Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 781
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000394

RESUMO

A novel series of antitumor hybrids was synthesized using 1,4-benzohydroquinone and chalcone, furane, or pyrazoline scaffolds. This were achieved through isosteric substitution of the aryl group of the chalcone ß-carbon with the furanyl moiety and structural modification of the α,ß-unsaturated carbonyl system. The potential antitumor activity of these hybrids was evaluated in vivo on MCF-7 breast adenocarcinoma and HT-29 colorectal carcinoma cells, demonstrating cytotoxic activity with IC50 values ranging from 28.8 to 124.6 µM. The incorporation of furan and pyrazoline groups significantly enhanced antiproliferative properties compared to their analogues and precursors (VII-X), which were inactive against both neoplastic cell lines. Compounds 4, 5, and 6 exhibited enhanced cytotoxicity against both cell lines, whereas compound 8 showed higher cytotoxic activity against HT-29 cells. Molecular docking studies revealed superior free-energy values (ΔGbin) for carcinogenic pathway-involved kinase proteins, with our in silico data suggesting that these derivatives could be promising chemotherapeutic agents targeting kinase pathways. Among all the synthesized PIBHQ compounds, derivatives 7 and 8 exhibited the best drug-likeness properties, with values of 0.53 and 0.83, respectively. ADME results collectively suggest that most of these compounds hold promise as potential candidates for preclinical assays.


Assuntos
Antineoplásicos , Hidroquinonas , Simulação de Acoplamento Molecular , Pirazóis , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Hidroquinonas/química , Hidroquinonas/farmacologia , Hidroquinonas/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Chalcona/química , Chalcona/farmacologia , Células HT29 , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Animais
2.
Luminescence ; 39(7): e4823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965884

RESUMO

A highly selective bis thiophene-based chalcone as a chemosensor for detecting Fe3+ metal ions in DMF: H2O (9:1). This sensor was selective toward ferric ions over other metal ions with a detection limit in micromolar range.


Assuntos
Espectrometria de Fluorescência , Tiofenos , Tiofenos/química , Ferro/análise , Ferro/química , Estrutura Molecular , Compostos Férricos/química , Compostos Férricos/análise , Chalconas/química , Chalconas/análise , Chalcona/química , Corantes Fluorescentes/química
3.
Curr Microbiol ; 81(8): 258, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960917

RESUMO

Imidazole-chalcone compounds are recognised for their broad-spectrum antimicrobial properties. Probiotic-friendly, selective new-generation antimicrobials prove to be more efficient in combating gastrointestinal system pathogens. The aim of this study is to identify imidazole-chalcone derivatives that probiotics tolerate and evaluate their in vitro synergistic antimicrobial effects on pathogens. In this study, fifteen previously identified imidazole-chalcone derivatives were analyzed for their in vitro antimicrobial properties against gastrointestinal microorganisms. Initially, the antimicrobial activity of pathogens was measured using the agar well diffusion method, while the susceptibility of probiotics was determined by microdilution. The chosen imidazole-chalcone derivatives were assessed for synergistic effects using the checkerboard method. Four imidazole-chalcone derivatives to which probiotic bacteria were tolerant exhibited antibacterial and antifungal activity against the human pathogens tested. To our knowledge, this study is the first to reveal the fractional inhibitory concentration (FIC) of combinations of imidazole-chalcone derivatives. Indeed, the minimum inhibitory concentrations (MIC) for morpholinyl- (ZDO-3f) and 4-ethylpiperazinyl- (ZDO-3 m) imidazole-chalcones were notably low when tested against E. coli and B. subtilis, with values of 31.25 µg/mL and 125 µg/mL, respectively. The combination of morpholinyl- and 4-ethylpiperazinyl derivatives demonstrated an indifferent effect against E. coli, but an additive effect was observed for B. subtilis. Additionally, it was observed that imidazole-chalcone derivatives did not exhibit any inhibitory effects on probiotic organisms like Lactobacillus fermentum (CECT-5716), Lactobacillus rhamnosus (GG), and Lactobacillus casei (RSSK-591). This study demonstrates that imidazole-chalcone derivatives that are well tolerated by probiotics can potentially exert a synergistic effect against gastrointestinal system pathogens.


