Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32364496

RESUMO

Caveolae are bulb-shaped invaginations of the plasma membrane (PM) that undergo scission and fusion at the cell surface and are enriched in specific lipids. However, the influence of lipid composition on caveolae surface stability is not well described or understood. Accordingly, we inserted specific lipids into the cell PM via membrane fusion and studied their acute effects on caveolae dynamics. We demonstrate that sphingomyelin stabilizes caveolae to the cell surface, whereas cholesterol and glycosphingolipids drive caveolae scission from the PM. Although all three lipids accumulated specifically in caveolae, cholesterol and sphingomyelin were actively sequestered, whereas glycosphingolipids diffused freely. The ATPase EHD2 restricts lipid diffusion and counteracts lipid-induced scission. We propose that specific lipid accumulation in caveolae generates an intrinsically unstable domain prone to scission if not restrained by EHD2 at the caveolae neck. This work provides a mechanistic link between caveolae and their ability to sense the PM lipid composition.


Assuntos
Adipócitos/enzimologia , Proteínas de Transporte/metabolismo , Cavéolas/enzimologia , Colesterol/metabolismo , Glicoesfingolipídeos/metabolismo , Esfingomielinas/metabolismo , Células 3T3-L1 , Animais , Proteínas de Transporte/genética , Cavéolas/ultraestrutura , Caveolina 1/genética , Caveolina 1/metabolismo , Endossomos/metabolismo , Células HeLa , Humanos , Gotículas Lipídicas/metabolismo , Lipossomos , Fusão de Membrana , Camundongos , Fatores de Tempo
2.
Am J Physiol Heart Circ Physiol ; 312(3): H501-H514, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039202

RESUMO

Activation of CaMKII induces a myriad of biological processes and plays dominant roles in cardiac hypertrophy. Caveolar microdomain contains many calcium/calmodulin-dependent kinase II (CaMKII) targets, including L-type Ca2+ channel (LTCC) complex, and serves as a signaling platform. The location of CaMKII activation is thought to be critical; however, the roles of CaMKII in caveolae are still elusive due to lack of methodology for the assessment of caveolae-specific activation. Our aim was to develop a novel tool for the specific analysis of CaMKII activation in caveolae and to determine the functional role of caveolar CaMKII in cardiac hypertrophy. To assess the caveolae-specific activation of CaMKII, we generated a fusion protein composed of phospholamban and caveolin-3 (cPLN-Cav3) and GFP fusion protein with caveolin-binding domain fused to CaMKII inhibitory peptide (CBD-GFP-AIP), which inhibits CaMKII activation specifically in caveolae. Caveolae-specific activation of CaMKII was detected using phosphospecific antibody for PLN (Thr17). Furthermore, adenoviral overexpression of LTCC ß2a-subunit (ß2a) in NRCMs showed its constitutive phosphorylation by CaMKII, which induces hypertrophy, and that both phosphorylation and hypertrophy are abolished by CBD-GFP-AIP expression, indicating that ß2a phosphorylation occurs specifically in caveolae. Finally, ß2a phosphorylation was observed after phenylephrine stimulation in ß2a-overexpressing mice, and attenuation of cardiac hypertrophy after chronic phenylephrine stimulation was observed in nonphosphorylated mutant of ß2a-overexpressing mice. We developed novel tools for the evaluation and inhibition of caveolae-specific activation of CaMKII. We demonstrated that phosphorylated ß2a dominantly localizes to caveolae and induces cardiac hypertrophy after α1-adrenergic stimulation in mice.NEW & NOTEWORTHY While signaling in caveolae is thought to be important in cardiac hypertrophy, direct evidence is missing due to lack of tools to assess caveolae-specific signaling. This is the first study to demonstrate caveolae-specific activation of CaMKII signaling in cardiac hypertrophy induced by α1-adrenergic stimulation using an originally developed tool.


Assuntos
Agonistas de Receptores Adrenérgicos alfa 1 , Canais de Cálcio Tipo L/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/metabolismo , Cavéolas/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cavéolas/enzimologia , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Transfecção
3.
Cardiovasc Diabetol ; 15(1): 146, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733157

