Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 80: 141-147, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29879509

RESUMO

Cathepsin F is a unique papain cysteine proteinase with highly conserved structures: catalytic triad and a cystatin domain contained in the elongated N-terminal pro-region. It has been reported that cathepsin F is associated with the establishment of innate immune in several vertebrate including fish in aquaculture, but not known in bivalves. In this study, we firstly identified and characterized cathepsin F in the Yesso scallop (Patinopecten yessoensis). The protein structural and phylogenetic analyses were then conducted to determine its identity and evolutionary position. We've also investigated the expression levels of cathepsin F gene at different embryonic developmental stages, in healthy adult tissues and especially in the hemocytes and hepatopancreas after Gram-positive (Micrococcus luteus) and negative (Vibrio anguillarum) challenges using quantitative real-time PCR (qPCR). Cathepsin F was significantly up-regulated 3 h after infection of V. anguillarum in hemocytes, suggesting its participation in immune response. Our findings have provided strong evidence that cathepsin F may be a good target for enhancing the immune activity in Yesso scallop.


Assuntos
Catepsina F , Infecções por Bactérias Gram-Positivas/imunologia , Pectinidae/genética , Pectinidae/imunologia , Vibrioses/imunologia , Sequência de Aminoácidos , Animais , Catepsina F/química , Catepsina F/genética , Catepsina F/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Hemócitos/imunologia , Hepatopâncreas/imunologia , Micrococcus luteus , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Vibrio , Vibrioses/veterinária
2.
Fish Shellfish Immunol ; 66: 270-279, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28501446

RESUMO

Cathepsin F (CTSF) is a recently described papain-like cysteine protease and unique among cathepsins due to an elongated N-terminal pro-region, which contains a cystatin domain. CTSF likely plays a regulatory role in processing the invariant chain which is associated with the major histocompatibility complex (MHC) class II. In this regard, we identified the CTSF gene of turbot as well as its protein structure, phylogenetic relationships, and expression patterns in mucosal tissues following Vibrio anguillarum and Streptococcus iniae challenge. We also determined the expression patterns of CTSF in mucosal tissues after vaccinated with the formalin-inactivated V. vulnificus whole-cell vaccine. Briefly, turbot CTSF gene showed the closest relationship with that of Paralichthys olivaceus in phylogenetic analysis. And CTSF was ubiquitously expressed in all tested tissues with the highest expression level in gill. In addition, CTSF gene showed different expression patterns following different bacterial challenge. The significant quick regulation of CTSF in mucosal surfaces against infection indicated its roles in mucosal immunity. Functional studies should further characterize avail utilization of CTSF function to increase the disease resistance of turbot in maintaining the integrity of the mucosal barriers against infection and to facilitate selection of the disease resistant family/strain in turbot.


Assuntos
Catepsina F/genética , Catepsina F/imunologia , Doenças dos Peixes/imunologia , Linguados , Imunidade nas Mucosas/genética , Infecções Estreptocócicas/veterinária , Vibrioses/veterinária , Sequência de Aminoácidos , Animais , Catepsina F/química , DNA Complementar/genética , DNA Complementar/metabolismo , Doenças dos Peixes/genética , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/metabolismo , Linguados/classificação , Linguados/genética , Linguados/imunologia , Conformação Molecular , Mucosa/imunologia , Filogenia , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/imunologia
3.
Insect Biochem Mol Biol ; 40(12): 835-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20727410

RESUMO

A Manduca sexta (tobacco hornworm) cysteine protease inhibitor, MsCPI, purified from larval hemolymph has an apparent molecular mass of 11.5 kDa, whereas the size of the mRNA is very large (∼9 kilobases). MsCPI cDNA consists of a 9,273 nucleotides that encode a polypeptide of 2,676 amino acids, which includes nine tandemly repeated MsCPI domains, four cystatin-like domains and one procathepsin F-like domain. The procathepsin F-like domain protein was expressed in Escherichia coli and processed to its active mature form by incubation with pepsin. The mature enzyme hydrolyzed Z-Leu-Arg-MCA, Z-Phe-Arg-MCA and Boc-Val-Leu-Lys-MCA rapidly, whereas hydrolysis of Suc-Leu-Tyr-MCA and Z-Arg-Arg-MCA was very slow. The protease was strongly inhibited by MsCPI, egg-white cystatin and sunflower cystatin with K(i) values in the nanomolar range. When the MsCPI tandem protein linked to two MsCPI domains was treated with proteases, it was degraded by the cathepsin F-like protease. However, tryptic digestion converted the MsCPI tandem protein to an active inhibitory form. These data support the hypothesis that the mature MsCPI protein is produced from the MsCPI precursor protein by trypsin-like proteases. The resulting mature MsCPI protein probably plays a role in the regulation of the activity of endogenous cysteine proteases.


