Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.471
Filtrar
1.
Food Res Int ; 188: 114505, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823848

RESUMO

Consumers care about the texture of fresh fish flesh, but a rapid quantitative analytical method for this has not been properly established. In this study, texture-associated biomarkers were selected by DIA-based proteomics for possible future application. Results indicated a significant decline in texture and moisture characteristics with extended storage under chilled and iced conditions, and flesh quality was categorized into three intervals. A total of 8 texture-associated biomarkers were identified in the chilled storage group, and 3 distinct ones in the iced storage group. Biomarkers were further refined based on their expression levels. Isobutyryl-CoA dehydrogenase, mitochondrial and [Phosphatase 2A protein]-leucine-carboxy methyltransferase were identified as effective texture-associated biomarkers for chilled fish, and Staphylococcal nuclease domain-containing protein 1 for iced fish. This study provided suitable proteins as indicators of fresh fish flesh texture, which could help establish a rapid and convenient texture testing method in future studies.


Assuntos
Biomarcadores , Carpas , Proteínas de Peixes , Proteômica , Alimentos Marinhos , Animais , Carpas/metabolismo , Proteômica/métodos , Biomarcadores/análise , Proteínas de Peixes/metabolismo , Alimentos Marinhos/análise , Armazenamento de Alimentos/métodos
2.
Pestic Biochem Physiol ; 202: 105942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879300

RESUMO

Long-term residue of difenoconazole (DFZ) in the environment caused multiple organ damage to aquatic organisms. Due to the potential hepatoprotective and neuroprotective properties of silybin (SIL), we hypothesized that SIL could alleviate growth inhibition, liver, and brain damage in carp induced by DFZ exposure. The in vivo experiments were divided into the Control group, the SIL group, the DFZ group and the DFZ + SIL group. The exposure concentration of DFZ was 0.39 mg/L, and the therapeutic dose of SIL was 400 mg/kg. The whole experiment lasted for 30 days. SIL was also found to reduce hepatic injury and lipid metabolism based on H&E staining, oil red O staining, and measurement of serum and liver tissue levels of ALT, AST, LDH, TG, and TC. Similarly, SIL reduced brain damage after DFZ exposure, according to H&E staining and detection transcription level of the ZO-1, ZO-2, occludin, and Claudin7 in carp brain. In terms of mechanism, the results showed that SIL inhibited the excessive production of ROS in liver and brain tissues, increased the activity of antioxidant enzymes (T-AOC, SOD, CAT) and resist oxidative stress. Also, SIL promoted the production of anti-inflammatory factors (TGF-ß1 and IL-10) and inhibited the expression of pro-inflammatory factors (TNF-α and IL-6) to reduce the inflammatory response in liver and brain tissues caused by DFZ. ln terms of ferroptosis, by lowering iron levels, upregulating ferroptosis-related genes (GPX4, SIC7A11, GCLC), and downregulating the expression of NCOA4, STEAP3, COX2, and P53, SIL was able to inhibit ferroptosis of liver and brain tissues of carp. In addition, SIL restored the reduced mitochondrial membrane potential (MMP) level and inhibited apoptosis as measured by MMP level detection, TUNEL staining, and apoptosis gene transcript levels. In this study, we analyzed the interactions between genes and proteins associated with oxidative stress, inflammation, ferroptosis and apoptosis using the String database and ranked the nodes in the network using the Cytoscape plugin Cytohubba, and found that P53, Caspase3, TNF-α, IL-6 and Bcl-2 were the key hub genes. Our study not only revealed the multiple pharmacological activities of SIL, but also provided a reference for the prevention and reduction pesticide hazards to aquatic organisms.