RESUMO

BACKGROUND: Patients with diabetes are prone to develop cardiac hypertrophy and more susceptible to myocardial ischemia-reperfusion (I/R) injury, which are concomitant with hyperglycemia-induced oxidative stress and impaired endothelial nitric oxide (NO) synthase (eNOS)/NO signaling. Caveolae are critical in the transduction of eNOS/NO signaling in cardiovascular system. Caveolin (Cav)-3, the cardiomyocytes-specific caveolae structural protein, is decreased in the diabetic heart in which production of reactive oxygen species are increased. We hypothesized that treatment with antioxidant N-acetylcysteine (NAC) could enhance cardiac Cav-3 expression and attenuate caveolae dysfunction and the accompanying eNOS/NO signaling abnormalities in diabetes. METHODS: Control or streptozotocin-induced diabetic rats were either untreated or treated with NAC (1.5 g/kg/day, NAC) by oral gavage for 4 weeks. Rats in subgroup were randomly assigned to receive 30 min of left anterior descending artery ligation followed by 2 h of reperfusion. Isolated rat cardiomyocytes or H9C2 cells were exposed to low glucose (LG, 5.5 mmol/L) or high glucose (HG, 25 mmol/L) for 36 h before being subjected to 4 h of hypoxia followed by 4 h of reoxygenation (H/R). RESULTS: NAC treatment ameliorated myocardial dysfunction and cardiac hypertrophy, and attenuated myocardial I/R injury and post-ischemic cardiac dysfunction in diabetic rats. NAC attenuated the reductions of NO, Cav-3 and phosphorylated eNOS and mitigated the augmentation of O2-, nitrotyrosine and 15-F2t-isoprostane in diabetic myocardium. Immunofluorescence analysis demonstrated the colocalization of Cav-3 and eNOS in isolated cardiomyocytes. Immunoprecipitation analysis revealed that diabetic conditions decreased the association of Cav-3 and eNOS in isolated cardiomyocytes, which was enhanced by treatment with NAC. Disruption of caveolae by methyl-ß-cyclodextrin or Cav-3 siRNA transfection reduced eNOS phosphorylation. NAC treatment attenuated the reductions of Cav-3 expression and eNOS phosphorylation in HG-treated cardiomyocytes or H9C2 cells. NAC treatment attenuated HG and H/R induced cell injury, which was abolished during concomitant treatment with Cav-3 siRNA or eNOS siRNA. CONCLUSIONS: Hyperglycemia-induced inhibition of eNOS activity might be consequences of caveolae dysfunction and reduced Cav-3 expression. Antioxidant NAC attenuated myocardial dysfunction and myocardial I/R injury by improving Cav-3/eNOS signaling.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Cardiomegalia/prevenção & controle , Caveolina 3/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/enzimologia , Cardiomegalia/fisiopatologia , Cavéolas/efeitos dos fármacos , Cavéolas/enzimologia , Cavéolas/patologia , Caveolina 3/genética , Hipóxia Celular , Linhagem Celular , Citoproteção , Diabetes Mellitus Experimental/induzido quimicamente , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Interferência de RNA , Ratos Sprague-Dawley , Estreptozocina , Transfecção , Função Ventricular Esquerda/efeitos dos fármacos
4.
J Histochem Cytochem ; 63(11): 829-41, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-26231113

RESUMO

Transglutaminases (TGs) are a family of widely distributed enzymes that catalyze protein crosslinking by forming a covalent isopeptide bond between the substrate proteins. We have shown that MC3T3-E1 osteoblasts express Factor XIII-A (FXIII-A), and that the extracellular crosslinking activity of FXIII-A is involved in regulating matrix secretion and deposition. In this study, we have investigated the localization and potential role of intracellular FXIII-A. Conventional immunofluorescence microscopy and TIRF microscopy analyses showed that FXIII-A co-localizes with caveolin-1 in specialized membrane structures, caveolae, in differentiating osteoblasts. The caveolae-disrupting agent methyl-ß-cyclodextrin abolished FXIII-A staining and co-localization with caveolin-1 from the osteoblast plasma membrane. The presence of FXIII-A in caveolae was confirmed by preparing caveolae-enriched cellular fractions using sucrose density gradient ultracentrifugation followed by western blotting. Despite this association of FXIII-A with caveolae, there was no detectable transglutaminase activity in caveolae, as measured by monodansylcadaverine incorporation. TG inhibitor NC9--which can alter TG enzyme conformation--localized to caveolae and displaced FXIII-A from these structures when added to the osteoblast cultures. The decreased FXIII-A levels in caveolae after NC9 treatment increased c-Src activation, which resulted in caveolin-1 phosphorylation, homo-oligomerization and Akt phosphorylation, suggesting cellular FXIII-A has a role in regulating c-Src signaling in osteoblasts.


