Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.172
Filtrar
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38849309

RESUMO

AIMS: To investigate alternative resistance mechanisms among seven ceftazidime-avibactam (CZA)-resistant carbapenem-resistant Klebsiella pneumoniae (CRKP) strains lacking common antimicrobial resistance genes (ARGs) using whole genome sequencing. METHODS AND RESULTS: ARG and virulence factors (VFs) were screened using the ARG database CARD and the VF database, respectively, and identified using genomic annotation data with BLAST+. Six strains were ST11 sequence types (STs), and one was ST2123. ST11 strains harbored more ARGs than the ST2123 strains. All seven strains carried multiple ARGs with efflux-mediated antibiotic resistance, including oqxA, oqxB, tet (A), qacEdltal, CRP, H-NS, Kpn-E, F, G, H, acrA, LptD, acrB, acrD, cpxA, mdtB, and mdtC. These efflux-mediated ARGs were identified in most strains and even all strains. Whole genome sequencing revealed that the ST11 strain carried multiple potential prophages, genomic islands, and integrative and conjugative elements, while the ST2123 strain carried an independent potential prophages and a genomic island. CONCLUSIONS: Whole genome sequencing analysis revealed that these seven CZA-resistant CRKP strains lacking common ARGs exhibited efflux-mediated antibiotic resistance-associated ARGs. The main mechanism by which CRKP resists CZA is antibiotic inactivation. Except for tet (A), no ARGs and validation experiments related to efflux were found. This study's results provide a new possibility for the resistance mechanism of CRKP to CZA, and we will verify this conclusion through experiments in the future.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Combinação de Medicamentos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sequenciamento Completo do Genoma , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Genoma Bacteriano , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Fatores de Virulência/genética
2.
Front Cell Infect Microbiol ; 14: 1352339, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808066

RESUMO

Antibiotic drug combination therapy is critical for the successful treatment of infections caused by multidrug resistant pathogens. We investigated the efficacy of ß-lactam and ß-lactam/ß-lactamase inhibitor combinations with other antibiotics, against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory concentrations in vitro differed by up to eighty-fold between standard and host-mimicking media, combinatorial effects only marginally changed between conditions for some combinations. Effective combinations in vitro were further tested in a chronic, high-density murine infection model. Colistin and azithromycin demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited strong synergy in vitro, this effect was not observed in vivo. Our approach of using host-mimicking conditions and a sophisticated animal model to evaluate drug synergy against bacterial pathogens represents a promising approach. This methodology may offer insights into the prediction of combination therapy outcomes and the identification of potential treatment failures.


Assuntos
Abscesso , Antibacterianos , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Camundongos , Abscesso/tratamento farmacológico , Abscesso/microbiologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Feminino , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Azitromicina/administração & dosagem , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Colistina/administração & dosagem
3.
Microbiol Spectr ; 12(6): e0410523, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38700337

RESUMO

Resistance to ceftazidime-avibactam (CZA) due to Klebsiella pneumoniae carbapenemase (KPC) variants is increasing worldwide. We characterized two CZA-resistant clinical Klebsiella pneumoniae strains by antimicrobial susceptibility test, conjugation assays, and WGS. Isolates belonged to ST258 and ST45, and produced a KPC-31 and a novel variant KPC-197, respectively. The novel KPC variant presents a deletion of two amino acids on the Ω-loop (del_168-169_EL) and an insertion of two amino acids in position 274 (Ins_274_DS). Continued surveillance of KPC variants conferring CZA resistance in Colombia is warranted. IMPORTANCE: Latin America and the Caribbean is an endemic region for carbapenemases. Increasingly high rates of Klebsiella pneumoniae carbapenemase (KPC) have established ceftazidime-avibactam (CZA) as an essential antimicrobial for the treatment of infections due to MDR Gram-negative pathogens. Although other countries in the region have reported the emergence of CZA-resistant KPC variants, this is the first description of such enzymes in Colombia. This finding warrants active surveillance, as dissemination of these variants could have devastating public health consequences.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Colômbia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico
4.
J Ethnopharmacol ; 332: 118365, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38796070