Assuntos
Apoptose , Encéfalo , Carpas , Dioxolanos , Ferroptose , Inflamação , Fígado , Estresse Oxidativo , Silibina , Animais , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Apoptose/efeitos dos fármacos , Silibina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Dioxolanos/farmacologia , Carpas/metabolismo , Inflamação/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Triazóis/farmacologia , Triazóis/toxicidade , Antioxidantes/metabolismo , Antioxidantes/farmacologia
3.
Pestic Biochem Physiol ; 202: 105930, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879323

RESUMO

Due to the widespread use of metolachlor (MET), the accumulation of MET and its metabolites in the environment has brought serious health problems to aquatic organisms. At present, the toxicity of MET on the physiological metabolism of aquatic animals mainly focused on the role of enzymes. There is still a lack of research on the molecular mechanisms of MET hepatotoxicity, especially on antagonizing MET toxicity. Therefore, this study focuses on grass carp hepatocytes (L8824 cells) closely related to toxin accumulation. By establishing a MET exposed L8824 cells model, it is determined that MET exposure induces pyrolytic inflammation of L8824 cells. Subsequent mechanistic studies found that MET exposure induces pyroptosis in L8824 cells through mitochondrial dysfunction, and siCaspase-1 inhibits the MET induced ROS production, suggesting a regulation of ROS-NLRP3- Caspase-1 pyroptotic inflammation cycling center in MET induced injury to L8824 cells. Molecular docking revealed a strong binding energy between melatonin (MT) and Caspase-1. Finally, a model of L8824 cells with MT intervention in MET exposure was established. MT can antagonize the pyroptosis induced by MET exposure in L8824 cells by targeting Caspase-1, thereby restoring mitochondrial function and inhibiting the ROS-pyroptosis cycle. This study discovered targets and mechanisms of MT regulating pyroptosis in MET exposed-L8824 cells, and the results are helpful to provide new targets for the design of MET antidotes.


Assuntos
Acetamidas , Carpas , Hepatócitos , Melatonina , Simulação de Acoplamento Molecular , Animais , Carpas/metabolismo , Melatonina/farmacologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Acetamidas/toxicidade , Acetamidas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Piroptose/efeitos dos fármacos , Caspase 1/metabolismo , Herbicidas/toxicidade , Simulação por Computador , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
4.
Pestic Biochem Physiol ; 202: 105941, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879332

RESUMO

Emamectin benzoate (EMB) is extensively used as a crop protection agent. Overuse of EMB poses a serious threat to the quality of water and non-target organisms in the environment. Resveratrol (RES) is a natural phytoalexin with the function of anti-oxidation and anti-inflammation. Nonetheless, it is unclear whether EMB affects the expression of cytokines and induces autophagy, apoptosis, and necroptosis of hepatocytes (L8824 cell) in grass carp (Ctenopharyngodon idella), and whether RES has an attenuate function in this process. Therefore, we established the L8824 cells model of EMB exposure and treated it with RES. The results showed that compared with the control (CON) group, EMB exposure significantly increased the nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) activity, and the expression of iNOS and phosphorylated nuclear factor kappa B (p-NF-κB) (P < 0.05). In addition, compared with the CON group, the results of flow cytometry and dansylcadaverine (MDC) staining showed a significant increase in apoptosis and autophagy in the EMB-exposed group (P < 0.05) with the activation of the B-cell lymphoma-2 (Bcl-2)/Bcl-2 associated X (Bax)/cysteine-aspartic acid protease 3 (Caspase-3)/cysteine-aspartic acid protease 9 (Caspase-9) pathway and microtubule-associated protein light chain 3 (LC3)/sequestosome 1 (p62)/Beclin1 pathway. EMB exposure significantly increased the mRNA and protein expression of receptor-interacting protein 1 (RIPK1)/receptor-interacting protein 3 (RIPK3)/mixed the lineage kinase domain-like (MLKL) pathway (P < 0.05). Moreover, EMB exposure significantly increased the expression of genes related to immunity (immunoglobulin G (IgG), immunoglobulin M (IgM), and immunoglobulin D (IgD), and antimicrobial peptide-related genes expression including ß-defensin and hepcidin) (P < 0.05). The addition of RES significantly diminished autophagy, apoptosis, necroptosis, and immunity-related gene expression by inhibiting iNOS activity, NO content, and the protein expression of iNOS and p-NF-κB. In conclusion, RES attenuated autophagy, apoptosis, and necroptosis in EMB-exposed L8824 cells via suppression of the NO system/NF-κB signaling pathway.


