Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.425
Filtrar
1.
PLoS One ; 19(6): e0300748, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889121

RESUMO

The current study aimed to assess the influence of dietary inclusion of cyanobacterium Arthrospira platensis NIOF17/003 as a dry material and as a free-lipid biomass (FL) on the growth performance, body composition, redox status, immune responses, and gene expression of whiteleg shrimp, Litopenaeus vannamei postlarvae. L. vannamei were fed five different supplemented diets; the first group was fed on an un-supplemented diet as a negative control group (C-N), the second group was fed on a commercial diet supplemented with 2% of A. platensis complete biomass as a positive control group (C-P20), whereas, the three remaining groups were fed on a commercial diet supplemented with graded amounts of FL at 1%, 2%, and 3% (FL10, FL20, and FL30, respectively). The obtained results indicated that the diet containing 1% FL significantly increased the growth performance, efficiency of consumed feed, and survival percentage of L. vannamei compared to both C-N and C-P20 groups. As for the carcass analysis, diets containing A. platensis or its FL at higher levels significantly increased the protein, lipid, and ash content compared to the C-N group. Moreover, the shrimp group fed on C-P20 and FL10 gave significantly stimulated higher digestive enzyme activities compared with C-N. The shrimp fed C-P20 or FL exhibited higher innate immune responses and promoted their redox status profile. Also, the shrimp fed a low FL levels significantly upregulated the expression of both the peroxiredoxin (Prx) and prophenoloxidase (PPO1) genes than those receiving C-N. The current results recommended that dietary supplementation with 1% FL is the most effective treatment in promoting the performance and immunity of whiteleg shrimp.


Assuntos
Ração Animal , Composição Corporal , Oxirredução , Penaeidae , Spirulina , Animais , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Penaeidae/genética , Ração Animal/análise , Suplementos Nutricionais , Biomassa , Imunidade Inata/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética
2.
J Agric Food Chem ; 72(25): 14294-14301, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874060

RESUMO

Enzymatic browning in fruits and vegetables, driven by polyphenol oxidase (PPO) activity, results in color changes and loss of bioactive compounds. Emerging technologies are being explored to prevent this browning and ensure microbial safety in foods. This study assessed the effectiveness of pulsed light (PL) and ultraviolet light-emitting diodes (UV-LED) in inhibiting PPO and inactivating Escherichia coli ATTC 25922 in fresh apple juice (Malus domestica var. Red Delicious). Both treatments' effects on juice quality, including bioactive compounds, color changes, and microbial inactivation, were examined. At similar doses, PL-treated samples (126 J/cm2) showed higher 2,2- diphenyl-1-picrylhydrazyl inhibition (9.5%) compared to UV-LED-treated samples (132 J/cm2), which showed 1.06%. For microbial inactivation, UV-LED achieved greater E. coli reduction (>3 log cycles) and less ascorbic acid degradation (9.4% ± 0.05) than PL. However, increasing PL doses to 176 J/cm2 resulted in more than 5 log cycles reduction of E. coli, showing a synergistic effect with the final temperature reached (55 °C). The Weibull model analyzed survival curves to evaluate inactivation kinetics. UV-LED was superior in preserving thermosensitive compounds, while PL excelled in deactivating more PPO and achieving maximal microbial inactivation more quickly.


Assuntos
Catecol Oxidase , Escherichia coli , Sucos de Frutas e Vegetais , Malus , Viabilidade Microbiana , Raios Ultravioleta , Catecol Oxidase/metabolismo , Malus/química , Escherichia coli/efeitos da radiação , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/microbiologia , Viabilidade Microbiana/efeitos da radiação , Irradiação de Alimentos/métodos
3.
Food Res Int ; 188: 114325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823824

