Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.765
Filtrar
1.
BMC Genomics ; 25(1): 548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824502

RESUMO

Gibel carp (Carassius gibelio) is a cyprinid fish that originated in eastern Eurasia and is considered as invasive in European freshwater ecosystems. The populations of gibel carp in Europe are mostly composed of asexually reproducing triploid females (i.e., reproducing by gynogenesis) and sexually reproducing diploid females and males. Although some cases of coexisting sexual and asexual reproductive forms are known in vertebrates, the molecular mechanisms maintaining such coexistence are still in question. Both reproduction modes are supposed to exhibit evolutionary and ecological advantages and disadvantages. To better understand the coexistence of these two reproduction strategies, we performed transcriptome profile analysis of gonad tissues (ovaries) and studied the differentially expressed reproduction-associated genes in sexual and asexual females. We used high-throughput RNA sequencing to generate transcriptomic profiles of gonadal tissues of triploid asexual females and males, diploid sexual males and females of gibel carp, as well as diploid individuals from two closely-related species, C. auratus and Cyprinus carpio. Using SNP clustering, we showed the close similarity of C. gibelio and C. auratus with a basal position of C. carpio to both Carassius species. Using transcriptome profile analyses, we showed that many genes and pathways are involved in both gynogenetic and sexual reproduction in C. gibelio; however, we also found that 1500 genes, including 100 genes involved in cell cycle control, meiosis, oogenesis, embryogenesis, fertilization, steroid hormone signaling, and biosynthesis were differently expressed in the ovaries of asexual and sexual females. We suggest that the overall downregulation of reproduction-associated pathways in asexual females, and their maintenance in sexual ones, allows the populations of C. gibelio to combine the evolutionary and ecological advantages of the two reproductive strategies. However, we showed that many sexual-reproduction-related genes are maintained and expressed in asexual females, suggesting that gynogenetic gibel carp retains the genetic toolkits for meiosis and sexual reproduction. These findings shed new light on the evolution of this asexual and sexual complex.


Assuntos
Carpas , Reprodução Assexuada , Reprodução , Animais , Feminino , Reprodução Assexuada/genética , Reprodução/genética , Carpas/genética , Carpas/fisiologia , Masculino , Transcriptoma , Perfilação da Expressão Gênica , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único
2.
Mol Biol Rep ; 51(1): 738, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874633

RESUMO

BACKGROUND: Interspecific hybrids of rohu (Labeo rohita) and catla (Labeo catla) are common, especially in India due to constrained breeding. These hybrids must segregate from their wild parents as part of conservational strategies. This study intended to screen the hybrids from wild rohu and catla parents using both morphometric and molecular approaches. METHODS & RESULTS: The carp samples were collected from Jharkhand and West Bengal, India. The correlation and regression analysis of morphometric features are considered superficial but could be protracted statistically by clustering analysis and further consolidated by nucleotide variations of one mitochondrial and one nuclear gene to differentiate hybrids from their parents. Out of 21 morphometric features, 6 were used for clustering analysis that exhibited discrete separation among rohu, catla, and their hybrids when the data points were plotted in a low-dimensional 2-D plane using the first 2 principal components. Out of 40 selected single nucleotide polymorphism (SNP) positions of the COX1 gene, hybrid showed 100% similarity with catla. Concerning SNP similarity of the 18S rRNA nuclear gene, the hybrid showed 100% similarity with rohu but not with catla; exhibiting its probable parental inheritance. CONCLUSIONS: Along with morphometric analysis, the SNP comparison study together points towards strong evidence of interspecific hybridization between rohu and catla, as these hybrids share both morphological and molecular differences with either parent. However, this study will help screen the hybrids from their wild parents, as a strategy for conservational management.