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fuzheng Touxie Jiedu Huayu Decoction (FTJHD) is a commonly used clinical formula that has been found effective in resisting multidrug resistance-Pseudomonas aeruginosa in previous in vivo and in vitro studies. AIM OF THE STUDY: To investigate the antimicrobial effects of FTJHD and its drug-containing serum alone or in combination with ceftazidime on difficult-to-treat multidrug resistance-P. aeruginosa (DTMDR-P. aeruginosa). MATERIALS AND METHODS: The antibacterial effects of FTJHD and its drug-containing alone or in combination with ceftazidime against DTMDR-P. aeruginosa were examined by the tube dilution method and bacterial growth curves. The changes in the bacterial ultrastructure were examined by transmission electron microscopy. The biofilm formation ability of bacteria was examined by crystal violet staining and scanning electron microscopy. The expression of the MexAB-OprM efflux pump and quorum sensing system genes were validated through quantitative polymerase chain reaction. Molecular docking was used to evaluate the interaction between active components and the MexAB-OprM efflux pump. RESULTS: FTJHD-containing serums at 1-, 2-, 4-, and 8-fold concentrations reduced the minimal inhibitory concentration (MIC) of ceftazidime against DTMDR-P. aeruginosa from 128 µg/mL to 64 µg/mL. Sub-inhibitory concentrations of ceftazidime in combination with FTJHD and FTJHD-containing serum prolonged the lag period of bacterial growth and reduced bacterial numbers. Additionally, 1/2 MIC of ceftazidime combined with FTJHD-containing serum significantly inhibited the activity of the MexAB-OprM efflux pump and quorum sensing system, thus reducing biofilm formation while causing more severe damage to the bacteria. Molecular docking revealed a strong affinity of quercetin, baicalein, luteolin, kaempferol, and ß-sitosterol for the efflux pump regulatory proteins OprM and MexR. CONCLUSION: FTJHD can exert synergistic anti-DTMDR-P. aeruginosa effects with ceftazidime by inhibiting biofilm formation mediated by the MexAB-OprM efflux pump and quorum sensing.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Biofilmes , Farmacorresistência Bacteriana Múltipla , Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Pseudomonas aeruginosa , Percepção de Quorum , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Ceftazidima/farmacologia
5.
Emerg Microbes Infect ; 13(1): 2356146, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38743401

RESUMO

Ceftazidime-avibactam (CZA) is employed for the treatment of infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP). Resistance to CZA is frequently linked to point mutations in the blaKPC. We conducted in vitro simulations of in vivo blaKPC mutations using CZA. Four pre-therapy KPC-KP isolates (K1, K2, K3, and K4) were evaluated, all initially exhibited susceptibility to CZA and produced KPC-2. The crucial distinction was that following CZA treatment, the blaKPC-2 mutated in K1, K2, and K3, rendering them resistant to CZA, while K4 achieved microbiological clearance, and blaKPC-2 remained unaltered. The induction assay identified various blaKPC-2 variants, including blaKPC-25, blaKPC-127, blaKPC-100, blaKPC-128, blaKPC-137, blaKPC-138, blaKPC-144 and blaKPC-180. Our findings suggest that the resistance of KPC-KP to CZA primarily results from the emergence of KPC variants, complemented by increased blaKPC expression. A close correlation exists between avibactam concentration and the rate of increased CZA minimum Inhibitory concentration, as well as blaKPC mutation. Inadequate avibactam concentration is more likely to induce resistance in strains against CZA, there is also a higher likelihood of mutation in the blaKPC-2 and the optimal avibactam ratio remains to be determined. Simultaneously, we selected a blaKPC-33-producing K. pneumoniae strain (mutated from blaKPC-2) and induced it with imipenem and meropenem, respectively. The blaKPC-2 was detected during the process, indicating that the mutation is reversible. Clinical use of carbapenems to treat KPC variant strains increases the risk of infection, as the gene can mutate back to blaKPC-2, rendering the strain even more cross-resistant to carbapenems and CZA.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Mutação , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Fenótipo , Hidrólise , Cinética
6.
Indian J Med Microbiol ; 49: 100603, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705276