RESUMO

In this study, inactivation of mushroom polyphenol oxidase (PPO) by low intensity direct current (DC) electric field and its molecular mechanism were investigated. In the experiments under 3 V/cm, 5 V/cm, 7 V/cm and 9 V/cm electric fields, PPOs were all completely inactivated after different exposure times. Under 1 V/cm, a residual activity of 11.88 % remained. The inactivation kinetics confirms to Weibull model. Under 1-7 V/cm, n value closes to a constant about 1.3. The structural analysis of PPO under 3 V/cm and 5 V/cm by fluorescence emission spectroscopy and molecular dynamics (MD) simulation showed that the tertiary structure was slightly changed with increased radius of gyration, higher potential energy and rate of C-alpha fluctuation. After exposure to the electric field, most of the hydrophobic tryptophan (TRP) residues turned to the hydrophilic surface, resulting the fluorescence red-shifted and quenched. Molecular docking indicated that the receptor binding domain of catechol in PPO was changed. PPO under electric field was MD simulated the first time, revealing the changing mechanism of the electric field itself on PPO, a binuclear copper enzyme, which has a metallic center. All these suggest that the low intensity DC electric field would be a promising option for enzymatic browning inhibition or even enzyme activity inactivation.


Assuntos
Catecol Oxidase , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Espectrometria de Fluorescência , Cinética , Eletricidade , Agaricales/enzimologia , Catecóis/química , Catecóis/metabolismo
4.
Physiol Plant ; 176(3): e14335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705728

RESUMO

Sound vibrations (SV) are known to influence molecular and physiological processes that can improve crop performance and yield. In this study, the effects of three audible frequencies (100, 500 and 1000 Hz) at constant amplitude (90 dB) on tomato Micro-Tom physiological responses were evaluated 1 and 3 days post-treatment. Moreover, the potential use of SV treatment as priming agent for improved Micro-Tom resistance to Pseudomonas syringae pv. tomato DC3000 was tested by microarray. Results showed that the SV-induced physiological changes were frequency- and time-dependent, with the largest changes registered at 1000 Hz at day 3. SV treatments tended to alter the foliar content of photosynthetic pigments, soluble proteins, sugars, phenolic composition, and the enzymatic activity of polyphenol oxidase, peroxidase, superoxide dismutase and catalase. Microarray data revealed that 1000 Hz treatment is effective in eliciting transcriptional reprogramming in tomato plants grown under normal conditions, but particularly after the infection with Pst DC3000. Broadly, in plants challenged with Pst DC3000, the 1000 Hz pretreatment provoked the up-regulation of unique differentially expressed genes (DEGs) involved in cell wall reinforcement, phenylpropanoid pathway and defensive proteins. In addition, in those plants, DEGs associated with enhancing plant basal immunity, such as proteinase inhibitors, pathogenesis-related proteins, and carbonic anhydrase 3, were notably up-regulated in comparison with non-SV pretreated, infected plants. These findings provide new insights into the modulation of Pst DC3000-tomato interaction by sound and open up prospects for further development of strategies for plant disease management through the reinforcement of defense mechanisms in Micro-Tom plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Pseudomonas syringae , Solanum lycopersicum , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Solanum lycopersicum/microbiologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Som , Resistência à Doença/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Catecol Oxidase/metabolismo , Catecol Oxidase/genética
5.
PLoS One ; 19(5): e0304673, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820398

RESUMO

In Tunisia, Orobanche foetida Poir. is considered an important agricultural biotic constraint on faba bean (Vicia faba L.) production. An innovative control method for managing this weed in faba bean is induced resistance through inoculation by rhizobia strains. In this study, we explored the biochemical dynamics in V. faba L. minor inoculated by rhizobia in response to O. foetida parasitism. A systemic induced resistant reaction was evaluated through an assay of peroxidase (POX), polyphenol oxidase (PPO) and phenyl alanine ammonialyase (PAL) activity and phenolic compound and hydrogen peroxide (H2O2) accumulation in faba bean plants infested with O. foetida and inoculated with rhizobia. Two rhizobia strains (Mat, Bj1) and a susceptible variety of cultivar Badi were used in a co-culture Petri dish experiment. We found that Mat inoculation significantly decreased O. foetida germination and the number of tubercles on the faba bean roots by 87% and 88%, respectively. Following Bj1 inoculation, significant decreases were only observed in O. foetida germination (62%). In addition, Mat and Bj1 inoculation induced a delay in tubercle formation (two weeks) and necrosis in the attached tubercles (12.50% and 4.16%, respectively) compared to the infested control. The resistance of V. faba to O. foetida following Mat strain inoculation was mainly associated with a relatively more efficient enzymatic antioxidative response. The antioxidant enzyme activity was enhanced following Mat inoculation of the infected faba bean plant. Indeed, increases of 45%, 67% and 86% were recorded in the POX, PPO and PAL activity, respectively. Improvements of 56% and 12% were also observed in the soluble phenolic and H2O2 contents. Regarding inoculation with the Bj1 strain, significant increases were only observed in soluble phenolic and H2O2 contents and PPO activity (especially at 45 days after inoculation) compared to the infested control. These results imply that inoculation with the rhizobia strains (especially Mat) induced resistance and could bio-protect V. faba against O. foetida parasitism by inducing systemic resistance, although complete protectionwas not achieved by rhizobia inoculation. The Mat strain could be used as a potential candidate for the development of an integrated method for controlling O. foetida parasitism in faba bean.