Assuntos
Carpas , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Carpas/genética , Carpas/anatomia & histologia , Hibridização Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Índia , RNA Ribossômico 18S/genética , Filogenia , Cyprinidae/genética , Cyprinidae/anatomia & histologia , Quimera/genética , Análise por Conglomerados
3.
Fish Shellfish Immunol ; 150: 109647, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797335

RESUMO

NIK (NF-κB inducing kinase) belongs to the mitogen-activated protein kinase family, which activates NF-κB and plays a vital role in immunology, inflammation, apoptosis, and a series of pathological responses. In NF-κB noncanonical pathway, NIK and IKKα have been often studied in mammals and zebrafish. However, few have explored the relationship between NIK and other subunits of the IKK complex. As a classic kinase in the NF-κB canonical pathway, IKKß has never been researched with NIK in fish. In this paper, the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) NIK (CiNIK) was first cloned and identified. The expression level of CiNIK in grass carp cells was increased under GCRV stimuli. Under the stimulation of GCRV, poly (I:C), and LPS, the expression of NIK in various tissues of grass carp was also increased. This suggests that CiNIK responds to viral stimuli. To study the relationship between CiNIK and CiIKKß, we co-transfected CiNIK-FLAG and CiIKKB-GFP into grass carp cells in coimmunoprecipitation and immunofluorescence experiments. The results revealed that CiNIK interacts with CiIKKß. Besides, the degree of autophosphorylation of CiNIK was enhanced under poly (I:C) stimulation. CiIKKß was phosphorylated by CiNIK and then activated the activity of p65. The activity change of p65 indicates that NF-κB downstream inflammatory genes will be functioning. CiNIK or CiIKKß up-regulated the expression of IL-8. It got higher when CiNIK and CiIKKß coexisted. This paper revealed that NF-κB canonical pathway and noncanonical pathway are not completely separated in generating benefits.


Assuntos
Sequência de Aminoácidos , Carpas , Proteínas de Peixes , Interleucina-8 , NF-kappa B , Proteínas Serina-Treonina Quinases , Regulação para Cima , Animais , Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , NF-kappa B/genética , NF-kappa B/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Doenças dos Peixes/imunologia , Transdução de Sinais , Reoviridae/fisiologia , Filogenia , Quinase Induzida por NF-kappaB , Regulação da Expressão Gênica/imunologia , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Sequência de Bases , Perfilação da Expressão Gênica/veterinária
4.
Fish Shellfish Immunol ; 150: 109649, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797336

RESUMO

In mammals, CD4 is found to be expressed on T cells and innate immune cells, however, teleost cells bearing CD4 have not been well identified and characterized. In this study, we identified two different CD4-1+ cell subsets in grass carp (Ctenopharyngodon idella): CD4-1+ lymphocytes (Lym) and CD4-1+ myeloid cells (Mye), both of which had the highest proportions in the head kidney. The mRNA expression analysis showed that CD4-1, CD4-2, TCRß, CD3γ/δ, and LCK1 are highly expressed in CD4-1+ Lym and also expressed in CD4-1+ Mye. Furthermore, we found that CD4-1+ Lym have a Lym morphology and highly express T-cell cytokines, suggesting that they are CD4+ T cells equivalent to mammalian Th cells. On the other hand, CD4-1+ Mye were found to have a morphology of macrophage and highly express macrophage marker gene MCSFR, indicating that they are macrophages. In addition, functional analysis revealed that CD4-1+ Mye possess phagocytic ability and great antigen-processing ability. Taken together, our study sheds further light on the composition and function of CD4+ cells in teleost fish.


