRT3 plays a role in cardiac remodeling by regulating the biosynthesis of mitochondrial cardiolipin (CL) is unknown. In this study, we induced pressure overload in wild-type (WT) and SIRT3 knockout (SIRT3-/-) mice via transverse aortic constriction (TAC). Compared with WT mouse hearts, the hearts of SIRT3-/- mice exhibited more-pronounced cardiac remodeling and fibrosis, greater reactive oxygen species (ROS) production, decreased mitochondrial-membrane potential (ΔΨm), and abnormal mitochondrial morphology after TAC. Furthermore, SIRT3 deletion aggravated TAC-induced decrease in total CL content, which might be associated with the downregulation of the CL synthesis related enzymes cardiolipin synthase 1 (CRLS1) and phospholipid-lysophospholipid transacylase (TAFAZZIN). In our in vitro experiments, SIRT3 overexpression prevented angiotensin II (AngII)- induced aberrant mitochondrial function, CL biosynthesis disorder, and peroxisome proliferator-activated receptor gamma (PPARγ) downregulation in cardiomyocytes; meanwhile, SIRT3 knockdown exacerbated these effects. Moreover, the addition of GW9662, a PPARγ antagonist, partially counteracted the beneficial effects of SIRT3 overexpression. In conclusion, SIRT3 regulated PPARγ-mediated CL biosynthesis, maintained the structure and function of mitochondria, and thereby protected the myocardium against cardiac remodeling.


Assuntos
Cardiolipinas , Sirtuína 3 , Animais , Camundongos , Cardiolipinas/metabolismo , Camundongos Knockout , Miócitos Cardíacos/metabolismo , PPAR gama/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo , Remodelação Ventricular
15.
Artigo em Inglês | MEDLINE | ID: mdl-38634861

RESUMO

Three Gram-stain-negative, aerobic, non-motile and coccobacilli-shaped bacterial strains, designated as NPKOSM-4T, NPKOSM-8 and MO-31T, were isolated from rice paddy soil. They had 96.5-100 % 16S rRNA gene sequence similarity to each other, and strains NPKOSM-4T and NPKOSM-8 showed 100 % 16S rRNA gene sequence similarity, confirming that they were the same species. Comparative analysis of 16S rRNA genes with closely related type strains showed that three isolates were most closely related to Falsiroseomonas terricola EM0302T (96.1-97.8 %), Falsiroseomonas wooponensis WW53T (95.51-96.3 %) and Falsiroseomonas bella CQN31T (96.0-96.5 %), respectively. The genomes of strains NPKOSM-4T and MO-31T consisted of 4 632 875 and 6 455 771 bps, respectively, with 72.0 and 72.1 mol% G+C content. The average nucleotide identity (ANI), average amino acid identity (AAI) and digital DNA-DNA hybridization (dDDH) values between strains NPKOSM-4T and MO-31T and type strains of Falsiroseomonas species were lower than the cut-offs (≥95 % for ANI, ≥95-96 % for AAI and ≥ 70 % for dDDH) required to define a bacterial species. The major fatty acids of strains NPKOSM-4T, NPKOSM-8 and MO-31T were C18 : 1 ω7c and C18 : 1 2-OH (<10 %) and the predominant quinone was Q-10. The polar lipids of strain NPKOSM-4T were identified as diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminophospholipid and three unidentified aminolipids. The polar lipid profiles of strain MO-31T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified aminolipid and three unidentified lipids. Based on their distinctive phenotypic, phylogenetic, and chemotaxonomic characteristics, strains NPKOSM-4T, NPKOSM-8 and MO-31T are considered to represent two novel species of the genus Falsiroseomonas, for which the names Falsiroseomonas oryziterrae sp. nov. [to accommodate strains NPKOSM-4T (= KACC 22135T=JCM 34745T), NPKOSM-8 (=KACC 22134=JCM 34746)] and Falsiroseomonas oryzae sp. nov. [to accommodate strain MO-31T (= KACC 22465T=JCM 35532T)] are proposed.


Assuntos
Oryza , Composição de Bases , Cardiolipinas , Ácidos Graxos/química , Fosfatidiletanolaminas , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Aminoácidos , Nucleotídeos , Fosfatidilcolinas , Fosfatidilgliceróis , Solo
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(5): 159483, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527666

RESUMO

Polycistronic transcription and translation of ymdB-clsC have been thought to be required for full activity of ClsC. The authentic initiation codon of the clsC gene is present within the open reading frame of the upstream located ymdB gene. ClsC translated from authentic initiation codon drives cardiolipin (CL) synthesis without transcriptionally paired YmdB. YmdB is not necessary for the substrate specificity of ClsC utilizing phosphatidylethanolamine (PE) as a co-substrate.


Assuntos
Cardiolipinas , Proteínas de Escherichia coli , Transferases (Outros Grupos de Fosfato Substituídos) , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidiletanolaminas/metabolismo , Especificidade por Substrato , Transcrição Gênica , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
17.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474641