Assuntos
Carpas , Ivermectina , NF-kappa B , Óxido Nítrico , Resveratrol , Transdução de Sinais , Animais , Carpas/metabolismo , NF-kappa B/metabolismo , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Ivermectina/farmacologia , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Resveratrol/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Apoptose/efeitos dos fármacos , Linhagem Celular , Autofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo
5.
Pestic Biochem Physiol ; 202: 105935, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879327

RESUMO

Imidacloprid (IMI) is a contaminant widespread in surface water, causing serious intestinal damage in the common carp. Melatonin (MT), an endogenous indoleamine hormone, plays a crucial role in mitigating pesticide-induced toxicity. Our previous research has demonstrated that MT effectively reduces the production of intestinal microbial-derived signal peptidoglycan (PGN) induced by IMI, thereby alleviating intestinal tight junction injuries in the common carp. In this study, we performed a transcriptomic analysis to explore the effect of MT on the IMI exposure-induced gut damage of the common carp. The results elucidated that the ferroptosis, mitogen-activated protein kinases (MAPKs), and nucleotide oligomerization domain (NOD)-like signaling pathways were significantly associated with IMI exposure and MT treatment. Meanwhile, the exposure to IMI resulted in the formation of pyroptotic bodies and distinct morphological features of ferroptosis, both mitigated with the addition of MT. Immunofluorescence double staining demonstrated that MT abolished the elevated expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and Gasdermin D (GSDMD) induced by IMI, as well as reduced expression of ferritin heavy chains (FTH) and glutathione peroxidase 4 (GPX4) in gut tissues. Subsequently, we found that the exposure to IMI or PGN enhanced the expression of toll-like receptors (TLR) 2 (a direct recognition receptor of PGN) triggering the P38MAPK signaling pathway, thereby aggravating the process of pyroptosis and ferroptosis of cell models. The addition of MT or SB203580 (a P38MAPK inhibitor) significantly reduced pyroptotic cells, and also decreased iron accumulation. Consequently, these results indicate that MT alleviates IMI-induced pyroptosis and ferroptosis in the gut of the common carp through the PGN/TLR2/P38MAPK pathway.


Assuntos
Carpas , Ferroptose , Melatonina , Neonicotinoides , Nitrocompostos , Peptidoglicano , Piroptose , Animais , Carpas/metabolismo , Ferroptose/efeitos dos fármacos , Melatonina/farmacologia , Piroptose/efeitos dos fármacos , Neonicotinoides/farmacologia , Neonicotinoides/toxicidade , Peptidoglicano/farmacologia , Nitrocompostos/toxicidade , Nitrocompostos/farmacologia , Inseticidas/toxicidade , Intestinos/efeitos dos fármacos
6.
J Environ Radioact ; 276: 107443, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733661

