Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 21(11): 611-624, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929261

RESUMO

Renewed interest in the use of psychedelics in the treatment of psychiatric disorders warrants a better understanding of the neurobiological mechanisms underlying the effects of these substances. After a hiatus of about 50 years, state-of-the art studies have recently begun to close important knowledge gaps by elucidating the mechanisms of action of psychedelics with regard to their effects on receptor subsystems, systems-level brain activity and connectivity, and cognitive and emotional processing. In addition, functional studies have shown that changes in self-experience, emotional processing and social cognition may contribute to the potential therapeutic effects of psychedelics. These discoveries provide a scientific road map for the investigation and application of psychedelic substances in psychiatry.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Alucinógenos/administração & dosagem , Transtornos Mentais/tratamento farmacológico , Animais , Cateninas/efeitos dos fármacos , Cateninas/fisiologia , Emoções/efeitos dos fármacos , Emoções/fisiologia , Humanos , Transtornos Mentais/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de Serotonina/fisiologia , Autoimagem , delta Catenina
2.
Oncogene ; 39(22): 4358-4374, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313227

RESUMO

Only a small number of genes are bona fide oncogenes and tumor suppressors such as Ras, Myc, ß-catenin, p53, and APC. However, targeting these cancer drivers frequently fail to demonstrate sustained cancer remission. Tumor heterogeneity and evolution contribute to cancer resistance and pose challenges for cancer therapy due to differential genomic rearrangement and expression driving distinct tumor responses to treatments. Here we report that intratumor heterogeneity of Wnt/ß-catenin modulator δ-catenin controls individual cell behavior to promote cancer. The differential intratumor subcellular localization of δ-catenin mirrors its compartmentalization in prostate cancer xenograft cultures as result of mutation-rendered δ-catenin truncations. Wild-type and δ-catenin mutants displayed distinct protein interactomes that highlight rewiring of signal networks. Localization specific δ-catenin mutants influenced p120ctn-dependent Rho GTPase phosphorylation and shifted cells towards differential bFGF-responsive growth and motility, a known signal to bypass androgen receptor dependence. Mutant δ-catenin promoted Myc-induced prostate tumorigenesis while increasing bFGF-p38 MAP kinase signaling, ß-catenin-HIF-1α expression, and the nuclear size. Therefore, intratumor δ-catenin heterogeneity originated from genetic remodeling promotes prostate cancer expansion towards androgen independent signaling, supporting a neomorphism model paradigm for targeting tumor progression.


Assuntos
Adenocarcinoma/patologia , Cateninas/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/patologia , Transporte Ativo do Núcleo Celular , Adenocarcinoma/genética , Animais , Cateninas/genética , Linhagem Celular Tumoral , Núcleo Celular/ultraestrutura , DNA de Neoplasias/genética , Transição Epitelial-Mesenquimal/genética , Éxons/genética , Fator 2 de Crescimento de Fibroblastos/farmacologia , Genes myc , Xenoenxertos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Metástase Linfática/genética , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Análise de Sequência de DNA , Frações Subcelulares/química , beta Catenina/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , delta Catenina
3.
Life Sci ; 230: 35-44, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125560

RESUMO

P120-catenin (P120) was known to function in adhesion between cells and signal transduction in many types of cells. In this study, we investigated the expression and role of P120 in pulmonary fibrosis and transforming growth factor beta (TGF-ß) mediated lung fibroblast-to-myofibroblast differentiation (fibroblast differentiation). Our data indicated that P120 expression increased in lung fibrotic foci and primary lung fibroblasts isolated from bleomycin- (BLM) challenged mice, compared to controls. In vitro, TGF-ß induced P120 expression in human lung fibroblasts, and siRNA-mediated SMAD3 depletion inhibited TGF-ß stimulated P120 expression. Blocking nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway through chemical inhibitor or knockdown of NF-kB p65 subunit also suppressed TGF-ß induced P120 expression in human lung fibroblast. Knockdown of P120 expression inhibited TGF-ß induced human lung fibroblast differentiation, as well as suppressed the activation of SMAD and ERK signaling pathways. Administration of lentivirus coding mouse P120 sh-RNA into mouse lung tissue dramatically attenuated the expression of P120 in lung tissue and lung fibroblast, suppressed BLM induced increase of TGF-ß, alpha smooth muscle actin (α-SMA) and fibronectin (FN) expression, and decreased the deposition of collagen and pulmonary fibrosis. Collectively, these results suggested that P120 involved in lung fibroblast differentiation and pulmonary fibrosis, and inhibition of P120 expression decreased pulmonary fibrosis in BLM challenged mice. Thus, attenuation of P120 expression might be a potential therapeutic strategy for human lung fibrosis.


