Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Clin Transl Neurol ; 8(1): 66-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332761

RESUMO

OBJECTIVE: Metachromatic leukodystrophy (MLD) is an autosomal recessive lysosomal storage disease caused by deficient activity of arylsulfatase A (ASA), resulting in severe motor and cognitive dysfunction. This phase 1/2 study evaluated the safety and efficacy of intravenous (IV) recombinant human ASA (rhASA; HGT-1111, previously known as Metazym) in children with MLD. METHODS: Thirteen children with MLD (symptom onset < 4 years of age) were enrolled in an open-label, nonrandomized, dose-escalation trial and received IV rhASA at 50, 100, or 200 U/kg body weight every 14 (± 4) days for 52 weeks (NCT00418561; NCT00633139). Eleven children continued to receive rhASA at 100 or 200 U/kg during a 24-month extension period (NCT00681811). Outcome measures included safety observations, changes in motor and cognitive function, and changes in nerve conduction and morphometry. RESULTS: There were no serious adverse events considered related to IV rhASA. Motor function and developmental testing scores declined during the study in all dose groups; no significant differences were observed between groups. Nerve conduction studies and morphometric analysis indicated that peripheral nerve pathology did not worsen during the study in any dose group. INTERPRETATION: IV rhASA was generally well tolerated. There was no evidence of efficacy in preventing motor and cognitive deterioration, suggesting that IV rhASA may not cross the blood-brain barrier in therapeutic quantities. The relative stability of peripheral nerve function during the study indicates that rhASA may be beneficial if delivered to the appropriate target site and supports the development of rhASA for intrathecal administration in MLD.


Assuntos
Cerebrosídeo Sulfatase/administração & dosagem , Leucodistrofia Metacromática/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Cerebrosídeo Sulfatase/farmacocinética , Pré-Escolar , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Condução Nervosa/efeitos dos fármacos , Nervos Periféricos/efeitos dos fármacos
2.
Clin Pharmacol Ther ; 107(6): 1394-1404, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868225

RESUMO

Metachromatic leukodystrophy (MLD) is a lysosomal storage disease caused by deficient arylsulfatase A (ASA) activity, which leads to neuronal sulfatide accumulation and motor and cognitive deterioration. Intrathecal delivery of a recombinant human ASA (TAK-611, formerly SHP611) is under development as a potential therapy for MLD. We used serum and cerebrospinal fluid (CSF) TAK-611 concentrations measured during the phase I/II trial of intrathecal TAK-611 to develop a pharmacokinetic (PK) model describing drug disposition. CSF data were well characterized by a two-compartment model in the central nervous system (CNS); a single central compartment described the serum data. Estimated parameters suggested rapid distribution of TAK-611 from CSF into the putative brain tissue compartment, with persistence in the brain between doses (median distributive and terminal half-lives in the CNS: 1.02 and 477 hours, respectively). This model provides a valuable basis for understanding the PK distribution of TAK-611 and for PK/pharmacodynamic analyses of functional outcomes.


Assuntos
Encéfalo/metabolismo , Cerebrosídeo Sulfatase/administração & dosagem , Leucodistrofia Metacromática/tratamento farmacológico , Modelos Biológicos , Cerebrosídeo Sulfatase/farmacocinética , Criança , Pré-Escolar , Meia-Vida , Humanos , Lactente , Injeções Espinhais , Distribuição Tecidual
3.
J Control Release ; 253: 1-10, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28215668