RESUMO

To follow up field observations in the Chornobyl Exclusion Zone (ChEZ), a series of controlled model aquarium experiments were conducted to determine the uptake and depuration rates of 137Cs and 90Sr in silver Prussian carp (Carassius gibelio) in fresh water, varying in temperature from 5 to 27 °C, with daily feeding rates of 0-1.5 % fish weight day-1. In the present study, the 137Cs uptake rates in muscle tissues directly from water, 0.05-0.09 day-1 at temperatures of 5-27 °C, were significantly lower than previously reported for fish fed under natural conditions in contaminated lakes within the ChEZ. The rate of 90Sr uptake in bone tissues of silver Prussian carp varied from 0.055 day-1 at a water temperature of 5 °C and feeding rates ≤0.15 % fish weight day-1 to 1.5 ± 0.2 day-1 at a temperature of 27 ± 1 °Ð¡ and at the highest tested feeding rate of 1.5 % day-1. The rate of decrease of 137Cs concentration in muscle tissues was kb = 0.0028 ± 0.0004 day-1 (T1/2 = 248 ± 35 days) at the lowest water temperature tested (5 °Ð¡). At water temperatures between 13 and 26 °Ð¡ and a feeding rate of 0.15 % day-1, the rate increased to kb = 0.0071-0.0092 day-1 (T1/2 = 75-99 days). The rates of decrease of 90Sr activity concentration in bone tissues at water temperatures between 22 and 25 °Ð¡ and a feeding rate of 0.5 % day-1 were kb=0.004-0.0014 day-1, and the associated biological half-life T1/2 ranged 50-160 days, respectively. The present work supported conclusions related to the main pathways of 137Cs and 90Sr uptake by silver Prussian carp, and demonstrated the usefulness of combining field and laboratory uptake and depuration experiments.


Assuntos
Carpas , Radioisótopos de Césio , Monitoramento de Radiação , Radioisótopos de Estrôncio , Poluentes Radioativos da Água , Animais , Radioisótopos de Césio/metabolismo , Radioisótopos de Césio/análise , Poluentes Radioativos da Água/metabolismo , Poluentes Radioativos da Água/análise , Carpas/metabolismo , Radioisótopos de Estrôncio/metabolismo , Radioisótopos de Estrôncio/análise
7.
Sci Total Environ ; 938: 173611, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815832

RESUMO

The study provides a descriptive understanding of when fish (Cyprinus carpio model) are the source or sink of phosphorus. Dissolved reactive phosphorus (DRP; PO4-P) losses (51.1 ± 5.9 % of intake-P) increase at excess of bioavailable P (>0.83 g 100 g-1 dry matter, DM fed) or when food (digestible) N:P mass ratio (≤4.4:1) approaches organismal storage threshold (~4:1). This is known, however, even at a sub-threshold food P content (0.57 g 100 g-1 DM) and food N:P mass ratio (7.3:1), DRP losses (57.8 ± 4.5 % of intake-P) may be extraordinary if two indispensable amino acids are biologically insufficient (lysine ≤1.43 g, methionine ≤0.39 g 100 g-1 DM fed). Given that methionine and lysine are sufficient, DRP losses cease (≈0 %) and even some P from water is absorbed, given there is support from non-protein energy (NPE). Insufficient NPE (<180 kcal 100 g-1 DM fed) may drive DRP losses (81.6 ± 4.3 % of intake-P) beyond expected levels (46-59 % of intake-P) at a given food P content (0.91 g 100 g-1 DM). Natural food seldom fulfills low P, high lysine + methionine, and high NPE contents simultaneously, thus keeping fish in a perpetual P recycling for algae (scaleless carp > scaly carp). Such P recycling ceases only during basal metabolism. During feeding state, the richness of lysine + methionine bound N and lipid + carbohydrate bound C in the food base may enhance the fishes' threshold of P storage. P storage can be diminished when they are insufficient. We show that for fish, the decision of P recycling or not recycling (for algae) may change based on the supply of specific fractions of N or C from the food web or metabolic variations (basal metabolism, presence of scales). NOVELTY STATEMENT: The ecological stoichiometry theory is better connected to fish nutritional bioenergetics for better understanding and biomanipulation of eutrophication processes.


Assuntos
Dieta , Fósforo , Animais , Fósforo/análise , Dieta/veterinária , Carpas/metabolismo , Ração Animal/análise
8.
Mol Reprod Dev ; 91(5): e23744, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38800960