Assuntos
Cateninas/fisiologia , Fibroblastos/fisiologia , Fibrose Pulmonar/fisiopatologia , Animais , Bleomicina , Cateninas/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fibrose Pulmonar/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , delta Catenina
4.
PLoS Comput Biol ; 14(8): e1006399, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30118477

RESUMO

The adherens junctions between epithelial cells involve a protein complex formed by E-cadherin, ß-catenin, α-catenin and F-actin. The stability of this complex was a puzzle for many years, since in vitro studies could reconstitute various stable subsets of the individual proteins, but never the entirety. The missing ingredient turned out to be mechanical tension: a recent experiment that applied physiological forces to the complex with an optical tweezer dramatically increased its lifetime, a phenomenon known as catch bonding. However, in the absence of a crystal structure for the full complex, the microscopic details of the catch bond mechanism remain mysterious. Building on structural clues that point to α-catenin as the force transducer, we present a quantitative theoretical model for how the catch bond arises, fully accounting for the experimental lifetime distributions. The underlying hypothesis is that force induces a rotational transition between two conformations of α-catenin, overcoming a significant energy barrier due to a network of salt bridges. This transition allosterically regulates the energies at the interface between α-catenin and F-actin. The model allows us to predict these energetic changes, as well as highlighting the importance of the salt bridge rotational barrier. By stabilizing one of the α-catenin states, this barrier could play a role in how the complex responds to additional in vivo binding partners like vinculin. Since significant conformational energy barriers are a common feature of other adhesion systems that exhibit catch bonds, our model can be adapted into a general theoretical framework for integrating structure and function in a variety of force-regulated protein complexes.


Assuntos
Junções Aderentes/fisiologia , Mecanotransdução Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/fisiologia , Animais , Caderinas/fisiologia , Cateninas/fisiologia , Adesão Celular/fisiologia , Simulação por Computador , Células Epiteliais/metabolismo , Humanos , Modelos Teóricos , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Estresse Mecânico
5.
Artigo em Inglês | MEDLINE | ID: mdl-28096264

RESUMO

Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.


Assuntos
Junções Aderentes/fisiologia , Caderinas/metabolismo , Animais , Transporte Biológico , Cateninas/fisiologia , Endocitose , Endossomos/metabolismo , Processamento de Proteína Pós-Traducional
6.
Mol Biol Cell ; 28(1): 85-97, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852896