Assuntos
Carpas , Proteínas de Peixes , Animais , Carpas/imunologia , Carpas/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD4/metabolismo , Rim Cefálico/imunologia , Rim Cefálico/citologia , Células Mieloides/imunologia , Imunidade Inata/genética
5.
Int J Biol Macromol ; 269(Pt 2): 132104, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719016

RESUMO

Stimulator of interferon genes (STING), as an imperative adaptor protein in innate immune, responds to nucleic acid from invading pathogens to build antiviral responses in host cells. Aberrant activation of STING may trigger tissue damage and autoimmune diseases. Given the decisive role in initiating innate immune response, the activity of STING is intricately governed by several posttranslational modifications, including phosphorylation and ubiquitination. Here, we cloned and characterized a novel RNF122 homolog from common carp (named CcRNF122L). Expression analysis disclosed that the expression of CcRNF122L is up-regulated under spring viremia of carp virus (SVCV) stimulation in vivo and in vitro. Overexpression of CcRNF122L hampers SVCV- or poly(I:C)-mediated the expression of IFN-1 and ISGs in a dose-dependent way. Mechanistically, CcRNF122L interacts with STING and promotes the polyubiquitylation of STING. This polyubiquitylation event inhibits the aggregation of STING and the subsequent recruitment of TBK1 and IRF3 to the signaling complex. Additionally, the deletion of the TM domain abolishes the negative regulatory function of CcRNF122L. Collectively, our discoveries unveil a mechanism that governs the STING function and the precise adjustment of the innate immune response in teleost.


Assuntos
Carpas , Proteínas de Peixes , Imunidade Inata , Proteínas de Membrana , Rhabdoviridae , Animais , Carpas/imunologia , Carpas/genética , Carpas/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Rhabdoviridae/fisiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/imunologia , Transdução de Sinais
6.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38800960

RESUMO

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Assuntos
Carpas , Kisspeptinas , Melatonina , Fotoperíodo , Maturidade Sexual , Animais , Melatonina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Carpas/metabolismo , Carpas/genética , Carpas/crescimento & desenvolvimento , Carpas/fisiologia , Maturidade Sexual/fisiologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética
7.
Gene Expr Patterns ; 52: 119367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754601

RESUMO

Amur common carp (Cyprinus carpio haematopterus), is a commercially important fish species that has been genetically improved over the years through selective breeding. Despite its significance in aquaculture, limited knowledge exists regarding its embryogenesis and immune genes associated with its early stages of life. This article represents a detailed study of the embryogenesis and innate immune gene expression analysis of the Amur common carp during its ontogenic developments. The entire embryonic developmental process of ∼44 h could be divided into eight periods, beginning with the formation of the zygote, followed by cleavage, morula, blastula, segmentation, pharyngula, and hatching. The segmentation period, which lasted for ∼ 6 h, exhibited the most significant changes, such as muscle contraction, rudimentary heart formation, increased somites number, and the initiation of blood circulation throughout the yolk. The expression of immune-related genes, namely toll-like receptor (TLR)4, nucleotide-binding oligomerization domain (NOD)1, NOD2 and interleukin (IL)-8 showed stage-specific patterns with varying levels of expression across the developmental stages. The TLR4 gene exhibited the highest expression during the neurella stage, while NOD1 and NOD2 peaked during hatching and IL-8 reached its maximum level during the gastrula stage. This is the first report of the innate immune gene expression during the embryogenesis of Amur common carp.


Assuntos
Carpas , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Carpas/genética , Carpas/metabolismo , Carpas/embriologia , Carpas/imunologia , Desenvolvimento Embrionário/genética , Imunidade Inata/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Embrião não Mamífero/metabolismo
8.
Sci Data ; 11(1): 426, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658574

RESUMO

Yellow-cheek carp (Elopichthys bambusa) is a typical large and ferocious carnivorous fish endemic to East Asia, with high growth rate, nutritional value and economic value. In this study, a chromosome-level genome of yellow-cheek carp was generated by combining PacBio reads, Illumina reads and Hi-C data. The genome size is 827.63 Mb with a scaffold N50 size of 33.65 Mb, and 99.51% (823.61 Mb) of the assembled sequences were anchored to 24 pseudo-chromosomes. The genome is predicted to contain 24,153 protein-coding genes, with 95.54% having functional annotations. Repeat elements account for approximately 55.17% of the genomic landscape. The completeness of yellow-cheek carp genome assembly is highlighted by a BUSCO score of 98.4%. This genome will help us understand the genetic diversity of yellow-cheek carp and facilitate its conservation planning.