RESUMO

OBJECTIVE: To find the prevalence of Ceftazidime-Avibactam (CAZ-AVI) resistant Klebsiella pneumoniae in clinical isolates and to determine the genes responsible for Ceftazidime-Avibactam resistance using PCR. METHODS: A total of 89 carbapenem resistant Klebsiella pneumoniae from various clinical samples were included in the study. CAZ-AVI resistance was tested using E-test. CAZ-AVI resistant strains were subjected to conventional PCR for detection of carbapenamase genes blaNDM- 1, blaOXA-48, blaVIM, blaIMP, blaKPC. RESULTS: Of the 89 isolates screened for CAZ-AVI resistance, 45(50.5%) isolates were found to be resistant. 42 isolates were subjected to PCR for detection of ß lactamase genes.34 isolates were positive for blaNDM-1 and all 42 isolates were positive for blaOXA-48. Co-expression of NDM-1 and OXA-48 was seen in 34 isolates. Sensitivity of mCIM test to identify a carbapenamse compared to PCR was 61.9%. Sensitivity of eCIM test to identify NDM-1 was 80%. CONCLUSION: CAZ-AVI was effective in vitro in 49.4% of the isolates. Indicating that CAZ-AVI is a promising addition to antibiotics against CRE as well as a carbapenem sparing drug in ESBL producing organisms. ß-Lactamase-related mutations are the main mechanism leading to CAZ-AVI resistance.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , beta-Lactamases/genética , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Genótipo , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Reação em Cadeia da Polimerase
7.
Indian J Med Microbiol ; 49: 100613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38750965

RESUMO

PURPOSE: Burkholderia cepacia complex (Bcc) is a diverse group of environmental bacteria associated with opportunistic infections. The identification of Bcc using conventional methods poses challenges. Bcc infections are difficult to treat due to intrinsic antibiotic resistance. The study aimed to investigate the species distribution and antimicrobial susceptibility of clinical Bcc isolates. METHODS: A total of 153 Bcc isolates obtained from clinical samples were analysed. Species identification was carried out using automated methods, including MALDI-TOF MS and VITEK2. Antimicrobial susceptibility testing was performed using the disc diffusion method. RESULTS: Burkholderia cenocepacia (70.5%) emerged as the most prevalent species, followed by Burkholderia contaminans (9.8%) and Burkholderia cepacia (7.2%). Ventilator-associated pneumonia (38.6%) was the most common infection, followed by sepsis (28.1%). Co-existence of Bcc with other pathogens in many cases suggested potential co-infection scenarios. Antimicrobial susceptibility revealed that ceftazidime, co-trimoxazole and meropenem were the most effective drugs, while levofloxacin proved to be the least effective. Moderate susceptibility was noted to minocycline, with 4.6% of isolates exhibiting multi-drug resistance. CONCLUSION: This study provides valuable insights into the prevalence, clinical associations, and antibiotic susceptibility of Bcc in India. It highlights the importance of Bcc as a nosocomial pathogen, especially in vulnerable patient populations. The findings contribute to understanding Bcc infections, their distribution, and emphasize the necessity for accurate identification methods in clinical settings.


Assuntos
Antibacterianos , Infecções por Burkholderia , Complexo Burkholderia cepacia , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , Humanos , Índia/epidemiologia , Infecções por Burkholderia/microbiologia , Complexo Burkholderia cepacia/efeitos dos fármacos , Complexo Burkholderia cepacia/isolamento & purificação , Complexo Burkholderia cepacia/classificação , Antibacterianos/farmacologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Idoso , Criança , Pré-Escolar , Lactente , Pneumonia Associada à Ventilação Mecânica/microbiologia , Sepse/microbiologia , Idoso de 80 Anos ou mais , Coinfecção/microbiologia , Ceftazidima/farmacologia
8.
Emerg Microbes Infect ; 13(1): 2361007, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38801099

RESUMO

Ceftazidime-avibactam resistance attributable to the blaKPC-2 gene mutation is increasingly documented in clinical settings. In this study, we characterized the mechanisms leading to the development of ceftazidime-avibactam resistance in ST11-K47 hypervirulent Klebsiella pneumoniae that harboured the blaKPC-135 gene. This strain possessed fimbriae and biofilm, demonstrating pathogenicity. Compared with the wild-type KPC-2 carbapenemase, the novel KPC-135 enzyme exhibited a deletion of Glu168 and Leu169 and a 15-amino acid tandem repeat between Val262 and Ala276. The blaKPC-135 gene was located within the Tn6296 transposon truncated by IS26 and carried on an IncFII/IncR-type plasmid. Compared to the blaKPC-2-positive cloned strain, only the MIC of ceftazidime increased against blaKPC-135-positive K. pneumoniae and wasn't inhibited by avibactam (MIC 32 µg/mL), while clavulanic acid and vaborbactam demonstrated some inhibition. Kinetic parameters revealed that KPC-135 exhibited a lower Km and kcat/Km with ceftazidime and carbapenems, and a higher (∼26-fold) 50% inhibitory concentration with avibactam compared to KPC-2. The KPC-135 enzyme exerted a detrimental effect on fitness relative to the wild-type strain. Furthermore, this strain possessed hypervirulent determinants, which included the IncHI1B/FIB plasmid with rmpA2 and expression of type 1 and 3 fimbriae. In conclusion, we reported a novel KPC variant, KPC-135, in a clinical ST11-K47 hypervirulent K. pneumoniae strain, which conferred ceftazidime-avibactam resistance, possibly through increased ceftazidime affinity and decreased avibactam susceptibility. This strain simultaneously harboured resistance and virulence genes, posing an elevated challenge in clinical treatment.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/enzimologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Virulência , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Animais
9.
Microbiol Spectr ; 12(6): e0010724, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38712934