Assuntos
Peróxido de Hidrogênio , Orobanche , Vicia faba , Vicia faba/microbiologia , Vicia faba/parasitologia , Vicia faba/metabolismo , Peróxido de Hidrogênio/metabolismo , Catecol Oxidase/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/parasitologia , Raízes de Plantas/metabolismo , Rhizobium/fisiologia , Peroxidase/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/microbiologia , Fenilalanina Amônia-Liase/metabolismo
6.
Food Chem ; 453: 139621, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761728

RESUMO

Bael (Aegle marmelos) beverage was pasteurized using continuous-microwave (MW) and traditional thermal processing and the activity of native enzymes, pulp-hydrolyzing enzymes, bioactive, physicochemical, and sensory properties were analyzed. First-order and linear biphasic models fitted well (R2 ≥ 0.90) for enzyme inactivation and bioactive alteration kinetics, respectively. For the most resistant enzyme, polyphenoloxidase (PPO), the inactivation target of ≥ 90 % was achieved at 90 °C TMW (final temperature under MW) and 95 °C for 5 min (conventional thermal). MW treatment displayed faster enzyme inactivation and better retention of TPC and AOC. MW treatment at 90 °C TMW showed 5.3 min D-value, 90% total carotenoid content, 3.42 crisp sensory score (out of 5), and no or minor change in physicochemical attributes. Thermal and MW treatment caused the loss of 14 and 10 bioactive compounds, respectively. The secondary and tertiary structural modifications of PPO enzyme-protein revealed MW's lethality primarily due to its thermal effects.


Assuntos
Catecol Oxidase , Micro-Ondas , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Manipulação de Alimentos , Temperatura Alta , Paladar , Humanos , Bebidas/análise , Cinética , Estabilidade Enzimática , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Frutas/química , Frutas/enzimologia
7.
ACS Appl Bio Mater ; 7(5): 3164-3178, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38722774

RESUMO

Microbial biofilm accumulation poses a serious threat to the environment, presents significant challenges to different industries, and exhibits a large impact on public health. Since there has not been a conclusive answer found despite various efforts, the potential green and economical methods are being focused on, particularly the innovative approaches that employ biochemical agents. In the present study, we propose a bio-nanotechnological method using magnetic cross-linked polyphenol oxidase aggregates (PPO m-CLEA) for inhibition of microbial biofilm including multidrug resistant bacteria. Free PPO solution showed only 55-60% biofilm inhibition, whereas m-CLEA showed 70-75% inhibition, as confirmed through microscopic techniques. The carbohydrate and protein contents in biofilm extracellular polymeric substances (EPSs) were reduced significantly. The m-CLEA demonstrated reusability up to 5 cycles with consistent efficiency in biofilm inhibition. Computational work was also done where molecular docking of PPO with microbial proteins associated with biofilm formation was conducted, resulting in favorable binding scores and inter-residual interactions. Overall, both in vitro and in silico results suggest that PPO interferes with microbial cell attachment and EPS formation, thereby preventing biofilm colonization.