Assuntos
Carpas , Cromossomos , Genoma , Animais , Carpas/genética , Tamanho do Genoma
9.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596226

RESUMO

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Assuntos
Carcinoma de Células Renais , Carpas , Hormônio do Crescimento Humano , Neoplasias Renais , Animais , Carpas/genética , Carpas/metabolismo , Triploidia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Vigor Híbrido/genética , Peptídeos Semelhantes à Insulina , Hormônio do Crescimento Humano/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Perfilação da Expressão Gênica
10.
Fish Shellfish Immunol ; 149: 109564, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631439

RESUMO

Grass carp reovirus (GCRV) infections and hemorrhagic disease (GCHD) outbreaks are typically seasonally periodic and temperature-dependent, yet the molecular mechanism remains unclear. Herein, we depicted that temperature-dependent IL-6/STAT3 axis was exploited by GCRV to facilitate viral replication via suppressing type Ⅰ IFN signaling. Combined multi-omics analysis and qPCR identified IL-6, STAT3, and IRF3 as potential effector molecules mediating GCRV infection. Deploying GCRV challenge at 18 °C and 28 °C as models of resistant and permissive infections and switched to the corresponding temperatures as temperature stress models, we illustrated that IL-6 and STAT3 expression, genome level of GCRV, and phosphorylation of STAT3 were temperature dependent and regulated by temperature stress. Further research revealed that activating IL-6/STAT3 axis enhanced GCRV replication and suppressed the expression of IFNs, whereas blocking the axis impaired viral replication. Mechanistically, grass carp STAT3 inhibited IRF3 nuclear translocation via interacting with it, thus down-regulating IFNs expression, restraining transcriptional activation of the IFN promoter, and facilitating GCRV replication. Overall, our work sheds light on an immune evasion mechanism whereby GCRV facilitates viral replication by hijacking IL-6/STAT3 axis to down-regulate IFNs expression, thus providing a valuable reference for targeted prevention and therapy of GCRV.


Assuntos
Carpas , Doenças dos Peixes , Interferon Tipo I , Interleucina-6 , Infecções por Reoviridae , Reoviridae , Fator de Transcrição STAT3 , Transdução de Sinais , Replicação Viral , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Reoviridae/fisiologia , Carpas/imunologia , Carpas/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética
11.
Fish Shellfish Immunol ; 149: 109559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636737

RESUMO

USP14 regulates the immune related pathways by deubiquitinating the signaling molecules in mammals. In teleost, USP14 is also reported to inhibit the antiviral immune response through TBK1, but its regulatory mechanism remains obscure. To elucidate the role of USP14 in the RLR/IFN antiviral pathway in teleost, the homolog USP14 (bcUSP14) of black carp (Mylopharyngodon piceus) has been cloned and characterize in this paper. bcUSP14 contains 490 amino acids (aa), and the sequence is well conserved among in vertebrates. Over-expression of bcUSP14 in EPC cells attenuated SVCV-induced transcription activity of IFN promoters and enhanced SVCV replication. Knockdown of bcUSP14 in MPK cells led to the increased transcription of IFNs and decreased SVCV replication, suggesting the improved antiviral activity of the host cells. The interaction between bcUSP14 and bcTBK1 was identified by both co-immunoprecipitation and immunofluorescent staining. Co-expressed bcUSP14 obviously inhibited bcTBK1-induced IFN production and antiviral activity in EPC cells. K63-linked polyubiquitination of bcTBK1 was dampened by co-expressed bcUSP14, and bcTBK1-mediated phosphorylation and nuclear translocation of IRF3 were also inhibited by this deubiquitinase. Thus, all the data demonstrated that USP14 interacts with and inhibits TBK1 through deubiquitinating TBK1 in black carp.


