Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.646
Filtrar
1.
Environ Monit Assess ; 196(6): 524, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717730

RESUMO

The utilization of agricultural waste to create value-added goods has benefited waste management while resolving cost-effectiveness and food shortage problems. Returning biochar produced from agricultural waste to the agricultural field is a sustainable method of enhancing crop production while lowering the environmental effect of typical fertilizers. It also enhances soil condition by modulating pH, soil organic carbon, water retention capacity, and soil ion exchange potential. The current work concentrated on the production of iron oxide-loaded biochar from banana peels. Pyrolysis was carried out at temperatures ranging from 400 to 500 °C. The co-precipitation technique was utilized to impregnate Fe3O4 nanoparticles on biochar, and it showed to be an effective and trustworthy method. Loading was done in situ. Characterization techniques such as XRD, FTIR, CHNS, and TGA were employed to characterize synthesized materials. Swelling ratio, water retention, absorbance, and equilibrium water content percentage were used to study the adsorption capabilities of Fe3O4-loaded biochar, soil, and raw biochar. As a consequence, Fe3O4-enriched biochar was shown to have better adsorption capability than raw biochar, which in turn showed better adsorption properties than soil. Iron-loaded biochar was employed as a fertilizer in Abelmoschus esculentus (Okra), and the results showed that it is a cost-effective, environmentally friendly fertilizer.


Assuntos
Agricultura , Carvão Vegetal , Fertilizantes , Solo , Fertilizantes/análise , Carvão Vegetal/química , Agricultura/métodos , Solo/química , Ferro/química , Adsorção
2.
Food Res Int ; 186: 114161, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729685

RESUMO

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Assuntos
Antioxidantes , Caseínas , Enzimas Imobilizadas , Glutaral , Cabras , Iridoides , Pepsina A , Peptídeos , Antioxidantes/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Caseínas/química , Animais , Pepsina A/metabolismo , Pepsina A/química , Glutaral/química , Peptídeos/química , Iridoides/química , Hidrólise , Carvão Vegetal/química
3.
Sci Rep ; 14(1): 10391, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710729

RESUMO

Colombia has great potential to produce clean energy through the use of residual biomass from the agricultural sector, such as residues obtained from the life cycle of rice production. This document presents a mixed approach methodology study to examine the combustion of rice husks as a possible energy alternative in the Tolima department of Colombia. First, the physicochemical characteristics of the rice husk were analyzed to characterize the raw material. Next, System Advisor Model (SAM) software was used to model a bioenergy plant to obtain biochar, bio-oil, and biogas from the combustion of rice husks and generate performance matrices, such as thermal efficiency, heat rate, and capacity factor. Then, the project was evaluated for financial feasibility using a mathematical model of net present value (NPV) with a planning horizon of 5 years. Finally, a subset of the local population was surveyed to assess perspectives on the project in the region. The results of the rice husk physicochemical analysis were the following: nitrogen content (0.74%), organic carbon (38.04%), silica (18.39%), humidity determination (7.68%), ash (19.4%), presence of carbonates (< 0.01%), and pH (6.41). These properties are adequate for the combustion process. The SAM simulation showed that the heat transferred in the boiler was 3180 kW, maintaining an efficiency between 50 and 52% throughout the 12 months of the year, meaning that the rice husk can generate electricity and thermal energy. The financial analysis showed that the internal rate of return (IRR) was 6% higher than the opportunity interest rate (OIR), demonstrating economic feasibility of the project. The design and creation of a rice husk processing plant is socially and environmentally viable and has the potential to contribute to the economic development of the Tolima community and reduce greenhouse gases. Likewise, this activity has the potential to promote energy security for consumers and environmental sustainability while at the same time being economically competitive.