RESUMO

This study unravels the intricate interplay between photoperiod, melatonin, and kisspeptin to orchestrate the pubertal onset of Common carp. Female fingerlings exposed to long days (LD) exhibited a hormonal crescendo, with upregulated hypothalamic-pituitary-ovarian (HPO) axis genes (kiss1, kiss1r, kiss2, gnrh2, gnrh3) and their downstream targets (lhr, fshr, ar1, esr1). However, the expression of the melatonin receptor (mtnr1a) diminished in LD, suggesting a potential inhibitory role. This hormonal symphony was further amplified by increased activity of key transcriptional regulators (gata1, gata2, cdx1, sp1, n-myc, hoxc8, plc, tac3, tacr3) and decreased expression of delayed puberty genes (mkrn1, dlk1). In contrast, short days (SD) muted this hormonal chorus, with decreased gnrh gene and regulator expression, elevated mtnr1a, and suppressed gonadal development. In in-vitro, estradiol mimicked the LD effect, boosting gnrh and regulator genes while dampening mtnr1a and melatonin-responsive genes. Conversely, melatonin acted as a conductor, downregulating gnrh and regulator genes and amplifying mtnr1a. Our findings illuminate the crucial roles of melatonin and kisspeptin as opposing forces in regulating pubertal timing. LD-induced melatonin suppression allows the kisspeptin symphony to flourish, triggering GnRH release and, ultimately, gonadal maturation. This delicate dance between photoperiod, melatonin, and kisspeptin orchestrates common carp's transition from juvenile to reproductive life.


Assuntos
Carpas , Kisspeptinas , Melatonina , Fotoperíodo , Maturidade Sexual , Animais , Melatonina/metabolismo , Kisspeptinas/metabolismo , Kisspeptinas/genética , Feminino , Carpas/metabolismo , Carpas/genética , Carpas/crescimento & desenvolvimento , Carpas/fisiologia , Maturidade Sexual/fisiologia , Proteínas de Peixes/metabolismo , Proteínas de Peixes/genética
9.
Food Chem ; 452: 139542, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728898

RESUMO

This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of ß-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.


Assuntos
Carpas , Etanol , Proteínas de Peixes , Glicerol , Simulação de Dinâmica Molecular , Animais , Carpas/metabolismo , Glicerol/química , Glicerol/farmacologia , Etanol/química , Etanol/farmacologia , Proteínas de Peixes/química , Propilenoglicol/química , Miosinas/química , Miosinas/metabolismo , Agregados Proteicos , Estrutura Secundária de Proteína
10.
Artigo em Inglês | MEDLINE | ID: mdl-38759883

RESUMO

In this study, grass carp (33.28 ± 0.05 g) were fed three diets for 8 weeks: control (crude protein [CP] 30%, crude lipid [CL] 6%), low protein (LP; CP16%, CL6%), and low protein with high-fat (LPHF; CP16%, CL10%). The final body weight decreased in the LP and LPHF groups compared to the Control (P < 0.05). Liver triglycerides, total cholesterol, and nonesterified fatty acids were higher in the LP group than the Control, whereas these indexes in the LPHF group were higher than those in the LP group (P < 0.05). The LP group had intestinal barrier damage, while the LPHF group had a slight recovery. TNF-α, IL-8, and IL-1ß content were lower in the LP group than in the Control (P < 0.05), and even higher in the LPHF group (P < 0.05). The expressions of endoplasmic reticulum stress-related genes Activating transcription factor 6 (ATF-6) and Glucose-regulated protein (GRP78) were higher in the LPHF group against the LP group (P < 0.05). The IL-1ß and TNF-α content negatively correlated with intestinal Actinomycetes and Mycobacterium abundance (P < 0.05). The muscle fiber diameter was smaller in both the LP and LPHF groups than the control (P < 0.05), with the LP group showing metabolites related to protein digestion and absorption, and LPHF group exhibiting metabolites related to taste transmission. The results demonstrate reducing dietary protein affects growth, causing liver lipid accumulation, reduced enteritis response, and increased muscle tightness, while increasing fat content accelerates fat accumulation and inflammation.