Assuntos
Carpas , Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Interferons , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Transdução de Sinais , Ubiquitinação , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Rhabdoviridae/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Interferons/genética , Interferons/imunologia , Interferons/metabolismo , Imunidade Inata/genética , Ubiquitina Tiolesterase/genética , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Alinhamento de Sequência/veterinária , Filogenia , Perfilação da Expressão Gênica/veterinária
12.
Fish Shellfish Immunol ; 149: 109563, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642725

RESUMO

HnRNP A/B belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family and plays an important role in regulating viral protein translation and genome replication. Here, we found that overexpression of hnRNP A/B promoted spring viremia of carp virus (SVCV) and cyprinid herpesvirus 3 (CyHV3) replication. Further, hnRNP A/B was shown to act as a negative regulator of type I interferon (IFN) response. Mechanistically, hnRNP A/B interacted with MITA, TBK1 and IRF3 to initiate their degradation. In addition, hnRNP A/B bound to the kinase domain of TBK1, the C terminal domain of MITA and IAD domain of IRF3, and the RRM1 domain of hnRNP A/B bound to TBK1, RRM2 domain bound to IRF3 and MITA. Our study provides novel insights into the functions of hnRNP A/B in regulating host antiviral response.


Assuntos
Doenças dos Peixes , Proteínas de Peixes , Proteínas Serina-Treonina Quinases , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/imunologia , Carpas/imunologia , Carpas/genética , Herpesviridae/fisiologia , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Proteínas de Peixe-Zebra
13.
Fish Shellfish Immunol ; 149: 109586, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670410

RESUMO

Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.


Assuntos
Autofagia , Carpas , Doenças dos Peixes , MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Infecções por Reoviridae , Reoviridae , Animais , MicroRNAs/genética , MicroRNAs/imunologia , Carpas/imunologia , Carpas/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reoviridae/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Linhagem Celular , Regulação da Expressão Gênica/imunologia
14.
Int J Biol Macromol ; 265(Pt 2): 130946, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521334

RESUMO

The interleukin 23 receptor (IL-23R) is associated with a variety of inflammatory diseases in humans and other mammals. However, whether IL-23R is involved in inflammatory diseases in teleost fish is less understood. Thus, to investigate the potential involvement of IL-23R in fish inflammatory diseases, the full-length cDNA of IL-23R from grass carp Ctenopharyngodon idella was cloned and used to generate a recombinant protein (rgcIL-23R) containing the extracellular domain of IL-23R, against which a polyclonal antibody (rgcIL-23R pAb) was then developed. qPCR analysis revealed that IL-23R mRNA was significantly upregulated in most grass carp tissues in response to infection with Gram-negative Aeromonas hydrophila. Treatment with rgcIL-23R significantly induced IL-17A/F1 expression in C. idella kidney (CIK) cells. By contrast, knockdown of IL-23R caused significant decreases in IL-23R, STAT3, and IL-17N expression in CIK cells after lipopolysaccharide (LPS) stimulation. Similarly, rgcIL-23R pAb treatment effectively inhibited the LPS-induced increase in the expression of IL-23 subunit genes and those of the IL-23/IL-17 pathway in CIK cells. Furthermore, intestinal symptoms identical to those caused by A. hydrophila were induced by anal intubation with rgcIL-23R, but suppressed by rgcIL-23R pAb. Therefore, these results suggest that IL-23R has a crucial role in the regulation of intestinal inflammation and, thus, is a promising target for controlling inflammatory diseases in farmed fish.