RESUMO

Endothelial p120-catenin (p120) maintains the level of vascular endothelial cadherin (VE-Cad) by inhibiting VE-Cad endocytosis. Loss of p120 results in a decrease in VE-Cad levels, leading to the formation of monolayers with decreased barrier function (as assessed by transendothelial electrical resistance [TEER]), whereas overexpression of p120 increases VE-Cad levels and promotes a more restrictive monolayer. To test whether reduced endocytosis mediated by p120 is required for VE-Cad formation of a restrictive barrier, we restored VE-Cad levels using an endocytic-defective VE-Cad mutant. This endocytic-defective mutant was unable to rescue the loss of TEER associated with p120 or VE-Cad depletion. In contrast, the endocytic-defective mutant was able to prevent sprout formation in a fibrin bead assay, suggesting that p120•VE-Cad interaction regulates barrier function and angiogenic sprouting through different mechanisms. Further investigation found that depletion of p120 increases Src activity and that loss of p120 binding results in increased VE-Cad phosphorylation. In addition, expression of a Y658F-VE-Cad mutant or an endocytic-defective Y658F-VE-Cad double mutant were both able to rescue TEER independently of p120 binding. Our results show that in addition to regulating endocytosis, p120 also allows the phosphorylated form of VE-Cad to participate in the formation of a restrictive monolayer.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Cateninas/metabolismo , Cateninas/fisiologia , Junções Aderentes/metabolismo , Antígenos CD/genética , Antígenos CD/fisiologia , Caderinas/genética , Caderinas/fisiologia , Permeabilidade Capilar , Cateninas/genética , Células Cultivadas , Impedância Elétrica , Endocitose/fisiologia , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Fosforilação , Migração Transendotelial e Transepitelial/fisiologia , delta Catenina
7.
Mol Biol Cell ; 28(1): 30-40, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27798235

RESUMO

Vascular endothelial (VE)-cadherin undergoes constitutive internalization driven by a unique endocytic motif that also serves as a p120-catenin (p120) binding site. p120 binding masks the motif, stabilizing the cadherin at cell junctions. This mechanism allows constitutive VE-cadherin endocytosis and recycling to contribute to adherens junction dynamics without resulting in junction disassembly. Here we identify an additional motif that drives VE-cadherin endocytosis and pathological junction disassembly associated with the endothelial-derived tumor Kaposi sarcoma. Human herpesvirus 8, which causes Kaposi sarcoma, expresses the MARCH family ubiquitin ligase K5. We report that K5 targets two membrane-proximal VE-cadherin lysine residues for ubiquitination, driving endocytosis and down-regulation of the cadherin. K5-induced VE-cadherin endocytosis does not require the constitutive endocytic motif. However, K5-induced VE-cadherin endocytosis is associated with displacement of p120 from the cadherin, and p120 protects VE-cadherin from K5. Thus multiple context-dependent signals drive VE-cadherin endocytosis, but p120 binding to the cadherin juxtamembrane domain acts as a master regulator guarding cadherin stability.


Assuntos
Cateninas/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Sítios de Ligação , Caderinas/metabolismo , Cateninas/genética , Cateninas/fisiologia , Membrana Celular/metabolismo , Regulação para Baixo , Endocitose , Células Endoteliais/metabolismo , Humanos , Proteínas Imediatamente Precoces/fisiologia , Ligases , Fosfoproteínas/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteólise , Sarcoma de Kaposi , Ubiquitina/metabolismo , Ubiquitinação , delta Catenina
8.
Cell Cycle ; 15(5): 699-710, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26890356

RESUMO

Submitted: TP63 (p63), a member of the tumor suppressor TP53 (p53) gene family, is expressed in keratinocyte stem cells and well-differentiated squamous cell carcinomas to maintain cellular potential for growth and differentiation. Controversially, activation of the Wnt/ß-catenin signaling by p63 (Patturajan M. et al., 2002, Cancer Cells) and inhibition of the target gene expression (Drewelus I. et al., 2010, Cell Cycle) have been reported. Upon p63 RNA-silencing in squamous cell carcinoma (SCC) lines, a few Wnt target gene expression substantially increased, while several target genes moderately decreased. Although ΔNp63α, the most abundant isoform of p63, appeared to interact with protein phosphatase PP2A, neither GSK-3ß phosphorylation nor ß-catenin nuclear localization was altered by the loss of p63. As reported earlier, ΔNp63α enhanced ß-catenin-dependent luc gene expression from pGL3-OT having 3 artificial Wnt response elements (WREs). However, this activation was detectable only in HEK293 cells examined so far, and involved a p53 family-related sequence 5' to the WREs. In Wnt3-expressing SAOS-2 cells, ΔNp63α rather strongly inhibited transcription of pGL3-OT. Importantly, ΔNp63α repressed WREs isolated from the regulatory regions of MMP7. ΔNp63α-TCF4 association occurred in their soluble forms in the nucleus. Furthermore, p63 and TCF4 coexisted at a WRE of MMP7 on the chromatin, where ß-catenin recruitment was attenuated. The combined results indicate that ΔNp63α serves as a repressor that regulates ß-catenin-mediated gene expression.