RESUMO

This study aimed to assess the in vitro efficacy of ceftazidime-avibactam (CZA) in combination with various antimicrobial agents against carbapenem-resistant Klebsiella pneumoniae (CRKP). We selected 59 clinical CRKP isolates containing distinct drug resistance mechanisms. The minimum inhibitory concentrations (MICs) of meropenem (MEM), colistin (COL), eravacycline (ERA), amikacin (AK), fosfomycin (FOS), and aztreonam (ATM), both individually and in combination with CZA, were tested using the checkerboard method. The interactions of antimicrobial agent combinations were assessed by fractional inhibitory concentration index (FICI) and susceptible breakpoint index (SBPI). The time-kill curve assay was employed to dynamically evaluate the effects of these drugs alone and in combination format. In the checkerboard assay, the combination of CZA+MEM showed the highest level of synergistic effect against both KPC-producing and carbapenemase-non-producing isolates, with synergy rates of 91.3% and 100%, respectively. Following closely was the combination of FOS+CZA . For metallo-beta-lactamases (MBLs) producing strains, ATM+CZA displayed complete synergy, while the combination of MEM+CZA showed a synergy rate of only 57.14% for NDM-producing strains and 91.67% for IMP-producing strains. In the time-kill assay, MEM+CZA also demonstrated significant synergistic effects against the two KPC-2-producing isolates (Y070 and L70), the two carbapenemase-non-producing isolates (Y083 and L093), and the NDM-1-producing strain L13, with reductions in log10 CFU/mL exceeding 10 compared to the control. Against the IMP-producing strain Y047, ATM+CZA exhibited the highest synergistic effect, resulting in a log10 CFU/mL reduction of 10.43 compared to the control. The combination of CZA and MEM exhibited good synergistic effects against KPC-producing and non-enzyme-producing strains, followed by the FOS+CZA combination. Among MBL-producing strains, ATM+CZA demonstrated the most pronounced synergistic effect. However, the combinations of CZA with ERA, AK, and COL show irrelevant effects against the tested clinical isolates. IMPORTANCE: Our study confirmed the efficacy of the combination CZA+MEM against KPC-producing and non-carbapenemase-producing strains. For metalloenzyme-producing strains, CZA+ATM demonstrated the most significant synergy. Additionally, CZA exhibited a notable synergy effect when combined with FOS. These combination therapies present promising new options for the treatment of CRKP infection.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Enterobacteriáceas Resistentes a Carbapenêmicos , Ceftazidima , Combinação de Medicamentos , Sinergismo Farmacológico , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Compostos Azabicíclicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Ceftazidima/farmacologia , Humanos , Antibacterianos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , beta-Lactamases/metabolismo , beta-Lactamases/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfomicina/farmacologia , Aztreonam/farmacologia
10.
Virulence ; 15(1): 2348251, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38697754