Assuntos
Carpas , Doenças dos Peixes , Animais , Humanos , Sequência de Aminoácidos , Carpas/genética , Carpas/metabolismo , Lipopolissacarídeos , Inflamação/genética , Interleucina-23 , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Mamíferos/metabolismo
15.
Mol Biol Rep ; 51(1): 402, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456942

RESUMO

BACKGROUND: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA. Malonyl-CoA, which plays a key role in regulating glucose and lipid metabolism, is not only a substrate for fatty acid synthesis but also an inhibitor of the oxidation pathway. ACC exists as two isoenzymes that are encoded by two different genes. ACC1 in grass carp (Ctenopharyngodon idellus) has been cloned and sequenced. However, studies on the cloning, tissue distribution, and function of ACC2 in grass carp were still rare. METHODS AND RESULTS: The full-length cDNA of acc2 was 8537 bp with a 7146 bp open reading frame encoding 2381 amino acids. ACC2 had a calculated molecular weight of 268.209 kDa and an isoelectric point of 5.85. ACC2 of the grass carp shared the closest relationship with that of the common carp (Sinocyclocheilus grahami). The expressions of acc1 and acc2 mRNA were detected in all examined tissues.  The expression level of acc1 was high in the brain and fat but absent in the midgut and hindgut. The expression level of acc2 in the kidney was significantly higher than in other tissues, followed by the heart, brain, muscle, and spleen. ACCs inhibitor significantly reduced the levels of glucose, malonyl-CoA, and triglyceride in hepatocytes. CONCLUSIONS: This study showed that the function of ACC2 was evolutionarily conserved from fish to mammals. ACCs inhibitor inhibited the biological activity of ACCs, and reduced fat accumulation in grass carp.


Assuntos
Carpas , Animais , Carpas/genética , Carpas/metabolismo , Clonagem Molecular , Sequência de Bases , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Expressão Gênica , Glucose , Mamíferos/metabolismo
16.
Front Immunol ; 15: 1335602, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426108

RESUMO

Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-ß, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-ß. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.


Assuntos
Carpas , Enterite , Microbioma Gastrointestinal , MicroRNAs , Rahnella , Animais , Carpa Dourada/genética , Carpas/genética , Rahnella/genética , NF-kappa B , Multiômica , Fator de Necrose Tumoral alfa , Inflamação , Fator de Crescimento Transformador beta , MicroRNAs/genética
17.
Fish Shellfish Immunol ; 148: 109477, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447782

RESUMO

Proteins from the C1q domain-containing (C1qDC) family recognize self-, non-self-, and altered-self ligands and serves as an initiator molecule for the classical complement pathway as well as recognizing immune complexes. In this study, C1qDC gene family members were identified and analyzed in grass carp (Ctenopharyngodon idellus). Members of the C1q subfamily were cloned, and their response to infection with the grass carp virus was investigated. In the grass carp genome, 54 C1qDC genes and 67 isoforms have been identified. Most were located on chromosome 3, with 52 shared zebrafish homologies. Seven substantially differentially expressed C1qDC family genes were identified in the transcriptomes of cytokine-induced killer (CIK) cells infected with grass carp reovirus (GCRV), all of which exhibited sustained upregulation. The opening reading frames of grass carp C1qA, C1qB, and C1qC, belonging to the C1q subfamily, were determined to be 738, 732, and 735 base pairs, encoding 245, 243, and 244 amino acids with molecular weights of 25.81 kDa, 25.63 kDa and 26.16 kDa, respectively. Three genes were detected in the nine collected tissues, and their expression patterns were similar, with the highest expression levels observed in the spleen. In vivo after GCRV infection showed expression trends of C1qA, C1qB, and C1qC in the liver, spleen, and kidney. An N-type pattern in the liver and kidney was characterized by an initial increase followed by a decrease, with the highest expression occurring during the recovering period, and a V-type pattern in the spleen with the lowest expression levels during the death period. In vitro, after GCRV infection showed expression trends of C1qA, C1qB, and C1qC, and this gradually increased within the first 24 h, with a notable increase observed at the 24 h time point. After CIK cells incubation with purified recombinant proteins, rC1qA, rC1qB, and rC1qC for 3 h, followed by GCRV inoculation, the GCRV replication indicated that rC1qC exerted a substantial inhibitory effect on viral replication in CIK cells after 24 h of GCRV inoculation. These findings offer valuable insights into the structure, evolution, and function of the C1qDC family genes and provide a foundational understanding of the immune function of C1q in grass carp.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Animais , Carpas/genética , Carpas/metabolismo , Peixe-Zebra , Complemento C1q/genética , Reoviridae/fisiologia , Proteínas do Sistema Complemento , Proteínas de Peixes/química
18.
Fish Shellfish Immunol ; 148: 109483, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458501