Assuntos
Antibacterianos , Biofilmes , Catecol Oxidase , Tamanho da Partícula , Biofilmes/efeitos dos fármacos , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Catecol Oxidase/antagonistas & inibidores , Antibacterianos/farmacologia , Antibacterianos/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli/efeitos dos fármacos
8.
Food Chem ; 450: 139392, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640546

RESUMO

The combinational effects of kojic acid and lauroyl arginine ethyl ester hydrochloride (ELAH) on fresh-cut potatoes were investigated. Kojic acid of 0.6% (w/w) effectively inhibited the browning of fresh-cut potatoes and displayed antimicrobial capacity. The color difference value of samples was decreased from 175 to 26 by kojic acid. In contrast, ELAH could not effectively bind with the active sites of tyrosinase and catechol oxidase at molecular level. Although 0.5% (w/w) of ELAH prominently inhibited the microbial growth, it promoted the browning of samples. However, combining kojic acid and ELAH effectively inhibited the browning of samples and microbial growth during the storage and the color difference value of samples was decreased to 52. This amount of kojic acid inhibited enzyme activities toward phenolic compounds. The results indicated that combination of kojic acid and ELAH could provide a potential strategy to extend the shelf life of fresh-cut products.


Assuntos
Arginina , Monofenol Mono-Oxigenase , Pironas , Solanum tuberosum , Pironas/farmacologia , Pironas/química , Arginina/química , Arginina/análogos & derivados , Arginina/farmacologia , Solanum tuberosum/química , Solanum tuberosum/crescimento & desenvolvimento , Monofenol Mono-Oxigenase/metabolismo , Conservação de Alimentos/métodos , Catecol Oxidase/metabolismo , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química , Bactérias/efeitos dos fármacos , Bactérias/genética
9.
Food Chem ; 450: 139285, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631203

RESUMO

Theaflavins are beneficial to human health due to various bioactivities. Biosynthesis of theaflavins using polyphenol oxidase (PPO) is advantageous due to cost effectiveness and environmental friendliness. In this review, studies on the mechanism of theaflavins formation, the procedures to screen and prepare PPOs, optimization of reaction systems and immobilization of PPOs were described. The challenges associated with the mass biosynthesis of theaflavins, such as poor enzyme activity, undesirable subproducts and inclusion bodies of recombinant PPOs were presented. Further strategies to solve these challenges and improve theaflavins production, including enzyme engineering, immobilization enzyme technology, water-immiscible solvent-water biphasic systems and recombinant enzyme technology, were proposed.


Assuntos
Biflavonoides , Catequina , Catecol Oxidase , Biflavonoides/química , Biflavonoides/metabolismo , Biocatálise , Catequina/química , Catequina/metabolismo , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
10.
Food Chem ; 449: 139166, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604025

RESUMO

Apostichopus japonicus (A. japonicus) has rich nutritional value and is an important economic crop. Due to its rich endogenous enzyme system, fresh A. japonicus is prone to autolysis during market circulation and storage, resulting in economic losses. In order to alleviate this phenomenon, we investigated the effect of polyphenol oxidase (PPO) mediated (-)-epigallocatechin gallate (EGCG) on the activity and structure of endogenous cathepsin series protein (CEP) from A. japonicus. Research on cathepsin activity showed that PPO mediated EGCG could significantly reduce enzyme activity, resulting in a decrease in enzymatic reaction rate. SDS-PAGE and scanning electron microscopy results showed that PPO mediates EGCG could induce CEP aggregation to form protein aggregates. Various spectral results indicated that EGCG caused changes in the structure of CEP. Meanwhile, the conjugates formed by PPO mediated EGCG had lower thermal stability. In conclusion, PPO mediated EGCG was an effective method to inhibit the endogenous enzyme activity.