Assuntos
Inativação Gênica , Elementos de Resposta , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Cateninas/fisiologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Metaloproteinase 7 da Matriz/metabolismo , Proteína Fosfatase 2/metabolismo , Fator de Transcrição 4 , Fatores de Transcrição/metabolismo , Proteínas Wnt/fisiologia , Via de Sinalização Wnt
9.
Oncol Rep ; 34(5): 2357-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26324182

RESUMO

p120-catenin (p120), an E-cadherin regulator, has been implicated as central to a series of genetic and epigenetic changes that ultimately lead to tumor progression and metastasis. Ras-related C3 botulinum toxin substrate 1 (Rac1)and p21-activated kinases (PAKs) are effectors of p120. In the present study, we examined the expression of p120, Rac1 and Pak1 using immunohistochemistry in human gastric cancer tissues. Then, we used the gastric cancer SGC7901 and AGS cell lines to explore the possible mechanism of p120, Rac1 and Pak1 in the progress of gastric cancer. Western blotting was used to detect the expression of p120, Rac1 and Pak1 in the two cell lines. Next, p120 was silenced using p120 siRNA or overexpression of p120 by transfection of the plasmid p120 1A into the two cell types, western blotting was used to investigate the expression changes of Rac1 and Pak1. Furthermore, the effects of p120 siRNA-mediated knockdown or overexpression on the proliferation and invasive ability of gastric cancer cells were investigated using wound healing test and Matrigel invasion assays. The results showed that p120 was downregulated in both poorly differentiated group and well differentiated human gastric cancer. However, Rac1 and Pak1 were upregulated in poorly differentiated tissues and remain low in well differentiated gastric cancer tissues. In the two gastric cancer cell lines, although the expression of Rac1 and Pak1 remained unchanged after the p120 knockdown, the expressions of Rac1 and Pak1 protein were decreased after p120 overexpression in both SGC7901 and AGS cells. Furthermore, knockdown of p120 promoted gastric cancer cell proliferation and invasion; overexpression of p120 reduced the proliferation and invasion of gastric cancer cells. In conclusion, based on our results, we speculate that p120 participates in the progress of gastric cancer through regulating Rac1 and Pak1, which provides a potential prevention and a promising therapeutical approach for the patients with gastric cancer.


Assuntos
Cateninas/fisiologia , Transdução de Sinais , Neoplasias Gástricas/enzimologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Expressão Gênica , Humanos , Invasividade Neoplásica , Neoplasias Gástricas/patologia , delta Catenina
10.
Integr Biol (Camb) ; 7(10): 1109-19, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25968913

RESUMO

The shaping of a multicellular body, and the maintenance and repair of adult tissues require fine-tuning of cell adhesion responses and the transmission of mechanical load between the cell, its neighbors and the underlying extracellular matrix. A growing field of research is focused on how single cells sense mechanical properties of their micro-environment (extracellular matrix, other cells), and on how mechanotransduction pathways affect cell shape, migration, survival as well as differentiation. Within multicellular assemblies, the mechanical load imposed by the physical properties of the environment is transmitted to neighboring cells. Force imbalance at cell-cell contacts induces essential morphogenetic processes such as cell-cell junction remodeling, cell polarization and migration, cell extrusion and cell intercalation. However, how cells respond and adapt to the mechanical properties of neighboring cells, transmit forces, and transform mechanical signals into chemical signals remain open questions. A defining feature of compact tissues is adhesion between cells at the specialized adherens junction (AJ) involving the cadherin super-family of Ca(2+)-dependent cell-cell adhesion proteins (e.g., E-cadherin in epithelia). Cadherins bind to the cytoplasmic protein ß-catenin, which in turn binds to the filamentous (F)-actin binding adaptor protein α-catenin, which can also recruit vinculin, making the mechanical connection between cell-cell adhesion proteins and the contractile actomyosin cytoskeleton. The cadherin-catenin adhesion complex is a key component of the AJ, and contributes to cell assembly stability and dynamic cell movements. It has also emerged as the main route of propagation of forces within epithelial and non-epithelial tissues. Here, we discuss recent molecular studies that point toward force-dependent conformational changes in α-catenin that regulate protein interactions in the cadherin-catenin adhesion complex, and show that α-catenin is the core mechanosensor that allows cells to locally sense, transduce and adapt to environmental mechanical constrains.