Assuntos
Biopolímeros/metabolismo , Cavéolas/enzimologia , Caveolina 1/metabolismo , Fator XIIIa/metabolismo , Osteoblastos/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , Transglutaminases/metabolismo , Células 3T3 , Animais , Camundongos , Osteoblastos/enzimologia , Fosforilação
5.
Cell Signal ; 27(10): 1963-76, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26163824

RESUMO

Receptor tyrosine kinases (RTK) are an important family of growth factor and hormone receptors that regulate many aspects of cellular physiology. Ligand binding by RTKs at the plasma membrane elicits activation of many signaling intermediates. The spatial and temporal regulation of RTK signaling within cells is an important determinant of receptor signaling outcome. In particular, the compartmentalization of the plasma membrane into a number of microdomains allows context-specific control of RTK signaling. Indeed various RTKs are recruited to and enriched within specific plasma membrane microdomains under various conditions, including lipid-ordered domains such as caveolae and lipid rafts, clathrin-coated structures, tetraspanin-enriched microdomains, and actin-dependent protrusive membrane microdomains such as dorsal ruffles and invadosomes. We examine the evidence for control of RTK signaling by each of these plasma membrane microdomains, as well as molecular mechanisms for how this spatial organization controls receptor signaling.


Assuntos
Microdomínios da Membrana/enzimologia , Receptores Proteína Tirosina Quinases/fisiologia , Transdução de Sinais , Animais , Cavéolas/enzimologia , Caveolinas/metabolismo , Humanos , Microdomínios da Membrana/ultraestrutura , Transporte Proteico
6.
Biochem Biophys Res Commun ; 456(3): 750-6, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25514038

RESUMO

PTRF/cavin-1 is a protein of two lives. Its reported functions in ribosomal RNA synthesis and in caveolae formation happen in two different cellular locations: nucleus vs. plasma membrane. Here, we identified that the N-terminal leucine-zipper motif in PTRF/cavin-1 was essential for the protein to be associated with caveolae in plasma membrane. It could counteract the effect of nuclear localization sequence in the molecule (AA 235-251). Deletion of this leucine-zipper motif from PTRF/cavin-1 caused the mutant to be exclusively localized in nuclei. The fusion of this leucine-zipper motif with histone 2A, which is a nuclear protein, could induce the fusion protein to be exported from nucleus. Cell migration was greatly inhibited in PTRF/cavin-1(-/-) mouse embryonic fibroblasts (MEFs). The inhibited cell motility could only be rescued by exogenous cavin-1 but not the leucine-zipper motif deleted cavin-1 mutant. Plasma membrane dynamics is an important factor in cell motility control. Our results suggested that the membrane dynamics in cell migration is affected by caveolae associated PTRF/cavin-1.


Assuntos
Cavéolas/enzimologia , Zíper de Leucina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Células 3T3-L1 , Animais , Células CHO , Células COS , Movimento Celular , Cricetulus , Zíper de Leucina/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação , Mutação Puntual , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Deleção de Sequência
7.
Arterioscler Thromb Vasc Biol ; 33(9): 2147-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846495

RESUMO

OBJECTIVE: Angiotensin II (AngII) signal transduction in vascular smooth muscle cells (VSMC) is mediated by reactive oxygen species (ROS). Cyclophilin A (CyPA) is a ubiquitously expressed cytosolic protein that possesses peptidyl-prolyl cis-trans isomerase activity, scaffold function, and significantly enhances AngII-induced ROS production in VSMC. We hypothesized that CyPA regulates AngII-induced ROS generation by promoting translocation of NADPH oxidase cytosolic subunit p47phox to caveolae of the plasma membrane. APPROACH AND RESULTS: Overexpression of CyPA in CyPA-deficient VSMC (CyPA(-/-)VSMC) significantly increased AngII-stimulated ROS production. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors (VAS2870 or diphenylene iodonium) significantly attenuated AngII-induced ROS production in CyPA and p47phox-overexpressing CyPA(-/-)VSMC. Cell fractionation and sucrose gradient analyses showed that AngII-induced p47phox plasma membrane translocation, specifically to the caveolae, was reduced in CyPA(-/-)VSMC compared with wild-type-VSMC. Immunofluorescence studies demonstrated that AngII increased p47phox and CyPA colocalization and translocation to the plasma membrane. In addition, immunoprecipitation of CyPA followed by immunoblotting of p47phox and actin showed that AngII increased CyPA and p47phox interaction. AngII-induced p47phox and actin cell cytoskeleton association was attenuated in CyPA(-/-)VSMC. Mechanistically, inhibition of p47phox phosphorylation and phox homology domain deletion attenuated CyPA and p47phox interaction. Finally, cyclosporine A and CyPA-peptidyl-prolyl cis-trans isomerase mutant, R55A, inhibited AngII-stimulated CyPA and p47phox association in VSMC, suggesting that peptidyl-prolyl cis-trans isomerase activity was required for their interaction. CONCLUSIONS: These findings provide the mechanism by which CyPA is an important regulator for AngII-induced ROS generation in VSMC through interaction with p47phox and cell cytoskeleton, which enhances the translocation of p47phox to caveolae.