Assuntos
Oryza , Oryza/química , Colômbia , Biocombustíveis/análise , Biomassa , Agricultura/métodos , Carvão Vegetal/química
4.
Sci Rep ; 14(1): 11583, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773106

RESUMO

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Assuntos
Carvão Vegetal , Azul de Metileno , Ulva , Poluentes Químicos da Água , Purificação da Água , Azul de Metileno/química , Carvão Vegetal/química , Ulva/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Purificação da Água/métodos , Enxofre/química , Concentração de Íons de Hidrogênio , Água/química , Algas Comestíveis
5.
Plant Physiol Biochem ; 211: 108711, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733941

RESUMO

Trace heavy metals (HMs) such as copper (Cu) and nickel (Ni) are toxic to plants, especially tomato at high levels. In this study, biochar (BC) was treated with amino acids (AA) to enhance amino functional groups, which effectively alleviated the adverse effects of heavy metals (HMs) on tomato growth. Hence, this study aimed to evaluate the effect of glycine and alanine modified BC (GBC/ABC) on various tomato growth parameters, its physiology, fruit yield and Cu/Ni uptake under Cu and Ni stresses. In a pot experiment, there was 21 treatments with three replications having two rates of simple BC and glycine/alanine enriched BC (0.5% and 1% (w/w). Cu and Ni stresses were added at 150 mg kg-1 respectively. Plants were harvested after 120 days of sowing and subjected to various analysis. Under Cu and Ni stresses, tomato roots accumulated more Cu and Ni than shoots and fruits, while GBC and ABC application significantly enhanced the root and shoot dry weight irrelevant to the stress conditions. Both rates of GBC decreased the malondialdehyde and hydrogen peroxide levels in plants. The addition of 0.5% GBC with Cu enhanced the tomato fruit dry weight by 1.3 folds in comparison to the control treatment; while tomato fruit juice content also increased (50%) in the presence of 0.5% GBC with Ni as compared to control. In summary, these results demonstrated that lower rate of GBC∼0.5% proved to be the best in mitigating the Cu and Ni stress on tomato plant growth by enhancing the fruit production.


Assuntos
Aminoácidos , Carvão Vegetal , Cobre , Frutas , Níquel , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Níquel/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Carvão Vegetal/farmacologia , Aminoácidos/metabolismo , Poluentes do Solo , Estresse Fisiológico/efeitos dos fármacos , Solo/química
6.
Environ Monit Assess ; 196(5): 492, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691228

RESUMO

Bisphenol A (BPA) is an essential and extensively utilized chemical compound with significant environmental and public health risks. This review critically assesses the current water purification techniques for BPA removal, emphasizing the efficacy of adsorption technology. Within this context, we probe into the synthesis of magnetic biochar (MBC) using co-precipitation, hydrothermal carbonization, mechanical ball milling, and impregnation pyrolysis as widely applied techniques. Our analysis scrutinizes the strengths and drawbacks of these techniques, with pyrolytic temperature emerging as a critical variable influencing the physicochemical properties and performance of MBC. We explored various modification techniques including oxidation, acid and alkaline modifications, element doping, surface functional modification, nanomaterial loading, and biological alteration, to overcome the drawbacks of pristine MBC, which typically exhibits reduced adsorption performance due to its magnetic medium. These modifications enhance the physicochemical properties of MBC, enabling it to efficiently adsorb contaminants from water. MBC is efficient in the removal of BPA from water. Magnetite and maghemite iron oxides are commonly used in MBC production, with MBC demonstrating effective BPA removal fitting well with Freundlich and Langmuir models. Notably, the pseudo-second-order model accurately describes BPA removal kinetics. Key adsorption mechanisms include pore filling, electrostatic attraction, hydrophobic interactions, hydrogen bonding, π-π interactions, and electron transfer surface interactions. This review provides valuable insights into BPA removal from water using MBC and suggests future research directions for real-world water purification applications.


Assuntos
Compostos Benzidrílicos , Carvão Vegetal , Fenóis , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Compostos Benzidrílicos/química , Compostos Benzidrílicos/análise , Fenóis/análise , Fenóis/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos
7.
Environ Geochem Health ; 46(6): 198, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695979

