Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15799, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978465

RESUMO

The chloroplast genome is an integral part of plant genomes in a species along with nuclear and mitochondrial genomes, contributing to adaptation, diversification, and evolution of plant lineages. In the family Caricaceae, only the Carica papaya chloroplast genome and its nuclear and mitochondrial genomes were sequenced, and no chloroplast genome-wide comparison across genera was conducted. Here, we sequenced and assembled the chloroplast genome of Vasconcellea pubescens A.DC. using Oxford Nanopore Technology. The size of the genome is 158,712 bp, smaller than 160,100 bp of the C. papaya chloroplast genome. And two structural haplotypes, LSC_IRa_SSCrc_IRb and LSC_IRa_SSC_IRb, were identified in both V. pubescens and C. papaya chloroplast genomes. The insertion-deletion mutations may play an important role in Ycf1 gene evolution in family Caricaceae. Ycf2 is the only one gene positively selected in the V. pubescens chloroplast genome. In the C. papaya chloroplast genome, there are 46 RNA editing loci with an average RNA editing efficiency of 63%. These findings will improve our understanding of the genomes of these two crops in the family Caricaceae and will contribute to crop improvement.


Assuntos
Caricaceae/classificação , Caricaceae/genética , DNA de Cloroplastos/análise , Evolução Molecular , Genes de Plantas/genética , Genoma de Cloroplastos , Filogenia , DNA de Cloroplastos/genética , Genoma de Planta
2.
Genetics ; 199(2): 413-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480779

RESUMO

Sex chromosomes have been studied in many plant and animal species. However, few species are suitable as models to study the evolutionary histories of sex chromosomes. We previously demonstrated that papaya (Carica papaya) (2n = 2x = 18), a fruit tree in the family Caricaceae, contains recently emerged but cytologically heteromorphic X/Y chromosomes. We have been intrigued by the possible presence and evolution of sex chromosomes in other dioecious Caricaceae species. We selected a set of 22 bacterial artificial chromosome (BAC) clones that are distributed along the papaya X/Y chromosomes. These BACs were mapped to the meiotic pachytene chromosomes of Vasconcellea parviflora (2n = 2x = 18), a species that diverged from papaya ∼27 million years ago. We demonstrate that V. parviflora contains a pair of heteromorphic X/Y chromosomes that are homologous to the papaya X/Y chromosomes. The comparative mapping results revealed that the male-specific regions of the Y chromosomes (MSYs) probably initiated near the centromere of the Y chromosomes in both species. The two MSYs, however, shared only a small chromosomal domain near the centromere in otherwise rearranged chromosomes. The V. parviflora MSY expanded toward the short arm of the chromosome, whereas the papaya MSY expanded in the opposite direction. Most BACs mapped to papaya MSY were not located in V. parviflora MSY, revealing different DNA compositions in the two MSYs. These results suggest that mutation of gene(s) in the centromeric region may have triggered sex chromosome evolution in these plant species.


Assuntos
Caricaceae/genética , Centrômero , Genes de Plantas , Diferenciação Sexual/genética , Caricaceae/classificação , Cromossomos de Plantas , Flores , Heterocromatina , Hibridização in Situ Fluorescente , Fenótipo , Filogenia , Mapeamento Físico do Cromossomo , Cromossomos Sexuais
3.
Mol Phylogenet Evol ; 37(2): 442-59, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16095925

RESUMO

This study focused on clarifying phylogenetic relationships and evolution within Caricaceae. Our phylogenetic analysis based on nucleotide sequences from the ITS of the ribosomal DNA and three chloroplast fragments (matK, trnL-trnF, and psbA-trnH) included 29 taxa belonging to five genera: the neotropical genera Carica, Vasconcellea, Jarilla, and Jacaratia and the equatorial African genus Cylicomorpha. Having a relatively low mutation rate, matK, and trnL-trnF were used for estimating relationships at the generic level, while intrageneric evolution within Vasconcellea was studied with the more variable ITS and psbA-trnH sequences. Gaps, coded as binary characters, were added to the sequence alignments before performing Maximum Parsimony and Maximum Likelihood analyses. Monophyly of Caricaceae as well as phylogenetic distance between Carica and Vasconcellea species, previously belonging to the same genus, and monophyly of the resurrected genus Vasconcellea were emphasized. Within Vasconcellea, the largest genus of this family, two well-confirmed evolutionary lineages could be discerned: (1) V.xheilbornii, V. weberbaueri, V. stipulata, and V. parviflora and (2) a clade holding all other taxa of the genus. Incongruence between nuclear ITS and chloroplast psbA-trnH datasets, shown to be significantly caused by some taxa of the genus Vasconcellea, indicated that reticulate events in this genus might be more frequent than previously suspected. Moreover, intra-individual ITS sequence heterogeneity provided further evidence for the hybrid or introgressed origin of different taxa and one presumed hybrid belonging to this genus.


Assuntos
Caricaceae/classificação , DNA de Cloroplastos/genética , DNA Espaçador Ribossômico/genética , Filogenia , Caricaceae/genética , DNA Ribossômico/genética , Evolução Molecular , Análise de Sequência de DNA , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...