Assuntos
Angiotensina II/farmacologia , Cavéolas/efeitos dos fármacos , Ciclofilina A/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NADPH Oxidases/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/enzimologia , Animais , Western Blotting , Cavéolas/enzimologia , Ciclofilina A/genética , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Imunofluorescência , Células HeLa , Humanos , Imunoprecipitação , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Músculo Liso Vascular/enzimologia , Mutação , Miócitos de Músculo Liso/enzimologia , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/genética , Oligopeptídeos , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Transporte Proteico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo
8.
Clin Exp Pharmacol Physiol ; 40(11): 753-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23745825

RESUMO

Complex regulatory processes alter the activity of endothelial nitric oxide synthase (eNOS) leading to nitric oxide (NO) production by endothelial cells under various physiological states. These complex processes require specific subcellular eNOS partitioning between plasma membrane caveolar domains and non-caveolar compartments. Translocation of eNOS from the plasma membrane to intracellular compartments is important for eNOS activation and subsequent NO biosynthesis. We present data reviewing and interpreting information regarding: (i) the coupling of endothelial plasma membrane receptor systems in the caveolar structure relative to eNOS trafficking; (ii) how eNOS trafficking relates to specific protein-protein interactions for inactivation and activation of eNOS; and (iii) how these complex mechanisms confer specific subcellular location relative to eNOS multisite phosphorylation and signalling. Dysfunction in the regulation of eNOS activation may contribute to several disease states, in particular gestational endothelial abnormalities (pre-eclampsia, gestational diabetes etc.), that have life-long deleterious health consequences that predispose the offspring to develop hypertensive disease, Type 2 diabetes and adiposity.


Assuntos
Cavéolas/metabolismo , Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Modelos Biológicos , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Cavéolas/enzimologia , Membrana Celular/enzimologia , Endotélio Vascular/enzimologia , Ativação Enzimática , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/química , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Serina/metabolismo , Transdução de Sinais , Treonina/metabolismo
9.
Circ J ; 76(11): 2497-512, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23075817

RESUMO

Reactive oxygen species (ROS) have long been viewed as deleterious chemicals that lead to oxidative stress. More recently, ROS, especially the stable ROS hydrogen peroxide (H(2)O(2)), have been shown to have roles in normal physiological responses in vascular cells. Endothelial nitric oxide synthase (eNOS) is dynamically targeted to plasmalemmal caveolae, and represents the principal enzymatic source of nitric oxide (NO(•)) in the vascular wall. eNOS maintains normal vascular tone and inhibits the clinical expression of many cardiovascular diseases. Increases in oxidative stress are associated with eNOS dysfunction. In a paradigm shift in the conceptual framework linking redox biochemistry and vascular function, H(2)O(2) has been established as a physiological mediator in signaling pathways, yet the intracellular sources of H(2)O(2) and their regulation remain incompletely understood. The subcellular distributions of ROS and of ROS-modified proteins critically influence the redox-sensitive regulation of eNOS-dependent pathways. ROS localization in specific subcellular compartments can lead to selective oxidative modifications of eNOS and eNOS-associated proteins. Likewise, the dynamic targeting of eNOS and other signaling proteins influences their interactions with reactive nitrogen species and ROS that are also differentially distributed within the cell. Thus, the subcellular distribution both of eNOS and redox-active biomolecules serves as a critical basis for the control of the "redox switch" that influences NO(•)- and oxidant-regulated signaling pathways. Here we discuss the biochemical factors, cellular determinants, and molecular mechanisms that modulate redox-sensitive regulation of eNOS and NO(•) signaling under normal and pathological conditions.


Assuntos
Doenças Cardiovasculares/metabolismo , Cavéolas/enzimologia , Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase Tipo III/biossíntese , Óxido Nítrico/metabolismo , Oxidantes/metabolismo , Transdução de Sinais , Animais , Humanos , Peróxido de Hidrogênio/metabolismo , Oxirredução
10.
Adv Exp Med Biol ; 729: 51-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22411313