RESUMO

OBJECTIVES: This study aimed at revealing the underlying mechanisms of the loss and gain of ceftazidime-avibactam susceptibility in a non-carbapenemase-producing hypervirulent Klebsiella pneumoniae (hvKp). METHODS: Here we longitudinally recovered 3 non-carbapenemase-producing K1-ST23 hvKp strains at a one-month interval (KP29105, KP29499 and KP30086) from an elderly male. Antimicrobial susceptibility testing, whole genome sequencing, transcriptomic sequencing, gene cloning, plasmid conjugation, quantitative real-time PCR (qRT-PCR), and SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) were conducted. RESULTS: Among the 3 hvKp strains, KP29105 was resistant to the third- and fourth-generation cephalosporins, KP29499 acquired resistance to both ceftazidime-avibactam and carbapenems, while KP30086 restored its susceptibility to ceftazidime-avibactam, imipenem and meropenem but retained low-level resistance to ertapenem. KP29105 and KP29499 carried plasmid-encoded genes blaCTX-M-15 and blaCTX-M-71, respectively, but KP30086 lost both. Cloning of gene blaCTX-M-71 and conjugation experiment of blaCTX-M-71-carrying plasmid showed that the transformant and transconjugant were susceptible to ceftazidime-avibactam but had a more than 8-fold increase in MICs. Supplementation with an outer membrane permeabilizer could reduce the MIC of ceftazidime-avibactam by 32 folds, indicating that porins play a key role in ceftazidime-avibactam resistance. The OmpK35 of the 3 isolates was not expressed, and the OmpK36 of KP29499 and KP30086 had a novel amino acid substitution (L359R). SDS-PAGE and qRT-PCR showed that the expression of porin OmpK36 of KP29499 and KP30086 was significantly down-regulated compared with KP29105. CONCLUSIONS: In summary, we reported the rare ceftazidime-avibactam resistance in a non-carbapenemase-producing hvKp strain. Resistance plasmid carrying blaCTX-M-71 and mutated OmpK36 had a synergetic effect on the resistance.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Ceftazidima/farmacologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/enzimologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Masculino , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Idoso , Farmacorresistência Bacteriana Múltipla/genética , Virulência , Plasmídeos/genética , Sequenciamento Completo do Genoma
11.
Front Cell Infect Microbiol ; 14: 1404404, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779560

RESUMO

Background: Ceftazidime-avibactam is a treatment option for carbapenem-resistant gram-negative bacilli (CR-GNB) infections. However, the risk factors associated with ceftazidime-avibactam (CAZ-AVI) treatment failure in kidney transplant (KT) recipients and the need for CAZ-AVI-based combination therapy remain unclear. Methods: From June 2019 to December 2023, a retrospective observational study of KT recipients with CR-GNB infection treated with CAZ-AVI was conducted, with the primary outcome being 30-day mortality and secondary outcomes being clinical cure, microbiological cure, and safety. Risk factors for 30-day mortality and clinical failure were also investigated. Results: A total of 81 KT recipients treated with CAZ-AVI were included in this study. Forty recipients (49.4%) received CAZ-AVI monotherapy, with a 30-day mortality of 22.2%. The clinical cure and microbiological cure rates of CAZ/AVI therapy were 72.8% and 66.7%, respectively. CAZ-AVI alone or in combination with other medications had no effect on clinical cure or 30-day mortality. Multivariate logistic regression analysis revealed that a higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (odds ratio [OR]: 4.517; 95% confidence interval [CI]: 1.397-14.607; P = 0.012) was an independent risk factor for 30-day mortality. Clinical cure was positively associated with the administration of CAZ-AVI within 48 hours of infection onset (OR: 11.009; 95% CI: 1.344-90.197; P=0.025) and negatively associated with higher APACHE II scores (OR: 0.700; 95% CI: 0.555-0.882; P=0.002). Four (4.9%) recipients experienced recurrence within 90 days after the initial infection, 3 (3.7%) recipients experienced CAZ-AVI-related adverse events, and no CAZ-AVI resistance was identified. Conclusion: CAZ-AVI is an effective medication for treating CR-GNB infections following kidney transplantation, even as monotherapy. Optimization of CAZ/AVI therapy (used within 48 hours of infection onset) is positively associated with potential clinical benefit. Further larger-scale studies are needed to validate these findings.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Combinação de Medicamentos , Infecções por Bactérias Gram-Negativas , Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Estudos Retrospectivos , Ceftazidima/uso terapêutico , Ceftazidima/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Fatores de Risco , Compostos Azabicíclicos/uso terapêutico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/mortalidade , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Adulto , Bactérias Gram-Negativas/efeitos dos fármacos , Resultado do Tratamento , Idoso , Transplantados
12.
PLoS One ; 19(5): e0303753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758757

RESUMO

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftazidima/farmacologia , Aztreonam/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Humanos , Sinergismo Farmacológico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico
13.
Microbiol Spectr ; 12(6): e0034424, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687076