Assuntos
Ração Animal , Carpas , Fígado , Animais , Carpas/metabolismo , Carpas/crescimento & desenvolvimento , Carpas/fisiologia , Ração Animal/análise , Fígado/metabolismo , Fígado/efeitos dos fármacos , Proteínas Alimentares/farmacologia , Proteínas de Peixes/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Intestinos/fisiologia
11.
Environ Geochem Health ; 46(6): 196, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695954

RESUMO

We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.


Assuntos
Carpas , Exposição Dietética , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rios , Poluentes Químicos da Água , Animais , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Rios/química , Medição de Risco , Sedimentos Geológicos/química , Carpas/metabolismo , Humanos , Monitoramento Ambiental/métodos
12.
Gene Expr Patterns ; 52: 119367, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754601

RESUMO

Amur common carp (Cyprinus carpio haematopterus), is a commercially important fish species that has been genetically improved over the years through selective breeding. Despite its significance in aquaculture, limited knowledge exists regarding its embryogenesis and immune genes associated with its early stages of life. This article represents a detailed study of the embryogenesis and innate immune gene expression analysis of the Amur common carp during its ontogenic developments. The entire embryonic developmental process of ∼44 h could be divided into eight periods, beginning with the formation of the zygote, followed by cleavage, morula, blastula, segmentation, pharyngula, and hatching. The segmentation period, which lasted for ∼ 6 h, exhibited the most significant changes, such as muscle contraction, rudimentary heart formation, increased somites number, and the initiation of blood circulation throughout the yolk. The expression of immune-related genes, namely toll-like receptor (TLR)4, nucleotide-binding oligomerization domain (NOD)1, NOD2 and interleukin (IL)-8 showed stage-specific patterns with varying levels of expression across the developmental stages. The TLR4 gene exhibited the highest expression during the neurella stage, while NOD1 and NOD2 peaked during hatching and IL-8 reached its maximum level during the gastrula stage. This is the first report of the innate immune gene expression during the embryogenesis of Amur common carp.


Assuntos
Carpas , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Carpas/genética , Carpas/metabolismo , Carpas/embriologia , Carpas/imunologia , Desenvolvimento Embrionário/genética , Imunidade Inata/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Embrião não Mamífero/metabolismo
13.
Sci Total Environ ; 931: 172947, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703837

RESUMO

This study delves into the eco-endocrinological dynamics concerning the impact of dexamethasone (DXE) on the interrenal axis in juvenile carp, Cyprinus carpio. Through a comprehensive analysis, we investigated the effects of DXE exposure on oxidative stress, biochemical biomarkers, gene expression, and bioaccumulation within the interrenal axis. Results revealed a concentration-dependent escalation of cellular oxidation biomarkers, including 1) hydroperoxides content (HPC), 2) lipid peroxidation level (LPX), and 3) protein carbonyl content (PCC), indicative of heightened oxidative stress. Concurrently, the activity of critical antioxidant enzymes, superoxide dismutase (SOD), and catalase (CAT), significantly increased, underscoring the organism's response to oxidative insult. Notable alterations were observed in biochemical biomarkers, particularly Gamma-glutamyl-transpeptidase (GGT) and alkaline phosphatase (ALP) activity, with GGT displaying a significant decrease with increasing DXE concentrations. Gene expression analysis revealed a significant upregulation of stress and inflammation response genes, as well as those associated with sensitivity to superoxide ion presence and calcium signaling, in response to DXE exposure. Furthermore, DXE demonstrated a concentration-dependent presence in interrenal tissue, with consistent bioconcentration factors observed across all concentrations tested. These findings shed light on the physiological and molecular responses of juvenile carp to DXE exposure, emphasizing the potential ecological implications of DXE contamination in aquatic environments. Understanding these dynamics is crucial for assessing the environmental impact of glucocorticoid pollutants and developing effective management strategies to mitigate their adverse effects on aquatic ecosystems.