RESUMO

Caveolae are a specialized subset of lipid domains that are prevalent on the plasma membrane of endothelial cells. They compartmentalize signal transduction molecules which regulate multiple endothelial functions including the production of nitric oxide (NO) by the caveolae resident enzyme endothelial NO synthase (eNOS). eNOS is one of the three isoforms of the NOS enzyme which generates NO upon the conversion of L-arginine to L-citrulline and it is regulated by multiple mechanisms. Caveolin negatively impact eNOS activity through direct interaction with the enzyme. Circulating factors known to modify cardiovascular disease risk also influence the activity of the enzyme. In particular, high density lipoprotein cholesterol (HDL) maintains the lipid environment in caveolae, thereby promoting the retention and function of eNOS in the domain and it also causes direct activation of eNOS via scavenger receptor class B, Type I (SR-BI)-induced kinase signaling. Estrogen binding to estrogen receptors (ER) in caveolae also activates eNOS and this occurs through G protein coupling and kinase activation. Discrete domains within SR-BI and ER mediating signal initiation in caveolae have been identified. Counteracting the promodulatory actions of HDL and estrogen, C-reactive protein (CRP) antagonizes eNOS through FcγRIIB, which is the sole inhibitory receptor for IgG. Through their actions on eNOS, estrogen and CRP also regulate endothelial cell growth and migration. Thus, signaling events in caveolae invoked by known circulating cardiovascular disease risk factors have major impact on eNOS and endothelial cell phenotypes of importance to cardiovascular health and disease.


Assuntos
Cavéolas/enzimologia , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Cavéolas/metabolismo , Células Endoteliais/citologia , Ativação Enzimática , Humanos , Transporte Proteico
11.
Biochimie ; 94(4): 991-1000, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227040

RESUMO

We have recently reported that α(2)ß(1) and α(1)ß(1) isozymes of Na(+)/K(+)-ATPase (NKA) are localized in the caveolae whereas only the α(1)ß(1) isozyme of NKA is localized in the non-caveolae fraction of pulmonary artery smooth muscle cell membrane. It is well known that different isoforms of NKA are regulated differentially by PKA and PKC, but the mechanism is not known in the caveolae of pulmonary artery smooth muscle cells. Herein, we examined whether this regulation occurs through phospholemman (PLM) in the caveolae. Our results suggest that PKC mediated phosphorylation of PLM occurs only when it is associated with the α(2) isoform of NKA, whereas phosphorylation of PLM by PKA occurs when it is associated with the α(1) isoform of NKA. To investigate the mechanism of regulation of α(2) isoform of NKA by PKC-mediated phosphorylation of PLM, we have purified PLM from the caveolae and reconstituted into the liposomes. Our result revealed that (i) in the reconstituted liposomes phosphorylated PLM (PKC mediated) stimulate NKA activity, which appears to be due to an increase in the turnover number of the enzyme; (ii) phosphorylated PLM did not change the affinity of the pump for Na(+); and (iii) even after phosphorylation by PKC, PLM still remains associated with the α(2) isoform of NKA.


Assuntos
Cavéolas/enzimologia , Proteínas de Membrana/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/enzimologia , Fosfoproteínas/metabolismo , Proteína Quinase C/fisiologia , Artéria Pulmonar/citologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Células Cultivadas , Cromatografia de Afinidade , Humanos , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Miócitos de Músculo Liso/metabolismo , Fosfoproteínas/isolamento & purificação , Fosforilação , Ligação Proteica , Proteína Quinase C/metabolismo , Estabilidade Proteica , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/isolamento & purificação
12.
Am J Physiol Heart Circ Physiol ; 302(3): H724-32, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22101521

RESUMO

p66Shc, a longevity adaptor protein, is demonstrated as a key regulator of reactive oxygen species (ROS) metabolism involved in aging and cardiovascular diseases. Vascular endothelial growth factor (VEGF) stimulates endothelial cell (EC) migration and proliferation primarily through the VEGF receptor-2 (VEGFR2). We have shown that ROS derived from Rac1-dependent NADPH oxidase are involved in VEGFR2 autophosphorylation and angiogenic-related responses in ECs. However, a role of p66Shc in VEGF signaling and physiological responses in ECs is unknown. Here we show that VEGF promotes p66Shc phosphorylation at Ser36 through the JNK/ERK or PKC pathway as well as Rac1 binding to a nonphosphorylated form of p66Shc in ECs. Depletion of endogenous p66Shc with short interfering RNA inhibits VEGF-induced Rac1 activity and ROS production. Fractionation of caveolin-enriched lipid raft demonstrates that p66Shc plays a critical role in VEGFR2 phosphorylation in caveolae/lipid rafts as well as downstream p38MAP kinase activation. This in turn stimulates VEGF-induced EC migration, proliferation, and capillary-like tube formation. These studies uncover a novel role of p66Shc as a positive regulator for ROS-dependent VEGFR2 signaling linked to angiogenesis in ECs and suggest p66Shc as a potential therapeutic target for various angiogenesis-dependent diseases.