RESUMO

With the introduction of ceftazidime-avibactam worldwide, the antimicrobial activity of new ß-lactam/ß-lactamase inhibitors (BL/BLIs) needs to be investigated. From January 2020 to June 2023, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacterales were collected. With a broth microdilution test of new BL/BLIs, cross-activity test with nine combinations of BLs and new BLIs and dose-escalation titration test for non-susceptible isolates were conducted to investigate inhibitory activities of new BLIs. A total of 188 isolates was collected and most isolates (186/188, 98.9%) carried the KPC-2 gene exclusively, while two isolates (1.1%) co-harbored NDM-1. Among the 186 KPC-2-producing isolates, 184 (98.9%) were susceptible to ceftazidime-avibactam, 173 (93.0%) to imipenem-relebactam, and 184 (98.9%) to meropenem-vaborbactam. All isolates non-susceptible to imipenem-relebactam or meropenem-vaborbactam became susceptible when avibactam replaced relebactam or vaborbactam, with 7 of 11 (63.6%) imipenem-relebactam non-susceptible isolates and both (100.0%) of the meropenem-vaborbactam non-susceptible isolates. When the minimum inhibitory concentrations (MICs) of BLs were compared using log2 scales, combinations with avibactam showed statistically significant efficacy in lowering MICs compared to relebactam and vaborbactam (all P < 0.05). In the dose-escalation test of new BLIs, increasing dose of all new BLIs corresponded to increased susceptibility to BLs. Ceftazidime-avibactam exhibited excellent susceptibility against KPC-2-producing Enterobacterales unless co-harboring metallo-ß-lactamase. The cross-combination test against non-susceptible isolates suggests that the inhibitory activity of avibactam was superior to those of relebactam or vaborbactam. Increasing the dose of new BLIs produced increased susceptibility to BLs, suggesting that high-concentration regimen need to be developed. IMPORTANCE: This study investigated 188 Klebsiella pneumoniae carbapenemase (KPC)-2-producing Enterobacterales collected from January 2020 to June 2023 in a tertiary care hospital of Korea. Most isolates were susceptible to ceftazidime-avibactam (98.9%) and meropenem-vaborbactam (98.9%), while susceptibility to imipenem-relebactam was lower (93.0%). The cross-combination test using nine combinations of the individual ß-lactams (BLs) and new ß-lactamase inhibitors (BLIs) showed that the inhibitory activity of avibactam was significantly superior to relebactam or vaborbactam when the Log2 MIC of BLs were compared for each combination with BLIs (all P < 0.05). The dose-escalation test of new BLIs demonstrated that increasing doses of new BLIs corresponded to increased susceptibility to BLs. Taken together, this study illustrates the excellent activity of ceftazidime-avibactam against KPC-2-producing Enterobacterales and suggests further investigation into high-concentration regimens for potentially non-susceptible clinical isolates.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ácidos Borônicos , Ceftazidima , Combinação de Medicamentos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases , beta-Lactamases , Ceftazidima/farmacologia , Compostos Azabicíclicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , beta-Lactamases/metabolismo , Inibidores de beta-Lactamases/farmacologia , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Proteínas de Bactérias/metabolismo , Ácidos Borônicos/farmacologia , Ácidos Borônicos/administração & dosagem , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia
14.
J Microbiol Immunol Infect ; 57(3): 457-469, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584042

RESUMO

INTRODUCTION: Aim of the study was the molecular characterization of 21 ceftazidime/avibactam resistant (CZA-R) Klebsiella pneumoniae strains, collected in the period October 2021-March 2022 from an Intensive Care COVID Unit in a Northern Italian Hospital. METHODS: After growth on selective/chromogenic culture media and susceptibility tests assessment, resistance genes content was ascertained for all the isolates by the HybriSpot 12 multiplexing, PCR and Whole-Genome Sequencing (WGS). Clonality was assessed by PFGE and MLST according to the Pasteur scheme. A SNPs-based phylogenetic tree was obtained comparing representative isolates and global genomes. The blaKPC gene horizontal transmission was evaluated by conjugation experiments. blaKPC-166 was cloned in a pCR2.1 vector and transformed in chemically competent TOP10 cells. RESULTS: Sixteen inpatients resulted positive for colonization and/or infection by KPC-producing K. pneumoniae (KPC-Kp) strains. The 21 CZA-R KPC-Kp isolates obtained showed MDR phenotype; susceptibility to meropenem was always retained. All the CZA-R KPC-Kp presented a novel blaKPC variant, named blaKPC-166, showing a single nucleotide substitution (T811C) compared to the blaKPC-94; but related to blaKPC-2. TWO DIFFERENT PULSOTYPES WERE DETECTED: A in 18/21 and B in 1/21 cases, two strains from the same patient being untypable by PFGE. Interestingly, the outbreak was sustained by the high-risk clone ST307, although the ST22, ST6342, ST6418 and ST6811 have also been identified and associated to KPC-166. Worryingly, blaKPC-166 could be transferred horizontally and, after cloning, it conferred resistance to CZA. DISCUSSION: This novel variant confers CZA-resistance and carbapenems susceptibility restoration. As KPC-166 was found expressed by multiple Kp clones, greater efforts should be made to prevent the further dissemination of such strains in Italian clinical settings.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Surtos de Doenças , Combinação de Medicamentos , Unidades de Terapia Intensiva , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Humanos , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Itália/epidemiologia , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Compostos Azabicíclicos/farmacologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , COVID-19/epidemiologia , COVID-19/virologia , COVID-19/microbiologia , Filogenia , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , Masculino , Tipagem de Sequências Multilocus , Feminino
15.
Antimicrob Agents Chemother ; 68(5): e0147423, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602418