Assuntos
Carpas , Dexametasona , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Carpas/fisiologia , Poluentes Químicos da Água/toxicidade , Biomarcadores/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos
14.
Aquat Toxicol ; 272: 106961, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781688

RESUMO

In recent years, the intensive production of nanoparticles with a wide application has led to their transfer to the environment, including the water ecosystem. The accumulation of nanoparticles in fish, causing various pathological changes in the host, raises certain concerns. In the current study, we investigated the penetration and bioaccumulation of Fe3O4 nanoparticles, in the liver of common carp (Cyprinus carpio Linnaeus, 1758). Common carp juveniles were exposed to Fe3O4 nanoparticles at concentrations of 10 and 100 mg. After 7 days, their livers were examined by light and transmission electron microscopes. Compared to normal fish's liver, after using a small concentration (10 mg) of nanoparticles, changes were observed in erythrocytes, hepatocytes, intracellular canaliculi, and bile ducts of the liver. At a high concentration (100 mg), the intensity of changes increased significantly. The liver's capsule was damaged, and a considerable number of hepatocytes were completely destroyed. Additionally, the walls of blood vessels and biliary ductule walls was notably disturbed. It was found that the intensity of pathologies occurring in the liver, increases proportionally with higher concentrations of nanoparticles. Confirmation via electron microscopic methods revealed that Fe3O4 nanoparticles, when administered with food to common carp, enter the fish's liver through erythrocytes localized in the lumen of blood vessels. From there, they traverse through the endothelium of vessels, proceed to hepatocytes, including cytoplasmic organelles, intracellular canaliculi, biliary ductules, and eventually reach the bile ducts. Fe3O4 nanoparticles in all structural elements of fish liver was up to 20 nm. Therefore, high concentrations of nanoparticles in the environment harms the bodies of aquatic organisms, including fish. The changes identified in the liver of common carp in the present study are valuable information in assessing possible risks to other components of the aquatic ecosystem and organisms.


Assuntos
Carpas , Fígado , Poluentes Químicos da Água , Animais , Carpas/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/ultraestrutura , Poluentes Químicos da Água/toxicidade , Microscopia Eletrônica de Transmissão , Nanopartículas Magnéticas de Óxido de Ferro/toxicidade
15.
Sci Rep ; 14(1): 8291, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594566

RESUMO

Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 µM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.


Assuntos
Carpas , Inseticidas , Receptores Nicotínicos , Tiazinas , Animais , Inseticidas/toxicidade , Carpas/metabolismo , Antioxidantes/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Estresse Oxidativo , Receptores Nicotínicos/metabolismo , Leucócitos/metabolismo , Amidas
16.
Environ Pollut ; 349: 123966, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621451

RESUMO

Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.


Assuntos
Carpas , Exposição Dietética , Éteres Difenil Halogenados , Janus Quinases , Transdução de Sinais , Poluentes Químicos da Água , Animais , Éteres Difenil Halogenados/toxicidade , Carpas/metabolismo , Carpas/fisiologia , Transdução de Sinais/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Comportamento Alimentar/efeitos dos fármacos
17.
Front Endocrinol (Lausanne) ; 15: 1373623, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596226

RESUMO

Hybridization and polyploid breeding are the main approaches used to obtain new aquaculture varieties. Allotriploid crucian carp (3n) with rapid growth performance was generated by mating red crucian carp (RCC) with allotetraploids (4n). Fish growth is controlled by the growth hormone (GH)/insulin-like growth factor (IGF) axis. In the present study, we examined the expression characteristics of GH/IGF axis genes in hybrids F1, 4n, 3n, RCC and common carp (CC). The results showed that GHRa, GHRb, IGF1, IGF2, and IGF-1Ra were highly expressed in 3n compared with RCC and CC, whereas IGF3 was undetectable in the liver in RCC, CC and 3n. GHRa and GHRb had low expression in the 4n group. In hybrid F1, GHRa expression was low, whereas GHRb was highly expressed compared to the levels in RCC and CC. Moreover, in hybrid F1, the expression of IGF3 was higher, and the expression of IGF1 and IGF2 was lower than that in the RCC and CC, whereas the expression of IGF-1Ra was similar to that in RCC and CC. For the IGFBP genes, IGFBP1 had higher expression in 3n compared than that in RCC and CC, while other IGFBP genes were not high expressed in 3n. Among the genes detected in this study, 11 genes were nonadditively expressed in 3n, with 5 genes in the transgressive upregulation model. We proposed that the 11 nonadditive expression of GH/IGF axis genes is related to growth heterosis in 3n. This evidence provides new insights into hybridization and polyploid breeding from the perspective of hormone regulation.