RESUMO

The lysosomal storage disorder (LSD) metachromatic leukodystrophy (MLD) is caused by a deficiency of the soluble, lysosomal hydrolase arylsulfatase A (ASA). The disease is characterized by accumulation of 3-O-sulfogalactosylceramide (sulfatide), progressive demyelination of the nervous system and premature death. Enzyme replacement therapy (ERT), based on regular intravenous injections of recombinant functional enzyme, is in clinical use for several LSDs. For MLD and other LSDs with central nervous system (CNS) involvement, however, ERT is limited by the blood-brain barrier (BBB) restricting transport of therapeutic enzymes from the blood to the brain. In the present study, the potential of different types of surfactant-coated biodegradable nanoparticles to increase brain delivery of ASA was evaluated. Three different strategies to bind ASA to nanoparticle surfaces were compared: (1) adsorption, (2) high-affinity binding via the streptavidin-biotin system, and (3) covalent binding. Adsorption allowed binding of high amounts of active ASA. However, in presence of phosphate-buffered saline or serum rapid and complete desorption occurred, rendering this strategy ineffective for in vivo applications. In contrast, stable immobilization with negligible dissociation was achieved by high-affinity and covalent binding. Consequently, we analyzed the brain targeting of two stably nanoparticle-bound ASA formulations in ASA-/- mice, an animal model of MLD. Compared to free ASA, injected as a control, the biodistribution of nanoparticle-bound ASA was altered in peripheral organs, but no increase of brain levels was detectable. The failure to improve brain delivery suggests that the ASA glycoprotein interferes with processes required to target surfactant-coated nanoparticles to brain capillary endothelial cells.


Assuntos
Encéfalo/metabolismo , Cerebrosídeo Sulfatase/administração & dosagem , Nanopartículas/administração & dosagem , Tensoativos/administração & dosagem , Animais , Avidina/química , Biotinilação , Cerebrosídeo Sulfatase/química , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/farmacocinética , Feminino , Ácido Láctico/química , Leucodistrofia Metacromática/tratamento farmacológico , Leucodistrofia Metacromática/metabolismo , Camundongos Knockout , Nanopartículas/química , Poloxâmero/administração & dosagem , Poloxâmero/química , Poloxâmero/farmacocinética , Poliésteres/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polissorbatos/administração & dosagem , Polissorbatos/química , Polissorbatos/farmacocinética , Albumina Sérica Humana/química , Tensoativos/química , Tensoativos/farmacocinética
4.
Biotechnol Bioeng ; 110(5): 1456-65, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23192358

RESUMO

Metachromatic leukodystrophy (MLD) is a lysosomal storage disorder of the brain caused by mutations in the gene encoding the lysosomal sulfatase, arylsulfatase A (ASA). It is not possible to treat the brain in MLD with recombinant ASA, because the enzyme does not cross the blood-brain barrier (BBB). In the present investigation, a BBB-penetrating IgG-ASA fusion protein is engineered and expressed, where the ASA monomer is fused to the carboxyl terminus of each heavy chain of an engineered monoclonal antibody (MAb) against the human insulin receptor (HIR). The HIRMAb crosses the BBB via receptor-mediated transport on the endogenous BBB insulin receptor, and acts as a molecular Trojan horse to ferry the ASA into brain from blood. The HIRMAb-ASA is expressed in stably transfected Chinese hamster ovary cells grown in serum free medium, and purified by protein A affinity chromatography. The fusion protein retains high affinity binding to the HIR, EC50 = 0.34 ± 0.11 nM, and retains high ASA enzyme activity, 20 ± 1 units/mg. The HIRMAb-ASA fusion protein is endocytosed and triaged to the lysosomal compartment in MLD fibroblasts. The fusion protein was radio-labeled with the Bolton-Hunter reagent, and the [(125) I]-HIRMAb-ASA rapidly penetrates the brain in the Rhesus monkey following intravenous administration. Film and emulsion autoradiography of primate brain shows global distribution of the fusion protein throughout the monkey brain. These studies describe a new biological entity that is designed to treat the brain of humans with MLD following non-invasive, intravenous infusion of an IgG-ASA fusion protein.


Assuntos
Anticorpos Monoclonais/farmacocinética , Antígenos CD/metabolismo , Encéfalo/metabolismo , Cerebrosídeo Sulfatase/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Receptor de Insulina/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Barreira Hematoencefálica/metabolismo , Química Encefálica , Células CHO , Cerebrosídeo Sulfatase/química , Cerebrosídeo Sulfatase/genética , Cricetinae , Cricetulus , Humanos , Radioisótopos do Iodo/química , Radioisótopos do Iodo/farmacocinética , Leucodistrofia Metacromática , Macaca mulatta , Masculino , Ligação Proteica , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Distribuição Tecidual
5.
Hum Mol Genet ; 19(11): 2208-27, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20203170