RESUMO

Pseudomonas aeruginosa harboring Verona Integron-encoded metallo-ß-lactamase enzymes (VIM-CRPA) have been associated with infection outbreaks in several parts of the world. In the US, however, VIM-CRPA remain rare. Starting in December 2018, we identified a cluster of cases in our institution. Herein, we present our epidemiological investigation and strategies to control/manage these challenging infections. This study was conducted in a large academic healthcare system in Miami, FL, between December 2018 and January 2022. Patients were prospectively identified via rapid molecular diagnostics when cultures revealed carbapenem-resistant P. aeruginosa. Alerts were received in real time by the antimicrobial stewardship program and infection prevention teams. Upon alert recognition, a series of interventions were performed as a coordinated effort. A retrospective chart review was conducted to collect patient demographics, antimicrobial therapy, and clinical outcomes. Thirty-nine VIM-CRPA isolates led to infection in 21 patients. The majority were male (76.2%); the median age was 52 years. The majority were mechanically ventilated (n = 15/21; 71.4%); 47.6% (n = 10/21) received renal replacement therapy at the time of index culture. Respiratory (n = 20/39; 51.3%) or bloodstream (n = 13/39; 33.3%) were the most common sources. Most infections (n = 23/37; 62.2%) were treated with an aztreonam-avibactam regimen. Six patients (28.6%) expired within 30 days of index VIM-CRPA infection. Fourteen isolates were selected for whole genome sequencing. Most of them belonged to ST111 (12/14), and they all carried blaVIM-2 chromosomally. This report describes the clinical experience treating serious VIM-CRPA infections with either aztreonam-ceftazidime/avibactam or cefiderocol in combination with other agents. The importance of implementing infection prevention strategies to curb VIM-CRPA outbreaks is also demonstrated.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , beta-Lactamases , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Gestão de Antimicrobianos , Compostos Azabicíclicos/uso terapêutico , Aztreonam/uso terapêutico , Aztreonam/farmacologia , beta-Lactamases/genética , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Ceftazidima/uso terapêutico , Ceftazidima/farmacologia , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Integrons/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Estudos Retrospectivos
17.
Int J Antimicrob Agents ; 63(6): 107163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570018

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses immense threats to the health of infected patients worldwide, especially children. This study reports the infection caused by CRKP in a paediatric intensive care unit (PICU) child and its drug-resistant mutation during the treatment. Twelve Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae strains were isolated from the child. Broth microdilution method, plasmid transformation assay, and whole genome sequencing (WGS) were performed to investigate the antimicrobial susceptibility, resistance mechanisms, and genetic structural features of CRKPs. The results showed that 12 strains were highly resistant to most available antimicrobial agents. Among them, K. pneumoniae FD11 and K. pneumoniae FD12 were resistant to ceftazidime-avibactam (CZA, MIC >64 mg/L) and restored the carbapenem susceptibility (Imipenem, MIC =0.25 mg/L; Meropenem, MIC =2 mg/L). The patient improved after treatment with CZA in combination with aztreonam. Plasmid transformation assay demonstrated that the blaKPC-33-positive transformant increased MICs of CZA by at least 33-fold and 8-fold compared with the recipient Escherichia coli DH5α and blaKPC-2-positive transformants. WGS analysis revealed that all strains belonged to the ST11-KL64 type and showed highly homologous (3-26 single nucleotide polymorphisms [SNPs]). A single base mutation (G532T) of blaKPC-2 resulted in a tyrosine to aspartic acid substitution at Ambler amino acid position 179 (D179Y), which conferred CZA resistance in K. pneumoniae. This is the first report of a drug-resistant mutation evolving into blaKPC-33 during the treatment of blaKPC-2-positive CRKP in paediatric-infected patients. It advises clinicians that routine sequential antimicrobial susceptibility testing and KPC genotyping are critical during CZA therapy in children infected with CRKP.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Proteínas de Bactérias , Ceftazidima , Combinação de Medicamentos , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla/genética , Criança , Plasmídeos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Masculino , Aztreonam/farmacologia
18.
PLoS One ; 19(4): e0298577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635685