Assuntos
Junções Aderentes/fisiologia , Mecanotransdução Celular/fisiologia , Actinas/química , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Caderinas/química , Caderinas/fisiologia , Cateninas/química , Cateninas/fisiologia , Adesão Celular/fisiologia , Microambiente Celular , Humanos , Modelos Biológicos , Conformação Proteica , Desdobramento de Proteína
11.
Cell Adh Migr ; 9(3): 202-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914083

RESUMO

Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca(2+)-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function. (1-3) The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development. (4,5) Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.


Assuntos
Caderinas/fisiologia , Cateninas/fisiologia , Dendritos/fisiologia , Sinapses/fisiologia , Doença de Alzheimer/genética , Animais , Moléculas de Adesão Celular/fisiologia , Membrana Celular/fisiologia , Epilepsia/genética , Hipocampo/fisiologia , Humanos , Morfogênese , Neurônios/citologia , Coluna Vertebral/fisiologia
12.
PLoS One ; 10(1): e0116338, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25635825

RESUMO

δ-Catenin, an adherens junctions protein, is not only involved in early development, cell-cell adhesion and cell motility in neuronal cells, but it also plays an important role in vascular endothelial cell motility and pathological angiogenesis. In this study, we report a new function of δ-catenin in lymphangiogenesis. Consistent with expression of δ-catenin in vascular endothelial cells, we detected expression of the gene in lymphatic endothelial cells (LECs). Ectopic expression of δ-catenin in LECs increased cell motility and lymphatic vascular network formation in vitro and lymphangiogenesis in vivo in a Matrigel plug assay. Conversely, knockdown of δ-catenin in LECs impaired lymphangiogenesis in vitro and in vivo. Biochemical analysis shows that δ-catenin regulates activation of Rho family small GTPases, key mediators in cell motility. δ-catenin activates Rac1 and Cdc42 but inhibits RhoA in LECs. Notably, blocking of Rac1 activation impaired δ-catenin mediated lymphangiogenesis in a Matrigel assay. Consistently, loss of δ-catenin in mice inhibited the growth of tumor metastases. Taken together, these findings identify a new function of δ-catenin in lymphangiogenesis and tumor growth/metastasis, likely through modulation of small Rho GTPase activation. Targeting δ-catenin may offer a new way to control tumor metastasis.


Assuntos
Carcinoma Pulmonar de Lewis/patologia , Cateninas/fisiologia , Neoplasias Pulmonares/secundário , Linfangiogênese , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Células Endoteliais/fisiologia , Ativação Enzimática , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Carga Tumoral , delta Catenina
13.
Mol Carcinog ; 54 Suppl 1: E138-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25263389