Assuntos
Células Endoteliais/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neovascularização Fisiológica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cavéolas/enzimologia , Células Endoteliais/citologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Microdomínios da Membrana/enzimologia , Fosforilação/efeitos dos fármacos , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
13.
Mol Cell Biochem ; 360(1-2): 309-20, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948261

RESUMO

We previously reported that the vasoactive peptide 1 (P1, "SSWRRKRKESS") modulates the tension of pulmonary artery vessels through caveolar endothelial nitric oxide synthase (eNOS) activation in intact lung endothelial cells (ECs). Since PKC-α is a caveolae resident protein and caveolae play a critical role in the peptide internalization process, we determined whether modulation of caveolae and/or caveolar PKC-α phosphorylation regulates internalization of P1 in lung ECs. Cell monolayers were incubated in culture medium containing Rhodamine red-labeled P1 (100 µM) for 0-120 min. Confocal examinations indicate that P1 internalization is time-dependent and reaches a plateau at 60 min. Caveolae disruption by methyl-ß-cyclodextrin (CD) and filipin (FIL) inhibited the internalization of P1 in ECs suggesting that P1 internalizes via caveolae. P1-stimulation also enhances phosphorylation of caveolar PKC-α and increases intracellular calcium (Ca(2+)) release in intact cells suggesting that P1 internalization is regulated by PKC-α in ECs. To confirm the roles of increased phosphorylation of PKC-α and Ca(2+) release in internalization of P1, PKC-α modulation by phorbol ester (PMA), PKC-α knockdown, and Ca(2+) scavenger BAPTA-AM model systems were used. PMA-stimulated phosphorylation of caveolar PKC-α is associated with significant reduction in P1 internalization. In contrast, PKC-α deficiency and reduced phosphorylation of PKC-α enhanced P1 internalization. P1-mediated increased phosphorylation of PKC-α appears to be associated with increased intracellular calcium (Ca(2+)) release since the Ca(2+) scavenger BAPTA-AM enhanced P1 internalization. These data indicate that caveolar integrity and P1-mediated increased phosphorylation of caveolar PKC-α play crucial roles in the regulation of P1 internalization in lung ECs.


Assuntos
Cavéolas/enzimologia , Peptídeos Penetradores de Células/metabolismo , Células Endoteliais/metabolismo , Pulmão/citologia , Peptídeos/metabolismo , Proteína Quinase C-alfa/metabolismo , Animais , Sinalização do Cálcio , Cavéolas/efeitos dos fármacos , Caveolina 1/metabolismo , Células Cultivadas , Endocitose/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Filipina/farmacologia , Fosforilação , Proteína Quinase C-alfa/genética , Suínos , Acetato de Tetradecanoilforbol/farmacologia , beta-Ciclodextrinas/farmacologia
14.
Mol Cell ; 44(4): 545-58, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22099303

RESUMO

Cellular antioxidant enzymes play crucial roles in aerobic organisms by eliminating detrimental oxidants and maintaining the intracellular redox homeostasis. Therefore, the function of antioxidant enzymes is inextricably linked to the redox-dependent activities of multiple proteins and signaling pathways. Here, we report that the VEGFR2 RTK has an oxidation-sensitive cysteine residue whose reduced state is preserved specifically by peroxiredoxin II (PrxII) in vascular endothelial cells. In the absence of PrxII, the cellular H(2)O(2) level is markedly increased and the VEGFR2 becomes inactive, no longer responding to VEGF stimulation. Such VEGFR2 inactivation is due to the formation of intramolecular disulfide linkage between Cys1199 and Cys1206 in the C-terminal tail. Interestingly, the PrxII-mediated VEGFR2 protection is achieved by association of two proteins in the caveolae. Furthermore, PrxII deficiency suppresses tumor angiogenesis in vivo. This study thus demonstrates a physiological function of PrxII as the residential antioxidant safeguard specific to the redox-sensitive VEGFR2.


Assuntos
Antioxidantes/metabolismo , Aorta/enzimologia , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Neovascularização Patológica/enzimologia , Peroxirredoxinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Aorta/citologia , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/patologia , Cavéolas/enzimologia , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/citologia , Inativação Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Transplante de Neoplasias , Neovascularização Patológica/genética , Oxirredução , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Biochemistry ; 50(40): 8664-73, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21905705

RESUMO

To evaluate previously proposed functions of renal caveolar Na(+)/K(+)-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na(+)/K(+)-ATPase (α,ß,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na(+)/K(+)-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na(+)/K(+)-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na(+)/K(+)-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,ß,γ-protomers of Na(+)/K(+)-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the ß-subunit of Na(+)/K(+)-ATPase in cell adhesion and noted intercellular ß,ß-contacts within the structure of Na(+)/K(+)-ATPase, our findings suggest that interacting caveolar Na(+)/K(+)-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells.