RESUMO

Leukodystrophies are rare diseases caused by defects in the genes coding for lysosomal enzymes that degrade several glycosphingolipids. Gene therapy for leukodystrophies requires efficient distribution of the missing enzymes in CNS tissues to prevent demyelination and neurodegeneration. In this work, we targeted the external capsule (EC), a white matter region enriched in neuronal projections, with the aim of obtaining maximal protein distribution from a single injection site. We used bidirectional (bd) lentiviral vectors (LV) (bdLV) to ensure coordinate expression of a therapeutic gene (beta-galactocerebrosidase, GALC; arylsulfatase A, ARSA) and of a reporter gene, thus monitoring simultaneously transgene distribution and enzyme reconstitution. A single EC injection of bdLV.GALC in early symptomatic twitcher mice (a murine model of globoid cell leukodystrophy) resulted in rapid and robust expression of a functional GALC protein in the telencephalon, cerebellum, brainstem and spinal cord. This led to global rescue of enzymatic activity, significant reduction of tissue storage and decrease of activated astroglia and microglia. Widespread protein distribution and complete metabolic correction were also observed after EC injection of bdLV.ARSA in a mouse model of metachromatic leukodystrophy. Our data indicated axonal transport, distribution through cerebrospinal fluid flow and cross-correction as the mechanisms contributing to widespread bioavailability of GALC and ARSA proteins in CNS tissues. LV-mediated gene delivery of lysosomal enzymes by targeting highly interconnected CNS regions is a potentially effective strategy that, combined with a treatment able to target the PNS and peripheral organs, may provide significant therapeutic benefit to patients affected by leukodystrophies.


Assuntos
Sistema Nervoso Central/enzimologia , Terapia Genética/métodos , Leucodistrofia de Células Globoides/enzimologia , Leucodistrofia Metacromática/enzimologia , Animais , Transporte Axonal/fisiologia , Disponibilidade Biológica , Western Blotting , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Cerebrosídeo Sulfatase/farmacocinética , Cromatografia em Gel , Primers do DNA/genética , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Galactosilceramidase/farmacocinética , Vetores Genéticos/administração & dosagem , Imuno-Histoquímica , Lentivirus , Leucodistrofia de Células Globoides/terapia , Leucodistrofia Metacromática/terapia , Camundongos , Camundongos Knockout , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Hum Mol Genet ; 14(9): 1139-52, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15772092

RESUMO

A deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy, which is characterized by accumulation of the sphingolipid 3-O-sulfogalactosylceramide (sulfatide). Sphingolipid storage results in progressive demyelination and severe neurologic symptoms. The disease is lethal, and curative therapy is not available. To assess the therapeutic potential of enzyme replacement therapy (ERT), ASA knockout mice were treated by intravenous injection of recombinant human ASA. Plasma levels of ASA declined with a half-time of approximately 40 min, and enzyme was detectable in tissues within minutes after injection. The uptake of injected enzyme was high into liver, moderate into peripheral nervous system (PNS) and kidney and very low into brain. The apparent half-life of endocytosed enzyme was approximately 4 days. A single injection led to a time- and dose-dependent decline of the excess sulfatide in PNS and kidney by up to 70%, but no reduction was seen in brain. Four weekly injections with 20 mg/kg body weight not only reduced storage in peripheral tissues progressively, but also were surprisingly effective in reducing sulfatide storage in brain and spinal cord. The histopathology of kidney and central nervous system was ameliorated. Improved neuromotor coordination capabilities and normalized peripheral compound motor action potential demonstrate the benefits of ERT on the nervous system function. Enzyme replacement may therefore be a promising therapeutic option in this devastating disease.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Cerebrosídeo Sulfatase/uso terapêutico , Modelos Animais de Doenças , Leucodistrofia Metacromática/tratamento farmacológico , Animais , Área Sob a Curva , Células CHO , Sistema Nervoso Central/metabolismo , Cerebrosídeo Sulfatase/sangue , Cerebrosídeo Sulfatase/deficiência , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/farmacocinética , Cricetinae , Cricetulus , Endocitose , Meia-Vida , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Leucodistrofia Metacromática/etiologia , Leucodistrofia Metacromática/metabolismo , Leucodistrofia Metacromática/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...