Assuntos
Catequina , Catequina/análogos & derivados , Catecol Oxidase , Catepsinas , Stichopus , Catequina/química , Catequina/farmacologia , Catecol Oxidase/metabolismo , Catecol Oxidase/química , Animais , Stichopus/enzimologia , Stichopus/química , Catepsinas/metabolismo , Catepsinas/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Estabilidade Enzimática , Cinética
11.
J Food Sci ; 89(6): 3260-3275, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685879

RESUMO

Ginger (Zingiber officinale Rosc.) possesses a rich nutritional profile, making it a valuable ingredient for a wide range of culinary applications. After removing its outer skin, ginger can be effectively utilized in the production of pickles and other processed food products. However, following scraping, ginger undergoes a series of physiological and biochemical changes during storage, which can impact its subsequent development and utilization in food. Thus, the current study aimed to investigate the browning mechanism of scraped ginger using non-targeted metabolomics and transcriptomics. The findings revealed 149 shared differential metabolites and 639 shared differential genes among freshly scraped ginger, ginger browned for 5 days, and ginger browned for 15 days. These metabolites and genes are primarily enriched in stilbenes, diarylheptane, and gingerol biosynthesis, phenylpropanoid biosynthesis, and tyrosine metabolism. Through the combined regulation of these pathways, the levels of phenolic components (such as chlorogenic acid and ferulic acid) and the ginger indicator component (6-gingerol) decreased, whereas promoting an increase in the content of coniferaldehyde and curcumin. Additionally, the activities of polyphenol oxidase (PPO) and peroxidase (POD) were significantly increased (p-adjust <0.05). This study hypothesized that chlorogenic and ferulic acid undergo polymerization under the catalysis of PPO and POD, thereby exacerbating the lignification of scraped ginger. These findings offer a theoretical foundation for understanding the browning mechanism of ginger after scraping. PRACTICAL APPLICATION: Ginger's quality and nutrition can change when its skin is removed. This happens due to physical and biochemical reactions during scraping. The browning that occurs affects both the taste and health benefits of ginger, we can better understand how to prevent browning and maintain ginger's quality. This research sheds light on improving ginger processing techniques for better products.


Assuntos
Metabolômica , Transcriptoma , Zingiber officinale , Metabolômica/métodos , Álcoois Graxos/metabolismo , Catecol Oxidase/metabolismo , Catecol Oxidase/genética , Catecóis/metabolismo , Reação de Maillard , Manipulação de Alimentos/métodos , Fenóis/metabolismo , Armazenamento de Alimentos/métodos , Peroxidase/metabolismo , Peroxidase/genética
12.
Angew Chem Int Ed Engl ; 63(25): e202402546, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38616162

RESUMO

Phenylethanoid glycosides (PhGs) exhibit a multitude of structural variations linked to diverse pharmacological activities. Assembling various PhGs via multienzyme cascades represents a concise strategy over traditional synthetic methods. However, the challenge lies in identifying a comprehensive set of catalytic enzymes. This study explores biosynthetic PhG reconstruction from natural precursors, aiming to replicate and amplify their structural diversity. We discovered 12 catalytic enzymes, including four novel 6'-OH glycosyltransferases and three new polyphenol oxidases, revealing the intricate network in PhG biosynthesis. Subsequently, the crystal structure of CmGT3 (2.62 Å) was obtained, guiding the identification of conserved residue 144# as a critical determinant for sugar donor specificity. Engineering this residue in PhG glycosyltransferases (FsGT61, CmGT3, and FsGT6) altered their sugar donor recognition. Finally, a one-pot multienzyme cascade was established, where the combined action of glycosyltransferases and acyltransferases boosted conversion rates by up to 12.6-fold. This cascade facilitated the reconstruction of 26 PhGs with conversion rates ranging from 5-100 %, and 20 additional PhGs detectable by mass spectrometry. PhGs with extra glycosyl and hydroxyl modules demonstrated notable liver cell protection. This work not only provides catalytic tools for PhG biosynthesis, but also serves as a proof-of-concept for cell-free enzymatic construction of diverse natural products.