RESUMO

The combined remediation of Cd-contaminated soil using biochar and microorganisms has a good application value. In this study, the effect of chicken manure-derived biochar on CdCO3 precipitation induced by Comamonas testosteroni ZG2 was investigated. The results showed that biochar could be used as the carrier of strain ZG2, enhance the resistance of strain ZG2 to Cd, and reduce the toxicity of Cd to bacterial cells. Cd adsorbed by biochar could be induced by strain ZG2 to form CdCO3 precipitation. Strain ZG2 could also induce CdCO3 precipitation when biochar was added during precipitation formation and fermentation broth formation. The CdCO3 precipitation could enter the pores of the biochar and attach to the surface of the biochar. The single and combined effects of strain ZG2 and biochar could realize the remediation of Cd-contaminated soil to a certain extent. The overall effect was in the order of strain ZG2 with biochar > biochar > strain ZG2. The combination of strain ZG2 and biochar reduced soil available Cd by 48.2%, the aboveground biomass of pakchoi increased by 72.1%, and the aboveground Cd content decreased by 73.3%. At the same time, it promoted the growth and development of the root system and improved the microbial community structure of the rhizosphere soil. The results indicated that chicken manure-derived biochar could enhance the stability of CdCO3 precipitation induced by strain ZG2, and strain ZG2 combined with biochar could achieve a more stable remediation effect on Cd-contaminated soil.


Assuntos
Cádmio , Carvão Vegetal , Galinhas , Comamonas testosteroni , Esterco , Microbiologia do Solo , Poluentes do Solo , Carvão Vegetal/química , Animais , Poluentes do Solo/química , Cádmio/química , Biodegradação Ambiental
8.
Environ Geochem Health ; 46(6): 182, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695980

RESUMO

Due to the development of industries such as mining, smelting, industrial electroplating, tanning, and mechanical manufacturing, heavy metals were discharged into water bodies seriously affecting water quality. Bamboo charcoal, as an environmentally friendly new adsorbent material, in this paper, the virgin bamboo charcoal (denoted as WBC) was modified with different concentrations of KMnO4 and NaOH to obtain KMnO4-modified bamboo charcoal (KBC) and NaOH-modified bamboo charcoal (NBC) which was used to disposed of water bodies containing Cu2+ and Zn2+. The main conclusions were as following: The adsorption of Cu2+ by WBC, KBC and NBC was significantly affected by pH value, and the optimum pH was 5.0. Differently, the acidity and alkalinity of the solution doesn't effect the adsorption of Zn2+ seriousely. Meanwhile, surface diffusion and pore diffusion jointly determine the adsorption rate of Cu2+ and Zn2+. The test result of EDS showed that Mn-O groups formed on the surface of K6 (WBC treated by 0.06 mol/L KMnO4) can promote the adsorption of Cu2+ and Zn2+ at a great degree. The O content on N6(WBC treated by 6 mol/L NaOH) surface increased by 30.95% compared with WBC. It is speculated that the increase of carbonyl group on the surface of NBC is one of the reasons for the improvement of Cu2+ and Zn2+ adsorption capacity. Finally, the residual concentrations of Cu2+ and Zn2+ in wastewater are much lower than 0.5 mg/L and 1.0 mg/L, respectively. Thus it can be seen, KBC and NBC could be a promising adsorbent for heavy metals.


Assuntos
Carvão Vegetal , Cobre , Poluentes Químicos da Água , Zinco , Adsorção , Zinco/química , Cobre/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Permanganato de Potássio/química , Purificação da Água/métodos , Sasa/química , Hidróxido de Sódio/química
9.
Sci Rep ; 14(1): 10870, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740776