Assuntos
Sinergismo Farmacológico , Imidazóis , Testes de Sensibilidade Microbiana , Probióticos , Probióticos/farmacologia , Imidazóis/farmacologia , Imidazóis/química , Chalcona/farmacologia , Chalcona/química , Chalcona/análogos & derivados , Antibacterianos/farmacologia , Antibacterianos/química , Chalconas/farmacologia , Chalconas/química , Trato Gastrointestinal/microbiologia , Humanos , Bactérias/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química
4.
Top Curr Chem (Cham) ; 382(3): 22, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937401

RESUMO

Chalcone is a simple naturally occurring α,ß-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.


Assuntos
Chalcona , Química Farmacêutica , Chalcona/química , Chalcona/farmacologia , Humanos , Chalconas/química , Chalconas/farmacologia , Estrutura Molecular , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia
5.
Chem Biol Interact ; 398: 111115, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908811

RESUMO

In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5ß1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.


Assuntos
Adesão Celular , Movimento Celular , Chalcona , Simulação de Acoplamento Molecular , Sulfonamidas , Movimento Celular/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/química , Camundongos , Animais , Linhagem Celular Tumoral , Chalcona/farmacologia , Chalcona/química , Chalcona/análogos & derivados , Metaloproteinase 2 da Matriz/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Microscopia de Força Atômica , Antineoplásicos/farmacologia , Antineoplásicos/química , Chalconas/farmacologia , Chalconas/química , Humanos
6.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38865941

RESUMO

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Assuntos
Incrustação Biológica , Larva , Mytilus , Animais , Incrustação Biológica/prevenção & controle , Larva/efeitos dos fármacos , Mytilus/efeitos dos fármacos , Chalconas/farmacologia , Chalconas/química , Relação Estrutura-Atividade , Chalcona/farmacologia , Chalcona/análogos & derivados , Chalcona/química , Desinfetantes/toxicidade , Desinfetantes/farmacologia
7.
Phytochemistry ; 225: 114197, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38945281

RESUMO

Five undescribed monoterpene-chalcone conjugates (1-5), one undescribed hypothetical precursor of diarylheptanoid (6), two undescribed diarylheptanoids (7-8), and fourteen known compounds (9-22) were isolated from the seeds of Alpinia katsumadai. Their structures were elucidated through the interpretation of HRESIMS, NMR, ECD, and X-ray diffraction data. MTT assays on human cancer cell lines (HepG2, A549, SGC7901, and SW480) revealed that compounds 3-8, 11, and 13 exhibited broad-spectrum antiproliferative activities with IC50 values ranging from 3.59 to 21.78 µM. B cell lymphoma 2 was predicted as the target of sumadain C (11) by network pharmacology and verified by homogeneous time-resolved fluorescence assay and molecular docking.


Assuntos
Alpinia , Antineoplásicos Fitogênicos , Proliferação de Células , Diarileptanoides , Ensaios de Seleção de Medicamentos Antitumorais , Monoterpenos , Sementes , Alpinia/química , Humanos , Diarileptanoides/química , Diarileptanoides/farmacologia , Diarileptanoides/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Sementes/química , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Monoterpenos/química , Monoterpenos/isolamento & purificação , Monoterpenos/farmacologia , Relação Estrutura-Atividade , Chalconas/química , Chalconas/farmacologia , Chalconas/isolamento & purificação , Chalcona/química , Chalcona/farmacologia , Chalcona/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
8.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38875185

RESUMO

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Camundongos , Peptídeos beta-Amiloides/metabolismo , Chalcona/química , Chalcona/farmacologia , Chalcona/análogos & derivados , Chalconas/química , Chalconas/farmacologia , Chalconas/administração & dosagem , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Humanos , Memória/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Piridinas/administração & dosagem
9.
Chem Biodivers ; 21(7): e202400015, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705852