Assuntos
Glicosídeos , Glicosiltransferases , Engenharia de Proteínas , Glicosídeos/química , Glicosídeos/biossíntese , Glicosídeos/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Catecol Oxidase/metabolismo , Catecol Oxidase/química
13.
Int J Biol Macromol ; 264(Pt 1): 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428783

RESUMO

Mannose-binding lectin plays an essential role in bacteria or virus-triggered immune response in mammals. Previous proteomic data revealed that in Eriocheir sinensis, the mannose-binding protein was differentially expressed after Spiroplasma eriocheiris infection. However, the function of mannose-binding protein against pathogen infection in invertebrates is poorly understood. In this study, a crab mannose-binding protein (EsMBP) was characterized and enhanced the host resistance to S. eriocheiris infection. The application of recombinant C-type carbohydrate recognition domain (CTLD) of EsMBP led to increased crab survival and decreased S. eriocheiris load in hemocytes. Meanwhile, the overexpression of CTLD of EsMBP in Raw264.7 cells inhibited S. eriocheiris intracellular replication. In contrast, depletion of EsMBP by RNA interference or antibody neutralization attenuated phenoloxidase activity and hemocyte phagocytosis, rendering host more susceptible to S. eriocheiris infection. Furthermore, miR-381-5p in hemocytes suppressed EsMBP expression and negatively regulated phenoloxidase activity to exacerbate S. eriocheiris invasion of hemocytes. Taken together, our findings revealed that crab mannose-binding protein was involved in host defense against S. eriocheiris infection and targeted by miR-381-5p, providing further insights into the control of S. eriocheiris spread in crabs.


Assuntos
Braquiúros , Catecol Oxidase , Precursores Enzimáticos , Lectina de Ligação a Manose , MicroRNAs , Spiroplasma , Animais , Lectina de Ligação a Manose/metabolismo , Proteômica , Monofenol Mono-Oxigenase/metabolismo , Fagocitose , MicroRNAs/genética , MicroRNAs/metabolismo , Hemócitos/metabolismo , Mamíferos/genética
14.
Food Chem ; 446: 138866, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430769

RESUMO

Fresh-cut potatoes are prone to surface browning and physiological degradation. Chlorogenic acid (CGA), a natural phenolic antioxidant, has demonstrated preservative properties in various postharvest products. However, the underlying mechanisms of its application on maintaining quality remain unclear. Therefore, the effect of exogenous CGA treatment on quality deterioration of potato slices and the mechanisms involved were investigated. Results revealed CGA treatment retarded the browning coloration, suppressed microbial growth and inhibited the declines in starch, and ascorbic acid contents in potato slices. Meanwhile, the treatment activated the phenylpropanoid pathway but decreased the activities of phenolic decomposition-related enzymes such as polyphenol oxidase (PPO) and tyrosinase and downregulated StPPO expression. Moreover, the treated slices exhibited reduced accumulation of reactive oxygen species and increased activity of antioxidant enzymes. Additionally, they displayed enhanced 2,2-diphenyl-1-picrylhydrazyl radicals scavenging capacity and higher ATP levels. Therefore, these findings indicated that CGA treatment was effective for quality maintenance and antioxidant capacity enhancement in fresh-cut potatoes, thereby providing potential strategies for the preservation and processing of fresh-cut produce.


Assuntos
Antioxidantes , Solanum tuberosum , Antioxidantes/metabolismo , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Solanum tuberosum/metabolismo , Fenóis/metabolismo , Ácido Ascórbico/metabolismo , Catecol Oxidase/metabolismo
15.
Talanta ; 274: 125951, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547842

RESUMO

A new nanozyme (CuGaa) with switchable enzyme-like activity of peroxidase and polyphenol oxidase was successfully prepared based on guanidinoacetic acid and copper. The two enzyme-like activities can be easily switched by changing temperature or adding MnCl2. At 4 °C, polyphenol oxidase-like activity decreased to nearly 1%, and the material is mainly characterized by peroxidase-like activity at this point. However, at 60 °C in the presence of 20 mM MnCl2, the peroxidase-like activity decreased to nearly 10%, and the polyphenol oxidase-like activity of the materials increased to 140%. Based on the switchable enzyme-like activity of CuGaa, detection methods for thymol and hydrogen peroxide were developed. In addition, a rapid combination strategy was further established combined with logic gate technology for the facile identification of complex contamination in honey, which provided new ideas for low-cost and rapid honey identification.