RESUMO

The precise control of interferon (IFN) production is indispensable for the host to eliminate invading viruses and maintain a homeostatic state. In mammals, stimulator of interferon genes (STING) is a prominent adaptor involved in antiviral immune signaling pathways. However, the regulatory mechanism of piscine STING has not been thoroughly investigated. Here, we report that autophagy related 16 like 1 (bcATG16L1) of black carp (Mylopharyngodon piceus) is a negative regulator in black carp STING (bcSTING)-mediated signaling pathway. Initially, we substantiated that knockdown of bcATG16L1 increased the transcription of IFN and ISGs and enhanced the antiviral activity of the host cells. Subsequently, we identified that bcATG16L1 inhibited the bcSTING-mediated IFN promoter activation and proved that bcATG16L1 suppressed bcSTING-mediated antiviral ability. Furthermore, we revealed that bcATG16L1 interacted with bcSTING and the two proteins shared a similar subcellular distribution. Mechanically, we found that bcATG16L1 attenuated the oligomerization of bcSTING, which was a key step for bcSTING activation. Taken together, our results indicate that bcATG16L1 interacts with bcSTING, dampens the oligomerization of bcSTING, and negatively regulates bcSTING-mediated antiviral activity.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Infecções por Rhabdoviridae , Rhabdoviridae , Animais , Rhabdoviridae/fisiologia , Reoviridae/fisiologia , Infecções por Rhabdoviridae/veterinária , Carpas/genética , Carpas/metabolismo , Proteínas de Peixes , Imunidade Inata/genética , Interferons , Mamíferos/metabolismo
19.
Fish Shellfish Immunol ; 148: 109519, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508540

RESUMO

Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1ß, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Poxviridae , Poxviridae , Animais , Carpas/genética , Edema , Interferons , Antivirais/farmacologia
20.
Fish Shellfish Immunol ; 148: 109510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521143

RESUMO

The signal transducer and activator of transcription 2 (STAT2), a downstream factor of type I interferons (IFNs), is a key component of the cellular antiviral immunity response. However, the role of STAT2 in the upstream of IFN signaling, such as the regulation of pattern recognition receptors (PRRs), remains unknown. In this study, STAT2 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized. The open reading frame (ORF) of bcSTAT2 comprises 2523 nucleotides and encodes 841 amino acids, which presents the conserved structure to that of mammalian STAT2. The dual-luciferase reporter assay and the plaque assay showed that bcSTAT2 possessed certain IFN-inducing ability and antiviral ability against both spring viremia of carp virus (SVCV) and grass carp reovirus (GCRV). Interestingly, we detected the association between bcSTAT2 and bcRIG-I through co-immunoprecipitation (co-IP) assay. Moreover, when bcSTAT2 was co-expressed with bcRIG-I, bcSTAT2 obviously suppressed bcRIG-I-induced IFN expression and antiviral activity. The subsequent co-IP assay and immunoblotting (IB) assay further demonstrated that bcSTAT2 inhibited K63-linked polyubiquitination but not K48-linked polyubiquitination of bcRIG-I, however, did not affect the oligomerization of bcRIG-I. Thus, our data conclude that black carp STAT2 negatively regulates RIG-I through attenuates its K63-linked ubiquitination, which sheds a new light on the regulation of the antiviral innate immunity cascade in vertebrates.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Reoviridae , Reoviridae , Infecções por Rhabdoviridae , Animais , Carpas/genética , Carpas/metabolismo , Infecções por Rhabdoviridae/veterinária , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Reoviridae/fisiologia , Imunidade Inata/genética , Proteínas de Peixes , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...