RESUMO

More women die of breast cancer than of any other malignancy. The resistance and toxicity of traditional hormone therapy created an urgent need for potential molecules for treating breast cancer effectively. Novel biphenyl-substituted pyrazole chalcones linked to a pyrrolidine ring were designed by using a hybridization approach. The hybrids were assessed against MCF-7 and MDA-MB-231 cells by NRU assay. Among them, 8 k, 8 d, 8 m, 8 h, and 8 f showed significantly potent IC50 values: 0.17, 5.48, 8.13, 20.51, and 23.61 µM) respectively, on MCF-7 cells compared to the positive control Raloxifene and Tamoxifen. Furthermore, most active compound 8 k [3-(3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl)-1-(2-(2-(pyrrolidin-1-yl)-ethoxy)-phenyl)-chalcone] showed cell death induced through apoptosis, cell cycle arrest at the G2/M phase, and demonstrated decrease of ER-α protein in western blotting study. Docking studies of 8 k and 8 d established adequate interactions with estrogen receptor-α as required for SERM binding. The active hybrids exhibited good pharmacokinetic properties for oral bioavailability and drug-likeness. Whereas, RMSD, RMSF, and Rg values from Molecular dynamics studies stipulated stability of the complex formed between compound 8 k and receptor. All of these findings strongly indicate the antiproliferative potential of pyrazole-chalcone hybrids for the treatment of breast cancer.


Assuntos
Antineoplásicos , Apoptose , Neoplasias da Mama , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Pirazóis , Humanos , Pirazóis/química , Pirazóis/farmacologia , Pirazóis/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Feminino , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Apoptose/efeitos dos fármacos , Estrutura Molecular , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Simulação de Acoplamento Molecular , Chalcona/química , Chalcona/farmacologia , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Relação Dose-Resposta a Droga , Animais , Ratos
10.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38737331

RESUMO

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Assuntos
Antineoplásicos , Chalcona , Regulação para Baixo , Neoplasias Pulmonares , Pirazinas , Animais , Humanos , Camundongos , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/química , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Simulação de Acoplamento Molecular , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/metabolismo , Pirazinas/farmacologia , Pirazinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Colloids Surf B Biointerfaces ; 240: 113976, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38795585

RESUMO

In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.


Assuntos
Flavonas , Solubilidade , Tensoativos , Tensoativos/química , Flavonas/química , Flavonas/metabolismo , Concentração de Íons de Hidrogênio , Cetrimônio/química , Termodinâmica , Íons/química , Chalcona/química , Chalconas/química , Chalconas/metabolismo , Dodecilsulfato de Sódio/química , Eletricidade Estática
12.
Bioorg Chem ; 149: 107498, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38805911

RESUMO

Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 µΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 µΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.


Assuntos
Antineoplásicos , Proliferação de Células , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias do Colo do Útero , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Feminino , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Animais , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Células HeLa , Apoptose/efeitos dos fármacos , Camundongos
13.
Analyst ; 149(12): 3372-3379, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38712551

RESUMO

A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.


Assuntos
Corantes Fluorescentes , Glutationa , Imagem Óptica , Xantenos , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/síntese química , Xantenos/química , Humanos , Glutationa/química , Imagem Óptica/métodos , Chalconas/química , Células HeLa , Lisossomos/química , Lisossomos/metabolismo , Raios Infravermelhos , Chalcona/química
14.
Bioorg Med Chem Lett ; 107: 129795, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750906

RESUMO

Chalcones are chemical scaffolds found in natural products, particularly in plants, and are considered for structural diversity in medicinal chemistry for drug development. Herein, we designed and synthesised novel acetamide derivatives of chalcone, characterizing them using 1H NMR, 13C NMR, HRMS, and IR spectroscopic methods. These derivatives were then screened against human cancer cells for cytotoxicity using the SRB assay. Among the tested derivatives, 7g, with a pyrrolidine group, exhibited better cell growth inhibition activity against triple-negative breast cancer (TNBC) cells. Further assays, including SRB, colony formation, and fluorescent dye-based microscopic analysis, confirmed that 7g significantly inhibited MDA-MB-231 cell proliferation. Furthermore, 7g promoted apoptosis by upregulating cellular reactive oxygen species (ROS) levels and disrupting mitochondrial membrane potential (MMP). Elevated expression of pro-apoptotic proteins (Bax and caspase-3) and a higher Bax/Bcl-2 ratio with downregulation of anti-apoptotic (Bcl-2) protein levels were observed in TNBC cells. The above results suggest that 7g can promote cellular death through apoptotic mechanisms in TNBC cells.