RESUMO

Pea, member of the plant family Leguminosae, play a pivotal role in global food security as essential legumes. However, their production faces challenges stemming from the detrimental impacts of abiotic stressors, leading to a concerning decline in output. Salinity stress is one of the major factors that limiting the growth and productivity of pea. However, biochar amendment in soil has a potential role in alleviating the oxidative damage caused by salinity stress. The purpose of the study was to evaluate the potential role of biochar amendment in soil that may mitigate the adverse effect of salinity stress on pea. The treatments of this study were, (a) Pea varieties; (i) V1 = Meteor and V2 = Green Grass, Salinity Stress, (b) Control (0 mM) and (ii) Salinity (80 mM) (c) Biochar applications; (i) Control, (ii) 8 g/kg soil (56 g) and (iii) 16 g/kg soil (112 g). Salinity stress demonstrated a considerable reduction in morphological parameters as Shoot and root length decreased by (29% and 47%), fresh weight and dry weight of shoot and root by (85, 63%) and (49, 68%), as well as area of leaf reduced by (71%) among both varieties. Photosynthetic pigments (chlorophyll a, b, and carotenoid contents decreased under 80 mM salinity up to (41, 63, 55 and 76%) in both varieties as compared to control. Exposure of pea plants to salinity stress increased the oxidative damage by enhancing hydrogen peroxide and malondialdehyde content by (79 and 89%), while amendment of biochar reduced their activities as, (56% and 59%) in both varieties. The activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) were increased by biochar applications under salinity stress as, (49, 59, and 86%) as well as non-enzymatic antioxidants as, anthocyanin and flavonoids improved by (112 and 67%). Organic osmolytes such as total soluble proteins, sugars, and glycine betaine were increased up to (57, 83, and 140%) by biochar amendment. Among uptake of mineral ions, shoot and root Na+ uptake was greater (144 and 73%) in saline-stressed plants as compared to control, while shoot and root Ca2+ and K+ were greater up to (175, 119%) and (77, 146%) in biochar-treated plants. Overall findings revealed that 16 g/kg soil (112 g) biochar was found to be effective in reducing salinity toxicity by causing reduction in reactive oxygen species and root and shoot Na+ ions uptake and improving growth, physiological and anti-oxidative activities in pea plants (Fig. 1). Figure 1 A schematic diagram represents two different mechanisms of pea under salinity stress (control and 80 mM NaCl) with Biochar (8 and 16 g/kg soil).


Assuntos
Carvão Vegetal , Pisum sativum , Solo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Solo/química , Fotossíntese/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Salinidade , Clorofila/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Antioxidantes/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo
10.
Sci Total Environ ; 932: 172927, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719057

RESUMO

Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.


Assuntos
Arachis , Carvão Vegetal , Microplásticos , Microbiologia do Solo , Poluentes do Solo , Solo , Carvão Vegetal/química , Arachis/microbiologia , Poluentes do Solo/análise , Solo/química , Microbiota , Rizosfera , Recuperação e Remediação Ambiental/métodos
11.
Sci Total Environ ; 932: 173061, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723970

RESUMO

Peanut yield and quality face significant threats due to climate change and soil degradation. The potential of biochar technology to address this challenge remains unanswered, though biochar is acknowledged for its capacity to enhance the soil microbial community and plant nitrogen (N) supply. A field study was conducted in 2021 on oil peanuts grown in a sand-loamy Primisol that received organic amendments at 20 Mg ha-1. The treatments consisted of biochar amendments derived from poultry manure (PB), rice husk (RB), and maize residue (MB), as well as manure compost (OM) amendment, compared to no organic amendment (CK). In 2022, during the second year after amendment, samples of bulk topsoil, rooted soil, and plants were collected at the peanut harvest. The analysis included the assessment of soil quality, peanut growth traits, microbial community, nifH gene abundance, and biological N fixation (BNF) rate. Compared to the CK, the OM treatment led to an 8 % increase in peanut kernel yield, but had no effect on kernel quality in terms of oil production. Conversely, both PB and MB treatments increased kernel yield by 10 %, whereas RB treatment showed no change in yield. Moreover, all biochar amendments significantly improved oilseed quality by 10-25 %, notably increasing the proportion of oleic acid by up to 70 %. Similarly, while OM amendment slightly decreased root development, all biochar treatments significantly enhanced root development by over 80 %. Furthermore, nodule number, fresh weight per plant, and the nifH gene abundance in rooted soil remained unchanged under OM and PB treatments but was significantly enhanced under RB and MB treatments compared to CK. Notably, all biochar amendments, excluding OM, increased the BNF rate and N-acetyl-glucosaminidase activity. These changes were attributed to alterations in soil aggregation, moisture retention, and phosphorus availability, which were influenced by the diverse physical and chemical properties of biochars. Overall, maize residue biochar contributed synergistically to enhancing soil fertility, peanut yield, and quality while also promoting increased root development, a shift in the diazotrophic community and BNF.