Assuntos
Cavéolas/enzimologia , Membrana Celular/enzimologia , Rim/enzimologia , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/isolamento & purificação , Animais , Cavéolas/química , Cavéolas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Rim/química , Rim/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
16.
Naunyn Schmiedebergs Arch Pharmacol ; 384(4-5): 461-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21409430

RESUMO

Caveolae are flask-shaped invaginations in the plasma membrane that serve to compartmentalize and organize signal transduction processes, including signals mediated by G protein-coupled receptors and heterotrimeric G proteins. Herein we report evidence for a close association of the nucleoside diphosphate kinase B (NDPK B) and caveolin proteins which is required for G protein scaffolding and caveolae formation. A concomitant loss of the proteins NDPK B, caveolin isoforms 1 (Cav1) and 3, and heterotrimeric G proteins occurred when one of these proteins was specifically depleted in zebrafish embryos. Co-immunoprecipitation of Cav1 with the G protein Gß-subunit and NDPK B from zebrafish lysates corroborated the direct association of these proteins. Similarly, in embryonic fibroblasts from the respective knockout (KO) mice, the membrane content of the Cav1, Gß, and NDPK B was found to be mutually dependent on one another. A redistribution of Cav1 and Gß from the caveolae containing fractions of lower density to other membrane compartments with higher density could be detected by means of density gradient fractionation of membranes derived from NDPK A/B KO mouse embryonic fibroblasts (MEFs) and after shRNA-mediated NDPK B knockdown in H10 cardiomyocytes. This redistribution could be visualized by confocal microscopy analysis showing a decrease in the plasma membrane bound Cav1 in NDPK A/B KO cells and vice versa and a decrease in the plasma membrane pool of NDPK B in Cav1 KO cells. Consequently, ultrastructural analysis revealed a reduction of surface caveolae in the NDPK A/B KO cells. To prove that the disturbed subcellular localization of Cav1 in NDPK A/B KO MEFs as well as NDPK B in Cav1 KO MEFs is a result of the loss of NDPK B and Cav1, respectively, we performed rescue experiments. The adenoviral re-expression of NDPK B in NDPK A/B KO MEFs rescued the protein content and the plasma membrane localization of Cav1. The expression of an EGFP-Cav1 fusion protein in Cav1-KO cells induced a restoration of NDPK B expression levels and its appearance at the plasma membrane. We conclude from these findings that NDPK B, heterotrimeric G proteins, and caveolins are mutually dependent on each other for stabile localization and caveolae formation at the plasma membrane. The data point to a disturbed transport of caveolin/G protein/NDPK B complexes from intracellular membrane compartments if one of the components is missing.


Assuntos
Cavéolas , Caveolinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Nucleosídeo NM23 Difosfato Quinases/fisiologia , Multimerização Proteica , Animais , Cavéolas/enzimologia , Cavéolas/metabolismo , Cavéolas/ultraestrutura , Caveolinas/genética , Linhagem Celular , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Immunoblotting , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Nucleosídeo NM23 Difosfato Quinases/genética , Ratos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
17.
J Vasc Res ; 47(6): 531-43, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20431301

RESUMO

BACKGROUND/AIMS: Aminopeptidase P (APP) is specifically enriched in caveolae on the luminal surface of pulmonary vascular endothelium. APP antibodies bind lung endothelium in vivo and are rapidly and actively pumped across the endothelium into lung tissue. Here we characterize the immunotargeting properties and pharmacokinetics of the APP-specific recombinant antibody 833c. METHODS: We used in situ binding, biodistribution analysis and in vivo imaging to assess the lung targeting of 833c. RESULTS: More than 80% of 833c bound during the first pass through isolated perfused lungs. Dynamic SPECT acquisition showed that 833c rapidly and specifically targeted the lungs in vivo, reaching maximum levels within 2 min after intravenous injection. CT-SPECT imaging revealed specific targeting of 833c to the thoracic cavity and co-localization with a lung perfusion marker, Tc99m-labeled macroaggregated albumin. Biodistribution analysis confirmed lung-specific uptake of 833c which declined by first-order kinetics (t(½) = 110 h) with significant levels of 833c still present 30 days after injection. CONCLUSION: These data show that APP expressed in endothelial caveolae appears to be readily accessible to circulating antibody rather specifically in lung. Targeting lung-specific caveolar APP provides an extraordinarily rapid and specific means to target pulmonary vasculature and potentially deliver therapeutic agents into the lung tissue.