RESUMO

The catalytic properties of cytochrome c (Cc) have captured great interest in respect to mitochondrial physiology and apoptosis, and hold potential for novel enzymatic bioremediation systems. Nevertheless, its contribution to the metabolism of environmental toxicants remains unstudied. Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with impactful diseases, and animal models have unveiled concerning signs of PAHs' toxicity to mitochondria. In this work, a series of eight PAHs with ionization potentials between 7.2 and 8.1 eV were used to challenge the catalytic ability of Cc and to evaluate the effect of vesicles containing cardiolipin mimicking mitochondrial membranes activating the peroxidase activity of Cc. With moderate levels of H2O2 and at pH 7.0, Cc catalyzed the oxidation of toxic PAHs, such as benzo[a]pyrene, anthracene, and benzo[a]anthracene, and the cardiolipin-containing membranes clearly increased the PAH conversions. Our results also demonstrate for the first time that Cc and Cc-cardiolipin complexes efficiently transformed the PAH metabolites 2-hydroxynaphthalene and 1-hydroxypyrene. In comparison to horseradish peroxidase, Cc was shown to reach more potent oxidizing states and react with PAHs with ionization potentials up to 7.70 eV, including pyrene and acenaphthene. Spectral assays indicated that anthracene binds to Cc, and docking simulations proposed possible binding sites positioning anthracene for oxidation. The results give support to the participation of Cc in the metabolism of PAHs, especially in mitochondria, and encourage further investigation of the molecular interaction between PAHs and Cc.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Hidrocarbonetos Policíclicos Aromáticos/química , Citocromos c , Cardiolipinas , Peróxido de Hidrogênio , Antracenos
18.
Biochemistry ; 63(6): 743-753, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441874

RESUMO

PKC-related serine/threonine protein kinase N1 (PKN1) is a protease/lipid-activated protein kinase that acts downstream of the RhoA and Rac1 pathways. PKN1 comprises unique regulatory, hinge region, and PKC homologous catalytic domains. The regulatory domain harbors two homologous regions, i.e., HR1 and C2-like. HR1 consists of three heptad repeats (HR1a, HR1b, and HR1c), with PKN1-(HR1a) hosting an amphipathic high-affinity cardiolipin-binding site for phospholipid interactions. Cardiolipin and C18:1 oleic acid are the most potent lipid activators of PKN1. PKN1-(C2) contains a pseudosubstrate sequence overlapping that of C20:4 arachidonic acid. However, the cardiolipin-binding site(s) within PKN1-(C2) and the respective binding properties remain unclear. Herein, we reveal (i) that the primary PKN1-(C2) sequence contains conserved amphipathic cardiolipin-binding motif(s); (ii) that trimeric PKN1-(C2) predominantly adopts a ß-stranded conformation; (iii) that two distinct types of cardiolipin (or phosphatidic acid) binding occur, with the hydrophobic component playing a key role at higher salt levels; (iv) the multiplicity of C18 fatty acid binding to PKN1-(C2); and (v) the relevance of our lipid-binding parameters for PKN1-(C2) in terms of kinetic parameters previously determined for the full-length PKN1 enzyme. Thus, our discoveries create opportunities to design specific mammalian cell inhibitors that disrupt the localization of membrane-associated PKN1 signaling molecules.


Assuntos
Cardiolipinas , Proteína Quinase C , Animais , Proteína Quinase C/metabolismo , Serina , Treonina , Ratos
19.
Exp Mol Med ; 56(4): 922-934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556544

RESUMO

Skeletal muscle aging results in the gradual suppression of myogenesis, leading to muscle mass loss. However, the specific role of cardiolipin in myogenesis has not been determined. This study investigated the crucial role of mitochondrial cardiolipin and cardiolipin synthase 1 (Crls1) in age-related muscle deterioration and myogenesis. Our findings demonstrated that cardiolipin and Crls1 are downregulated in aged skeletal muscle. Moreover, the knockdown of Crls1 in myoblasts reduced mitochondrial mass, activity, and OXPHOS complex IV expression and disrupted the structure of the mitochondrial cristae. AAV9-shCrls1-mediated downregulation of Crls1 impaired muscle regeneration in a mouse model of cardiotoxin (CTX)-induced muscle damage, whereas AAV9-mCrls1-mediated Crls1 overexpression improved regeneration. Overall, our results highlight that the age-dependent decrease in CRLS1 expression contributes to muscle loss by diminishing mitochondrial quality in skeletal muscle myoblasts. Hence, modulating CRLS1 expression is a promising therapeutic strategy for mitigating muscle deterioration associated with aging, suggesting potential avenues for developing interventions to improve overall muscle health and quality of life in elderly individuals.


Assuntos
Músculo Esquelético , Doenças Musculares , Regeneração , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/etiologia , Doenças Musculares/patologia , Doenças Musculares/genética , Envelhecimento/metabolismo , Desenvolvimento Muscular , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Humanos , Cardiolipinas/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Masculino , Mioblastos/metabolismo
20.
Analyst ; 149(9): 2697-2708, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38506099

RESUMO

In this paper, we present Raman imaging as a non-invasive approach for studying changes in mitochondrial metabolism caused by cardiolipin-cytochrome c interactions. We investigated the effect of mitochondrial dysregulation on cardiolipin (CL) and cytochrome c (Cyt c) interactions for a brain cancer cell line (U-87 MG). Mitochondrial metabolism was monitored by checking the intensities of the Raman bands at 750 cm-1, 1126 cm-1, 1310 cm-1, 1337 cm-1, 1444 cm-1 and 1584 cm-1. The presented results indicate that under pathological conditions, the content and redox status of Cyt c in mitochondria can be used as a Raman marker to characterize changes in cellular metabolism. This work provides evidence that cardiolipin-cytochrome c interactions are crucial for mitochondrial energy homeostasis by controlling the redox status of Cyt c in the electron transport chain, switching from disabling Cyt c reduction and enabling peroxidase activity. This paper provides experimental support for the hypothesis of how cardiolipin-cytochrome c interactions regulate electron transfer in the respiratory chain, apoptosis and mROS production in mitochondria.


Assuntos
Neoplasias Encefálicas , Cardiolipinas , Citocromos c , Glioblastoma , Mitocôndrias , Análise Espectral Raman , Cardiolipinas/metabolismo , Citocromos c/metabolismo , Humanos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Análise Espectral Raman/métodos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...