Assuntos
Arachis , Carvão Vegetal , Fixação de Nitrogênio , Raízes de Plantas , Solo , Arachis/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Fertilizantes , Esterco
12.
PLoS One ; 19(5): e0297024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748647

RESUMO

Despite the many articles about activated carbon with different precursors in adsorption process, no in-depth research has been carried out to understand the causes of the difference in surface adsorption characteristics of activated carbon with different precursors and different activation processes. In this work, the ability of two active carbon adsorbents made of walnut shell and peach kernel by two chemical and physical methods (totally 4 different types of activated carbon) in treatment of oily wastewater including diesel, gasoline, used oil or engine lubricant has been compared. The results show that the chemical activated peach carbon active with 97% hardness has provided the highest hardness and physical activated walnut carbon active has obtained the lowest hardness value (87%). It is also found that peach activated carbon has a higher iodine number than walnut activated carbon, and this amount can be increased using chemical methods; Therefore, the highest amount of Iodine Number is related to Peach activated carbon that is made by chemical method (1230 mg/g), and the lowest amount of iodine number is seen in walnut activated carbon that is made by physical method (1020 mg/g). moreover, the pore diameter of physical activated carbon is lower than chemical activated carbon in all cases. So that the pore diameter of chemical activated peach carbon active is equal to 22.08 µm and the measured pore diameter of physical activated peach carbon active is equal to 20.42 µm. These values for walnut are obtained as 22.74 µm and 21.86 µm, respectively. Furthermore, the temperature and pH effects on the adsorption of different synthesized oily wastewater was studied and it was found that a decrease in adsorption can be seen with an increase in temperature or decreasing the pH value, which can be referred to this fact that the process of adsorption is an exothermic process. Finally, to analyze the compatibility of adsorption isotherms with experimental data and to predict the adsorption process, three different isotherms named Langmuir, Temkin, and Freundlich isotherms were applied and their parameters were correlated. The correlation results show that the Langmuir isotherm had the best correlation in all cases compared to the Freundlich and Temkin isotherms, based on the correlation coefficient, and the calculated R2 values which was greater than 0.99 in all the studied cases.


Assuntos
Carvão Vegetal , Juglans , Prunus persica , Termodinâmica , Águas Residuárias , Juglans/química , Carvão Vegetal/química , Águas Residuárias/química , Prunus persica/química , Adsorção , Purificação da Água/métodos
13.
PLoS One ; 19(5): e0302937, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753637

RESUMO

With increasing global awareness of soil health, attention must be paid to fluorine exposure in soils, which poses a threat to human health. Therefore, this study aimed to study the fluorine adsorption characteristics of swine manure and straw biochars and their impact on fluorine adsorption-desorption in soil with batch experiments. The biochar samples originated from high-temperature anaerobic cracking of swine manure (350°C, 500°C, and 650°C) and straw (500°C). Results indicated that the adsorption of soil fluorine reached adsorption equilibrium at around 4 h after the mixing of swine manure and straw biochar. Fluorine adsorption kinetics using these biochars conformed to the quasi-two-stage kinetic model. The fluorine adsorption kinetics for biochar-treated soils conformed to the double-constant equation and the Elovich equation, and the soil treated with straw biochar showed the fastest fluorine adsorption rate. The adsorption isotherms of fluorine for biochars and biochar-treated soils could be fitted by the isothermal adsorption model of Langmuir and Freundlich. The maximal equilibrium quantity of fluorine was 73.66 mg/g for swine manure biochar. The soil, adding with 2% of swine manure biochar achieved with showed at 650°C had the smallest adsorption. This study also shows that the adsorption of fluorine by biochar gradually decreased with the increase of pH. Comparing with other factors, the mixture pH with biochars added had a significant effect on fluorine adsorption. The decreased fluorine adsorption capacities for soils treated with swine manure and straw biochars were closely related to the increased pH in soils after adding biochars. Considering the fluorine threat in soil, this study provides a theoretical basis for the application of biochars on soil fluorine adsorption.


Assuntos
Carvão Vegetal , Flúor , Esterco , Solo , Esterco/análise , Carvão Vegetal/química , Flúor/química , Animais , Adsorção , Solo/química , Suínos , Cinética , Concentração de Íons de Hidrogênio , Poluentes do Solo/química
14.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731553

RESUMO

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Assuntos
Carvão Vegetal , Medicamentos de Ervas Chinesas , Norfloxacino , Poluentes Químicos da Água , Norfloxacino/química , Carvão Vegetal/química , Adsorção , Medicamentos de Ervas Chinesas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Cinética , Termodinâmica , Purificação da Água/métodos , Concentração de Íons de Hidrogênio
15.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731581