Assuntos
Aminopeptidases/metabolismo , Anticorpos Monoclonais/farmacocinética , Endotélio Vascular/enzimologia , Radioisótopos do Iodo , Pulmão/irrigação sanguínea , Imagem de Perfusão/métodos , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Aminopeptidases/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Especificidade de Anticorpos , Cavéolas/enzimologia , Linhagem Celular , Endotélio Vascular/diagnóstico por imagem , Haplorrinos , Humanos , Injeções Intravenosas , Pulmão/diagnóstico por imagem , Masculino , Perfusão , Ligação Proteica , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacocinética , Distribuição Tecidual , Transfecção
18.
Biochim Biophys Acta ; 1798(3): 592-604, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20074548

RESUMO

Mammalian proteins that contain an aspartate-histidine-histidine-cysteine-(DHHC) motif have been recently identified as a group of membrane-associated palmitoyl acyltransferases (PATs). Among the several protein substrates known to become palmitoylated by DHHC PATs are small GTPases prenylated at their carboxy-terminal end, such as H-Ras or N-Ras, eNOS, kinases myristoylated at their N-terminal end, such as Lck, and many transmembrane proteins and channels. We have focused our studies on the product of the human gene DHHC19, a putative palmitoyl transferase that, interestingly, displays a conserved CaaX box at its carboxy-terminal end. We show herein that the amino acid sequence present at the carboxy-terminus of DHHC19 is able to exclude a green fluorescent protein (GFP) reporter from the nucleus and direct it towards perinuclear regions. Transfection of full-length DHHC19 in COS7 cells reveals a perinuclear distribution, in analogy to other palmitoyl transferases, with a strong colocalization with the trans-Golgi markers Gal-T and TGN38. We have tested several small GTPases that are known to be palmitoylated as possible substrates of DHHC19. Although DHHC19 failed to increase the palmitoylation of H-Ras, N-Ras, K-Ras4A, RhoB or Rap2 it increased the palmitoylation of R-Ras approximately two-fold. The increased palmitoylation of R-Ras cotransfected with DHHC19 is accompanied by an augmented association with membranes as well as with rafts/caveolae. Finally, using both wild-type and an activated GTP bound form of R-Ras (G38V), we also show that the increased palmitoylation of R-Ras due to DHHC19 coexpression is accompanied by an enhanced viability of the transfected cells.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Lipoilação , Proteínas ras/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cavéolas/enzimologia , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/enzimologia , Especificidade por Substrato , Transfecção
19.
Glycoconj J ; 27(7-9): 723-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19823931

RESUMO

Plant lectins have been reported to affect the proliferation of different human cancer cell line probably by binding to the specific carbohydrate moieties. In the present study, Badan labeled single cysteine mutant (present in the caveolin-1 binding motif) of jacalin (rJacalin) was found to penetrate the target membrane, indicating a protein-protein or protein-membrane interaction apart from its primary mode of binding i.e. protein-carbohydrate interaction. Further, Jacalin treatment has resulted in the movement of the GFP-Caveolin-1 predominantly at the cell-cell contact region with much restricted dynamics. Jacalin treatment has resulted in the perinuclear accumulation of PP2A and dissociation of the PHAP1/PP2A complex. PP2A was found to act as a negative regulator of ERK signaling and a significant decrease in the phosphorylation level of MEK and AKT (T308) in A431. In addition, we have also identified several ER resident proteins including molecular chaperones like ORP150, Hsp70, Grp78, BiP of A431 cells, which were bound to the Jacalin-sepharose column. Among various ER chaperones that were identified, ORP150 was found to present on the cell surface of A431 cells.


Assuntos
Cavéolas/enzimologia , Retículo Endoplasmático/enzimologia , Chaperonas Moleculares/metabolismo , Lectinas de Plantas/farmacologia , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Células Tumorais Cultivadas
20.
Biofactors ; 35(5): 407-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19565474

RESUMO

The extracellular signal-regulated kinase cascade is a central signaling pathway that is stimulated by various extracellular stimuli. The signals of these stimuli are then transferred by the cascade's components to a large number of targets at distinct subcellular compartments, which in turn induce and regulate a large number of cellular processes. To achieve these functions, the cascade exhibits versatile and dynamic subcellular distribution that allows proper temporal and spatial modulation of the appropriate processes. In this review, we discuss the intracellular localizations of different components of the ERK cascade, and the impact of these localizations on their activation and specificity.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Organelas/enzimologia , Transdução de Sinais/fisiologia , Animais , Cavéolas/enzimologia , Citoesqueleto/enzimologia , Endossomos/enzimologia , Adesões Focais/fisiologia , Complexo de Golgi/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , MAP Quinase Quinase 1/fisiologia , MAP Quinase Quinase 2/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mitocôndrias/enzimologia , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Quinases raf/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...