Assuntos
Mel , Peróxido de Hidrogênio , Timol , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Mel/análise , Timol/análise , Timol/química , Peroxidase/química , Peroxidase/metabolismo , Cobre/química , Catecol Oxidase/química , Catecol Oxidase/metabolismo , Lógica , Contaminação de Alimentos/análise , Nanoestruturas/química
16.
J Sci Food Agric ; 104(10): 6186-6195, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38459923

RESUMO

BACKGROUND: Solid-state fermentation (SSF) has been widely used in the processing of sorghum grain (SG) because it can produce products with improved sensory characteristics. To clarify the influence of different microbial strains on the SSF of SG, especially on the polyphenols content and composition, Lactiplantibacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were used separately and together for SSF of SG. Furthermore, the relationship between the dynamic changes in polyphenols and enzyme activity closely related to the metabolism of polyphenols has also been measured and analyzed. Microstructural changes observed after SSF provide a visual representation of the SSF on the SG. RESULTS: After SSF, tannin content (TC) and free phenolic content (FPC) were decreased by 56.36% and 23.48%, respectively. Polyphenol oxidase, ß-glucosidase and cellulase activities were increased 5.25, 3.27, and 45.57 times, respectively. TC and FPC were negatively correlated with cellulase activity. A positive correlation between FPC and xylanase activity after 30 h SSF became negative after 48 h SSF. The SG surface was fragmented and porous, reducing the blocking effect of cortex. CONCLUSION: Cellulase played a crucial role in promoting the degradation of tannin (antinutrient) and phenolic compounds. Xylanase continued to release flavonoids while microbial metabolism consumed them with the extension of SSF time. SSF is an effective way to improve the bioactivity and processing characteristics of SG. © 2024 Society of Chemical Industry.


Assuntos
Catecol Oxidase , Fermentação , Polifenóis , Saccharomyces cerevisiae , Sorghum , Sorghum/química , Sorghum/metabolismo , Polifenóis/metabolismo , Polifenóis/química , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Catecol Oxidase/metabolismo , Rhizopus/metabolismo , Rhizopus/enzimologia , Taninos/metabolismo , Taninos/análise , Taninos/química , Aspergillus oryzae/metabolismo , Aspergillus oryzae/enzimologia , Celulase/metabolismo , Celulase/química , Neurospora/metabolismo , Manipulação de Alimentos/métodos , beta-Glucosidase/metabolismo , Sementes/química , Sementes/metabolismo , Sementes/microbiologia , Bactérias/metabolismo , Bactérias/classificação , Bactérias/enzimologia , Bactérias/isolamento & purificação , Fenóis/metabolismo , Fenóis/química , Fenóis/análise
17.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542970

RESUMO

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Assuntos
Catecol Oxidase , Fibras na Dieta , Catecol Oxidase/química , Fibras na Dieta/análise , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Plantas/metabolismo , Catecóis/análise , Especificidade por Substrato , Chá
18.
Protein Expr Purif ; 219: 106474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38518927

RESUMO

The polyphenol oxidase (PPO) enzyme, which causes enzymatic browning, has been repeatedly purified from fruit and vegetables by affinity chromatography. In the present research, Sepharose 4B-l-tyrosine-4-amino-2-methylbenzoic acid, a novel affinity gel for the purification of the PPO enzyme with high efficiency, was synthesized. Additionally, Sepharose 4B-l-tyrosine-p-aminobenzoic acid affinity gel, known in the literature, was also synthesized, and 9.02, 16.57, and 28.13 purification folds were obtained for the PPO enzymes of potato, mushroom, and eggplant by the reference gel. The PPO enzymes of potato, mushroom, and eggplant were purified 41.17, 64.47, and 56.78-fold from the new 4-amino-2-methylbenzoic acid gel. Following their isolation from the new affinity column, the assessment of PPO enzyme purity involved the utilization of SDS-PAGE. According to the results from SDS-PAGE and native PAGE, the molecular weight of each enzyme was 50 kDa. Then, the inhibition effects of naringin, morin hydrate, esculin hydrate, homovanillic acid, vanillic acid, phloridzin dihydrate, and p-coumaric acid phenolic compounds on purified potato, mushroom, and eggplant PPO enzyme were investigated. Among the tested phenolic compounds, morin hydrate was determined to be the most potent inhibitor on the potato (Ki: 0.07 ± 0.03 µM), mushroom (Ki: 0.7 ± 0.3 µM), and eggplant (Ki: 4.8 ± 1.2 µM) PPO enzymes. The studies found that the weakest inhibitor was homovanillic acid for the potato (Ki: 1112 ± 324 µM), mushroom (Ki: 567 ± 81 µM), and eggplant (Ki: 2016.7 ± 805.6 µM) PPO enzymes. Kinetic assays indicated that morin hydrate was a remarkable inhibitor on PPO.