RESUMO

In this study, TiO2/P, K-containing grapefruit peel biochar (TiO2/P, K-PC) composites were synthesized in situ biomimetically using grapefruit peel as the bio-template and carbon source and tetrabutyl titanate as the titanium source. This was achieved using the two-step rotary impregnation-calcination method. Adjusting the calcination temperature of the sample in an air atmosphere could regulate the mass ratio of TiO2 to carbon. The prepared samples were subjected to an analysis of their compositions, structures, morphologies, and properties. It demonstrated that the prepared samples were complexes of anatase TiO2 and P, K-containing carbon, with the presence of graphitic carbon. They possessed a unique morphological structure with abundant pores and a large surface area. The grapefruit peel powder played a crucial role in the induction and assembly of TiO2/P, K-PC composites. The sample PCT-400-550 had the best photocatalytic activity, with the degradation rate of RhB, MO, and MB dye solutions reaching more than 99% within 30 min, with satisfactory cyclic stability. The outstanding photocatalytic activity can be credited to its unique morphology and the efficient collaboration between TiO2 and P, K-containing biochar.


Assuntos
Carvão Vegetal , Citrus paradisi , Titânio , Titânio/química , Citrus paradisi/química , Carvão Vegetal/química , Catálise , Biomassa
16.
BMC Plant Biol ; 24(1): 356, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724950

RESUMO

The use of saline water under drought conditions is critical for sustainable agricultural development in arid regions. Biochar is used as a soil amendment to enhance soil properties such as water-holding capacity and the source of nutrition elements of plants. Thus, the research was carried out to assess the impact of biochar treatment on the morphological and physiological characteristics and production of Solanum lycopersicum in greenhouses exposed to drought and saline stresses. The study was structured as a three-factorial in split-split-plot design. There were 16 treatments across three variables: (i) water quality, with freshwater and saline water, with electrical conductivities of 0.9 and 2.4 dS m- 1, respectively; (ii) irrigation level, with 40%, 60%, 80%, and 100% of total evapotranspiration (ETC); (iii) and biochar application, with the addition of biochar at a 3% dosage by (w/w) (BC3%), and a control (BC0%). The findings demonstrated that salt and water deficiency hurt physiological, morphological, and yield characteristics. Conversely, the biochar addition enhanced all characteristics. Growth-related parameters, such as plant height, stem diameter, leaf area, and dry and wet weight, and leaf gas exchange attributes, such rate of transpiration and photosynthesis, conductivity, as well as leaf relative water content were decreased by drought and salt stresses, especially when the irrigation was 60% ETc or 40% ETc. The biochar addition resulted in a substantial enhancement in vegetative growth-related parameters, physiological characteristics, efficiency of water use, yield, as well as reduced proline levels. Tomato yield enhanced by 4%, 16%, 8%, and 3% when irrigation with freshwater at different levels of water deficit (100% ETc, 80% ETc, 60% ETc, and 40% ETc) than control (BC0%). Overall, the use of biochar (3%) combined with freshwater shows the potential to enhance morpho-physiological characteristics, support the development of tomato plants, and improve yield with higher WUE in semi-arid and arid areas.


Assuntos
Carvão Vegetal , Secas , Estresse Salino , Solanum lycopersicum , Água , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Carvão Vegetal/farmacologia , Água/metabolismo , Irrigação Agrícola , Fotossíntese/efeitos dos fármacos
17.
Anal Chim Acta ; 1308: 342658, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38740458