RESUMO

Our previous studies indicate that abnormal expression of several Wnt signaling molecules including Axin, Dvl and ß-catenin are involved in proliferation, invasion and metastasis of lung cancer. Zbed3 was found to inhibit function of Axin-GSK3ß complex and thus lead to accumulation of ß-catenin in NIH3T3 and HEK293T cells. However its function in malignant tumors is largely unknown. Here we investigate the clinico-pathological significance of Zbed3 expression and its function in non-small cell lung cancer. We use immunohistochemistry and Western blotting to examine Zbed3 expression in non-small cell lung cancer and lung tissues. Transfection of siRNA and plasmid was used to study the function of Zbed3 in lung cancer cells in vitro. We found Zbed3 expression was elevated in cancer tissues compared to normal lung tissues. Increased Zbed3 expression is significantly associated with lymph node metastasis, advanced TNM stages, higher Ki67 status and patients' poor clinical outcome. Higher Zbed3 expression was also found in lung cancer cell lines compared to bronchial epithelial cell line HBE. Downregulation of Zbed3 by siRNA significantly inhibits cancer cell proliferation and invasion in vitro. Downregulation of Zbed3 also significantly inhibits expression of ß-catenin, downstream molecules of Wnt signaling and P120ctn-1 in lung cancer cells. These results suggest that Zbed3 may contribute to lung cancer cell invasion through regulating ß-catenin and p120ctn-1 and may be a promissing cancer marker in non-small cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Cateninas/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neoplasias Pulmonares/patologia , Fatores de Transcrição/fisiologia , Animais , Biomarcadores Tumorais/fisiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Células NIH 3T3
14.
Development ; 141(16): 3177-87, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25038041

RESUMO

Apical constriction (AC) is a widely utilized mechanism of cell shape change whereby epithelial cells transform from a cylindrical to conical shape, which can facilitate morphogenetic movements during embryonic development. Invertebrate epithelial cells undergoing AC depend on the contraction of apical cortex-spanning actomyosin filaments that generate force on the apical junctions and pull them toward the middle of the cell, effectively reducing the apical circumference. A current challenge is to determine whether these mechanisms are conserved in vertebrates and to identify the molecules responsible for linking apical junctions with the AC machinery. Utilizing the developing mouse eye as a model, we have uncovered evidence that lens placode AC may be partially dependent on apically positioned myosin-containing filaments associated with the zonula adherens. In addition we found that, among several junctional components, p120-catenin genetically interacts with Shroom3, a protein required for AC during embryonic morphogenesis. Further analysis revealed that, similar to Shroom3, p120-catenin is required for AC of lens cells. Finally, we determined that p120-catenin functions by recruiting Shroom3 to adherens junctions. Together, these data identify a novel role for p120-catenin during AC and further define the mechanisms required for vertebrate AC.


Assuntos
Cateninas/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Cristalino/embriologia , Proteínas dos Microfilamentos/fisiologia , Actomiosina/metabolismo , Junções Aderentes/metabolismo , Animais , Citoesqueleto/metabolismo , Deleção de Genes , Genótipo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Morfogênese , Miosina não Muscular Tipo IIB/metabolismo , Fatores de Tempo , delta Catenina
15.
Mol Biol Cell ; 25(17): 2592-603, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25009281

RESUMO

p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101-amino acid "head domain" comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain-specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin-mediated development.


Assuntos
Cateninas/fisiologia , Hidrocefalia/metabolismo , Junções Aderentes/metabolismo , Sequência de Aminoácidos , Animais , Caderinas/metabolismo , Cateninas/química , Cateninas/genética , Cateninas/metabolismo , Linhagem Celular Tumoral , Sequência Conservada , Cães , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Defeitos do Tubo Neural/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , delta Catenina
16.
J Cell Sci ; 127(Pt 12): 2603-13, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24931943

RESUMO

Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. ß-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of ß-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células-Tronco Embrionárias/fisiologia , Junções Intercelulares/fisiologia , Animais , Cateninas/fisiologia , Adesão Celular , Diferenciação Celular , Proliferação de Células , Humanos
17.
Nat Neurosci ; 17(4): 522-32, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24562000

RESUMO

Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and the subsequent changes in synapse morphology and efficacy remain unknown. We demonstrate that the intracellular cadherin binding protein δ-catenin is transiently palmitoylated by DHHC5 after enhanced synaptic activity and that palmitoylation increases δ-catenin-cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses and the enlargement of postsynaptic spines, as well as the insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in miniature excitatory postsynaptic current amplitude. Notably, context-dependent fear conditioning in mice resulted in increased δ-catenin palmitoylation, as well as increased δ-catenin-cadherin associations at hippocampal synapses. Together these findings suggest a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure and receptor localization that are involved in memory formation.