RESUMO

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Assuntos
Ácidos Borônicos , Ceftazidima , Stenotrophomonas maltophilia , Ceftazidima/farmacologia , Cefiderocol , Meropeném , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Stenotrophomonas , Filogenia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
19.
Future Microbiol ; 19: 317-334, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38440893

RESUMO

Aims: This work describes the encapsulation of ceftazidime and tobramycin in zein nanoparticles (ZNPs) and the characterization of their antibacterial and antibiofilm activities against Gram-negative bacteria. Materials & methods: ZNPs were synthesized by nanoprecipitation. Cytotoxicity was assessed by MTT assay and antibacterial and antibiofilm assays were performed by broth microdilution and violet crystal techniques. Results: ZNPs containing ceftazidime (CAZ-ZNPs) and tobramycin (TOB-ZNPs) showed drug encapsulation and thermal stability. Encapsulation of the drugs reduced their cytotoxicity 9-25-fold. Antibacterial activity, inhibition and eradication of biofilm by CAZ-ZNPs and TOB-ZNPs were observed. There was potentiation when CAZ-ZNPs and TOB-ZNPs were combined. Conclusion: CAZ-ZNPs and TOB-ZNPs present ideal physical characteristics for in vivo studies of antibacterial and antibiofilm activities.


A nanotechnology product was developed to treat diseases caused by bacteria. This prototype showed the ideal characteristics and could be administered by ingestion through the mouth, aspiration through the nose or injection into the veins. The prototype did not harm or kill human cells. It killed the bacteria and prevented the formation of a type of protection against antibiotics that bacteria can produce, called a biofilm. Nanotechnology products are a promising alternative for the treatment of bacterial infections.


Assuntos
Nanopartículas , Zeína , Ceftazidima/farmacologia , Tobramicina/farmacologia , Zeína/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
20.
Antimicrob Agents Chemother ; 68(5): e0136323, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526050

RESUMO

We subjected seven P. aeruginosa isolates to a 10-day serial passaging against five antipseudomonal agents to evaluate resistance levels post-exposure and putative resistance mechanisms in terminal mutants were analyzed by whole-genome sequencing analysis. Meropenem (mean, 38-fold increase), cefepime (14.4-fold), and piperacillin-tazobactam (52.9-fold) terminal mutants displayed high minimum inhibitory concentration (MIC) values compared to those obtained after exposure to ceftolozane-tazobactam (11.4-fold) and ceftazidime-avibactam (5.7-fold). Fewer isolates developed elevated MIC values for other ß-lactams and agents belonging to other classes when exposed to meropenem in comparison to other agents. Alterations in nalC and nalD, involved in the upregulation of the efflux pump system MexAB-OprM, were common and observed more frequently in isolates exposed to ceftazidime-avibactam and meropenem. These alterations, along with ones in mexR and amrR, provided resistance to most ß-lactams and levofloxacin but not imipenem. The second most common gene altered was mpl, which is involved in the recycling of the cell wall peptidoglycan. These alterations were mainly noted in isolates exposed to ceftolozane-tazobactam and piperacillin-tazobactam but also in one cefepime-exposed isolate. Alterations in other genes known to be involved in ß-lactam resistance (ftsI, oprD, phoP, pepA, and cplA) and multiple genes involved in lipopolysaccharide biosynthesis were also present. The data generated here suggest that there is a difference in the mechanisms selected for high-level resistance between newer ß-lactam/ß-lactamase inhibitor combinations and older agents. Nevertheless, the isolates exposed to all agents displayed elevated MIC values for other ß-lactams (except imipenem) and quinolones tested mainly due to alterations in the MexAB-OprM regulators that extrude these agents.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Ceftazidima , Meropeném , Testes de Sensibilidade Microbiana , Combinação Piperacilina e Tazobactam , Pseudomonas aeruginosa , Tazobactam , Inibidores de beta-Lactamases , beta-Lactamas , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Inibidores de beta-Lactamases/farmacologia , Compostos Azabicíclicos/farmacologia , Meropeném/farmacologia , Tazobactam/farmacologia , Ceftazidima/farmacologia , beta-Lactamas/farmacologia , Combinação Piperacilina e Tazobactam/farmacologia , Combinação de Medicamentos , Cefalosporinas/farmacologia , Cefepima/farmacologia , Humanos , Piperacilina/farmacologia , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana Múltipla/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...