RESUMO

BACKGROUND: The environmental impact of sample preparation should be minimized through simplification of the procedures and the use of natural, renewable and/or reusable materials. In such scenario, thin-film microextraction fulfils the former criteria, as it enables few steps and miniaturization, thus small amount of extraction phase. At the same time, the use of sorbents such as biochars obtained from biomass waste is even more promoted due to their availability at low cost and increased life-cycle in a circular economy vision. However, it is not always easy to combine these criteria in sample preparation. RESULTS: A thin film microextraction was developed for the determination of steroids in aqueous samples, entailing a membrane made of cellulose triacetate and a wood-derived biochar (Nuchar®) as carbon precursor. Different characterization techniques showed the successful preparation, whereas the sorption kinetics experiments demonstrated that biochar is responsible for the extraction with the polymer acting as a smart support. After a study about membranes' composition in terms of biochar amounts (4 %, 10 %, 16 % wt) and type of synthesis set up, the ceramic 3D-mold was selected, achieving reproducible and ready-to-use membranes with composition fixed as 10 %. Different elution conditions, viz. type and time of agitation, type, composition and volume of eluent, were evaluated. The final microextraction followed by HPLC-MS/MS quantification was successfully validated in river and wastewater treatment plant effluent samples in terms of accuracy (R% 64-123 %, RSD<19 % in river; R% 61-118 %, RSD <18 % in effluent, n = 4), sensitivity (MQLs 0.2-8.5 ng L-1) and robustness. SIGNIFICANCE: This novel biochar-based polymeric film proved to be a valid and sustainable sorbent, in terms of extraction capability, ease of preparation and greenness. By comparison with literature and the greenness evaluation with the most recent metric tools, this method expands the potential applicability of the thin-film microextraction and opens up innovative scenarios for sustainable procedures entailing the use of biochars entrapped in bio-polymers.


Assuntos
Carvão Vegetal , Polímeros , Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal/química , Águas Residuárias/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação , Polímeros/química , Adsorção , Esteroides/análise , Esteroides/química , Esteroides/isolamento & purificação , Microextração em Fase Sólida/métodos
18.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731960

RESUMO

Due to a large number of harmful chemicals flowing into the water source in production and life, the water quality deteriorates, and the use value of water is reduced or lost. Biochar has a strong physical adsorption effect, but it can only separate pollutants from water and cannot eliminate pollutants fundamentally. Photocatalytic degradation technology using photocatalysts uses chemical methods to degrade or mineralize organic pollutants, but it is difficult to recover and reuse. Woody biomass has the advantages of huge reserves, convenient access and a low price. Processing woody biomass into biochar and then combining it with photocatalysts has played a complementary role. In this paper, the shortcomings of a photocatalyst and biochar in water treatment are introduced, respectively, and the advantages of a woody biochar-based photocatalyst made by combining them are summarized. The preparation and assembly methods of the woody biochar-based photocatalyst starting from the preparation of biochar are listed, and the water treatment efficiency of the woody biochar-based photocatalyst using different photocatalysts is listed. Finally, the future development of the woody biochar-based photocatalyst is summarized and prospected.


Assuntos
Carbono , Carvão Vegetal , Purificação da Água , Madeira , Purificação da Água/métodos , Carvão Vegetal/química , Catálise , Madeira/química , Carbono/química , Poluentes Químicos da Água/química , Processos Fotoquímicos , Adsorção
19.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731990

RESUMO

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Assuntos
Teorema de Bayes , Carvão Vegetal , Vermelho Congo , Aprendizado de Máquina , Carvão Vegetal/química , Adsorção , Vermelho Congo/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
20.
J Hazard Mater ; 471: 134467, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691930

RESUMO

The beneficial roles of hydrochar in carbon sequestration and soil improvement are widely accepted. Despite few available reports regarding polycyclic aromatic hydrocarbons (PAHs) generated during preparation, their potential negative impacts on ecosystems remain a concern. A heating treatment method was employed in this study for rapidly removing PAHs and reducing the toxicity of corn stover-based hydrochar (CHC). The result showed total PAHs content (∑PAH) decreased and then sharply increased within the temperature range from 150 °C to 400 °C. The ∑PAH and related toxicity in CHC decreased by more than 80% under 200 °C heating temperature, compared with those in the untreated sample, representing the lowest microbial toxicity. Benzo(a)pyrene produced a significant influence on the ecological toxicity of the hydrochar among the 16 types of PAHs. The impact of thermal treatment on the composition, content, and toxicity of PAHs was significantly influenced by the adsorption, migration, and desorption of PAHs within hydrochar pores, as well as the disintegration and aggregation of large molecular polymers. The combination of hydrochar with carbonized waste heat and exhaust gas collection could be a promising method to efficiently and affordably reduce hydrochar ecological toxicity.


Assuntos
Temperatura Alta , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes do Solo/toxicidade , Poluentes do Solo/química , Carvão Vegetal/química , Zea mays , Solo/química , Adsorção , Calefação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...