Assuntos
Catecol Oxidase , Cromatografia de Afinidade , Catecol Oxidase/química , Catecol Oxidase/isolamento & purificação , Catecol Oxidase/antagonistas & inibidores , Agaricales/enzimologia , Solanum tuberosum/enzimologia , Solanum tuberosum/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Solanum melongena/enzimologia , Solanum melongena/química , Ácidos Cumáricos/química , Propionatos/química , meta-Aminobenzoatos/química , Ácido 4-Aminobenzoico/química
19.
PLoS One ; 19(3): e0294318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446779

RESUMO

Enzymatic browning poses a significant challenge that limits in vitro propagation and genetic transformation of plant tissues. This research focuses on investigating how adding antioxidant substances can suppress browning, leading to improved efficiency in transforming plant tissues using Agrobacterium and subsequent plant regeneration from rough lemon (Citrus × jambhiri). When epicotyl segments of rough lemon were exposed to Agrobacterium, they displayed excessive browning and tissue decay. This was notably different from the 'Hamlin' explants, which did not exhibit the same issue. The regeneration process failed completely in rough lemon explants, and they accumulated high levels of total phenolic compounds (TPC) and polyphenol oxidase (PPO), which contribute to browning. To overcome these challenges, several antioxidant and osmoprotectant compounds, including lipoic acid, melatonin, glycine betaine, and proline were added to the tissue culture medium to reduce the oxidation of phenolic compounds and mitigate browning. Treating epicotyl segments with 100 or 200 µM melatonin led to a significant reduction in browning and phenolic compound accumulation. This resulted in enhanced shoot regeneration, increased transformation efficiency, and reduced tissue decay. Importantly, melatonin supplementation effectively lowered the levels of TPC and PPO in the cultured explants. Molecular and physiological analyses also confirmed the successful overexpression of the CcNHX1 transcription factor, which plays a key role in imparting tolerance to salinity stress. This study emphasizes the noteworthy impact of supplementing antioxidants in achieving successful genetic transformation and plant regeneration in rough lemon. These findings provide valuable insights for developing strategies to address enzymatic browning and enhance the effectiveness of plant tissue culture and genetic engineering methods with potential applications across diverse plant species.


Assuntos
Citrus , Melatonina , Plantas Geneticamente Modificadas , Melatonina/farmacologia , Antioxidantes/farmacologia , Citrus/genética , Agrobacterium , Catecol Oxidase , Fenóis/farmacologia , Regeneração , Suplementos Nutricionais
20.
Talanta ; 272: 125842, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428131

RESUMO

A novel sensor array was developed based on the enzyme/nanozyme hybridization for the identification of tea polyphenols (TPs) and Chinese teas. The enzyme/nanozyme with polyphenol oxidase activity can catalyze the reaction between TPs and 4-aminoantipyrine (4-AAP) to produce differences in color, and the sensor array was thus constructed to accurately identify TPs mixed in different species, concentrations, or ratios. In addition, a machine learning based dual output model was further used to effectively predict the classes and concentrations of unknown samples. Therefore, the qualitative and quantitative detection of TPs can be realized continuously and quickly. Furthermore, the sensor array combining the machine learning based dual output model was also utilized for the identification of Chinese teas. The method can distinguish the six teas series in China, and then precisely differentiate the more specific tea varieties. This study provides an efficient and facile strategy for the identification of teas and tea products.


Assuntos
Camellia sinensis , Polifenóis , Polifenóis/análise , Chá , Catecol Oxidase , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...