Assuntos
Carcinoma de Células Renais , Carpas , Hormônio do Crescimento Humano , Neoplasias Renais , Animais , Carpas/genética , Carpas/metabolismo , Triploidia , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Vigor Híbrido/genética , Peptídeos Semelhantes à Insulina , Hormônio do Crescimento Humano/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Perfilação da Expressão Gênica
18.
Environ Res ; 252(Pt 3): 118967, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38642643

RESUMO

Sulfadimidine (SM2) is an N-substituted derivative of p-aminobenzenesulfonyl structure. This study aimed to analyze the metabolism of SM2 in carp (Cyprinus carpio). The carps were fed with SM2 at a dose of 200 mg/(kg · bw) and then killed. The blood, muscle, liver, kidney, gill, other guts, and carp aquaculture water samples were collected. The UHPLC-Q-Exactive Plus Orbitrap-MS was adopted for determining the metabolites of SM2 in the aforementioned samples. Twelve metabolites, which were divided into metabolites in vivo and metabolites in vitro, were identified using Compound Discoverer software. The metabolic pathways in vivo of SM2 in carp included acetylation, hydroxylation, glucoside conjugation, glycine conjugation, carboxylation, glucuronide conjugation, reduction, and methylation. The metabolic pathways in vitro included oxidation and acetylation. This study clarified the metabolites and metabolic pathways of SM2 in carp and provided a reference for further pharmacodynamic evaluation and use in aquaculture.


Assuntos
Carpas , Carpas/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Redes e Vias Metabólicas , Sulfonamidas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Espectrometria de Massas/métodos
19.
Food Chem ; 451: 139426, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670026

RESUMO

Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.


Assuntos
Carpas , Glicólise , Mitocôndrias , Niacina , Animais , Carpas/metabolismo , Niacina/metabolismo , Niacina/deficiência , Mitocôndrias/metabolismo , Ração Animal/análise , Homeostase , Culinária , Carne/análise
20.
Ecotoxicol Environ Saf ; 275: 116246, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38537478

RESUMO

Cadmium (Cd) pollution is considered a pressing challenge to eco-environment and public health worldwide. Although it has been well-documented that Cd exhibits various adverse effects on aquatic animals, it is still largely unknown whether and how Cd at environmentally relevant concentrations affects iron metabolism. Here, we studied the effects of environmental Cd exposure (5 and 50 µg/L) on iron homeostasis and possible mechanisms in common carp. The data revealed that Cd elevated serum iron, transferrin saturation and iron deposition in livers and spleens, leading to the disruption of systemic iron homeostasis. Mechanistic investigations substantiated that Cd drove hemolysis by compromising the osmotic fragility and inducing defective morphology of erythrocytes. Cd concurrently exacerbated hepatic inflammatory responses, resulting in the activation of IL6-Stat3 signaling and subsequent hepcidin transcription. Notably, Cd elicited ferroptosis through increased iron burden and oxidative stress in livers. Taken together, our findings provide evidence and mechanistic insight that environmental Cd exposure could undermine iron homeostasis via erythrotoxicity and hepatotoxicity. Further investigation and ecological risk assessment of Cd and other pollutants on metabolism-related effects is warranted, especially under the realistic exposure scenarios.


Assuntos
Carpas , Ferroptose , Animais , Cádmio/metabolismo , Carpas/metabolismo , Hemólise , Fígado , Inflamação/induzido quimicamente , Inflamação/metabolismo , Homeostase , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...