Assuntos
Clonagem Molecular , Cistatinas/genética , Cisteína Proteases/genética , Inibidores de Cisteína Proteinase/genética , Proteínas de Insetos/genética , Manduca/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Catepsina F/química , Catepsina F/genética , Cistatinas/química , Cistatinas/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/metabolismo , DNA Complementar/genética , Genes de Insetos , Hemolinfa/química , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Manduca/enzimologia , Manduca/metabolismo , Dados de Sequência Molecular , Precursores de Proteínas/genética
4.
Mol Biochem Parasitol ; 170(1): 7-16, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19932715

RESUMO

Cysteine proteases of helminth parasites play essential roles in parasite physiology as well as in a variety of important pathobiological processes. In this study, we identified a multigene family of cathepsin F cysteine proteases in Clonorchis sinensis (CsCFs). We identified a total of 12 CsCF genes through cDNA cloning using degenerate PCR primers followed by RACE. Sequence and phylogenetic analysis of the genes suggested they belonged to the cathepsin F-like enzyme family and further clustered into three different subfamilies. Enzymatic and proteomic analysis of C. sinensis excretory and secretory products (ESP) revealed that multiple isoforms of CsCF were the major proteins present in the ESP and the proteolytic activity of the ESP is mainly attributable to the enzymes. Comparative analysis of representative enzymes for each subfamily, CsCF-4, CsCF-6, and CsCF-11, showed that they share similar biochemical properties typical for cathepsin F-like enzymes, but significant differences were also identified. The enzymes were expressed throughout various developmental stages of the parasite and the transcripts increased gradually in accordance with the maturation of the parasite. Immunolocalization analysis of CsCFs showed that they were mainly localized in the intestine and intestinal contents of the parasite. These results collectively suggested that CsCFs, which are apparently synthesized in the epithelial cells lining the parasite intestine and secreted into the intestinal lumen of the parasite, might have a cooperative role for nutrient uptake in the parasite. Furthermore, they were eventually secreted into outside of the parasite and may perform additional functions for host-parasite interactions.


Assuntos
Catepsina F/genética , Clonorchis sinensis/enzimologia , Espaço Extracelular/enzimologia , Proteínas de Helminto/genética , Intestinos/enzimologia , Família Multigênica , Sequência de Aminoácidos , Animais , Catepsina F/química , Catepsina F/metabolismo , Clonagem Molecular , Clonorchis sinensis/química , Clonorchis sinensis/classificação , Clonorchis sinensis/genética , Espaço Extracelular/química , Espaço Extracelular/genética , Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Alinhamento de Sequência
5.
Comp Biochem Physiol B Biochem Mol Biol ; 154(2): 211-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19545641

RESUMO

Cathepsin F is a recently described papain-like cysteine protease of unknown function, and unique among cathepsins due to an elongated N-terminal pro-region, which contains a cystatin domain. In the present study, the cDNA of olive flounder (Paralichthys olivaceus) cathepsin F (PoCtF) was cloned by the combination of homology molecular cloning and rapid amplification of cDNA ends (RACE) approaches. The PoCtF gene was determined to consist of the 1844 bp nucleotide sequence which encodes for a 475-amino acid polypeptide. The results of RT-PCR analysis revealed ubiquitous expression throughout the entirety of healthy flounder tissues; however the PoCtF expressions increased significantly in gill at 3h post-injection with lipopolysaccharide (LPS). Also, immunostaining using anti-PoCtF antibody was strongest on the epidermal mucus in the fin. The cDNA encoding mature enzyme of PoCtF was expressed in Escherichia coli using the pGEX-4T-1 expression vector system. Its activity was quantified by cleaving the synthetic peptide Z-Phe-Arg-AMC, a substrate commonly used for functional characterization of cysteine proteinases, and the optimal pH for the protease activity was 7.5. The findings of the present study suggest that PoCtF has a higher optimum pH than mammalian cathepsin F, and PoCtF is an interesting target for future investigations of the role of cathepsin F in the epidermal mucus and fish innate immune system.


Assuntos
Catepsina F/genética , Catepsina F/metabolismo , Linguado , Regulação Enzimológica da Expressão Gênica , Sequência de Aminoácidos , Animais , Catepsina F/química , Clonagem Molecular , DNA Complementar/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Lipopolissacarídeos/farmacologia , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...