Assuntos
Cateninas/fisiologia , Lipoilação/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Aciltransferases , Animais , Cateninas/metabolismo , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo , Membranas Sinápticas/metabolismo , Membranas Sinápticas/fisiologia , delta Catenina
18.
Mol Cell ; 53(3): 444-57, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24412065

RESUMO

The Wnt canonical ligands elicit the activation of ß-catenin transcriptional activity, a response dependent on, but not limited to, ß-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the ß-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of ß-catenin stabilization by Wnt.


Assuntos
Caderinas/fisiologia , Cateninas/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Corpos Multivesiculares/metabolismo , Via de Sinalização Wnt , Animais , Caderinas/metabolismo , Cateninas/metabolismo , Caveolinas/metabolismo , Células HEK293 , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/análise , Camundongos , Fosforilação , Proteína Wnt3A/metabolismo , Proteína Wnt3A/fisiologia , delta Catenina
19.
Oncogene ; 33(11): 1385-94, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23542175

RESUMO

Within the family of protein kinase C (PKC) molecules, the novel isoform PRKCE (PKCɛ) acts as a bona fide oncogene in in vitro and in vivo models of tumorigenesis. Previous studies have reported expression of PKCɛ in breast, prostate and lung tumors above that of normal adjacent tissue. Data from the cancer genome atlas suggest increased copy number of PRKCE in triple negative breast cancer (TNBC). We find that overexpression of PKCɛ in a non-tumorigenic breast epithelial cell line is sufficient to overcome contact inhibition and results in the formation of cellular foci. Correspondingly, inhibition of PKCɛ in a TNBC cell model results in growth defects in two-dimensional (2D) and three-dimensional (3D) culture conditions and orthotopic xenografts. Using stable isotope labeling of amino acids in a cell culture phosphoproteomic approach, we find that CTNND1/p120ctn phosphorylation at serine 268 (P-S268) occurs in a strictly PKCɛ-dependent manner, and that loss of PKCɛ signaling in TNBC cells leads to reversal of mesenchymal morphology and signaling. In a model of Ras activation, inhibition of PKCɛ is sufficient to block mesenchymal cell morphology. Finally, treatment with a PKCɛ ATP mimetic inhibitor, PF-5263555, recapitulates genetic loss of function experiments impairing p120ctn phosphorylation as well as compromising TNBC cell growth in vitro and in vivo. We demonstrate PKCɛ as a tractable therapeutic target for TNBC, where p120ctn phosphorylation may serve as a readout for monitoring patient response.


Assuntos
Cateninas/fisiologia , Proteína Substrato Associada a Crk/metabolismo , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Oncogenes , Fosforilação
20.
Oncogene ; 33(37): 4537-47, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24121272

RESUMO

By the mid 1980's, it was clear that the transforming activity of oncogenic Src was linked to the activity of its tyrosine kinase domain and attention turned to identifying substrates, the putative next level of control in the pathway to transformation. Among the first to recognize the potential of phosphotyrosine-specific antibodies, Parsons and colleagues launched a risky shotgun-based approach that led ultimately to the cDNA cloning and functional characterization of many of today's best-known Src substrates (for example, p85-Cortactin, p110-AFAP1, p130Cas, p125FAK and p120-catenin). Two decades and over 6000 citations later, the original goals of the project may be seen as secondary to the enormous impact of these protein substrates in many areas of biology. At the request of the editors, this review is not restricted to the current status of the substrates, but reflects also on the anatomy of the project itself and some of the challenges and decisions encountered along the way.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Quinases da Família src/metabolismo , Animais , Cateninas/fisiologia , Transformação Celular Neoplásica , Cortactina/fisiologia , Proteína Substrato Associada a Crk/fisiologia , Quinase 1 de Adesão Focal/fisiologia , Humanos , Camundongos , Proteínas dos Microfilamentos/fisiologia , Fosforilação , Proteoma , delta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...