Assuntos
Acetamidas , Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Acetamidas/farmacologia , Acetamidas/síntese química , Acetamidas/química , Apoptose/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular Tumoral , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Relação Dose-Resposta a Droga , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
15.
Arch Pharm (Weinheim) ; 357(7): e2300627, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593298

RESUMO

Novel triazoloquinazolines carrying the 2-[thio]acetamide entity (4 and 5a-d) and triazoloquinazoline/chalcone hybrids incorporating the 2-[thio]acetamide linker (8a-b and 9a-f) were developed as anticancer candidates. NCI screening of the synthesized compounds at 10 µM concentration displayed growth inhibition not only up to 99.74% as observed for 9a but also a lethal effect could be achieved as stated for compounds 9c (RPMI-8226 and HCT-116) and 8b, 9a, and 9e on the HCT-116 cell line. The antiproliferative activity was determined for the chalcone series on three cell lines: RPMI-8226, HCT-116, and MCF-7. Compounds 8b, 9a, 9b, and 9f were the most active ones. To understand the mechanistic study, the inhibitory effect on the epidermal growth factor receptor (EGFR) kinase was evaluated. The results stated that the activity of compound 8b (IC50 = 0.07 µM) was near that of the reference drug erlotinib (IC50 = 0.052 µM) whereas compound 9b (IC50 = 0.045 µM) was found to be more potent than erlotinib. Both compounds 8b and 9b were selected for cell cycle analysis and apoptotic assays. Moreover, molecular docking results of the selected chalcone hybrids showed high binding scores and good binding affinities especially for 8b and 9b, which were consistent with the biological activity (EGFR).


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases , Quinazolinas , Triazóis , Humanos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral , Estrutura Molecular , Relação Dose-Resposta a Droga , Chalconas/farmacologia , Chalconas/síntese química , Chalconas/química , Células HCT116 , Acetamidas/farmacologia , Acetamidas/química , Acetamidas/síntese química , Células MCF-7 , Chalcona/farmacologia , Chalcona/química , Chalcona/síntese química
16.
ChemMedChem ; 19(14): e202400015, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38638026

RESUMO

In this study, a series of isatin-chalcone linked triazoles were synthesized using Cu-promoted Azide-Alkyne Cycloaddition (CuAAC) reaction and evaluated for their cytotoxicity against various cancer cell lines. The most potent compound displayed approximately 2.5 times greater activity compared to both reference compounds against ovarian cancer cell lines. These findings were supported by caspase-mediated apoptosis and molecular docking analyses. Docking revealed comparable VEGFR-2 affinities for 5 b and 5-FU but highlighted stronger interaction of 5 b with EGFR, evident from its lower docking score. Overall, these results signify the notable anti-proliferative potential of most synthesized hybrids, notably emphasizing the efficacy of compound 5 b in suppressing cancer cell growth.


Assuntos
Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Isatina , Simulação de Acoplamento Molecular , Triazóis , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Isatina/química , Isatina/farmacologia , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Estrutura Molecular , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
J Biol Inorg Chem ; 29(2): 187-199, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38607392

RESUMO

Aß42 plaque formation is one of the preliminary pathologic events that occur post traumatic brain injury (TBI) which is also among the most noteworthy hallmarks of AD. Their pre symptomatic detection is therefore vital for better disease management. Chalcone-picolinic acid chelator derivative, 6-({[(6-carboxypyridin-2-yl)methyl](2-{4-[(2E)-3-[4-(dimethyl amino)phenyl]prop-2-enoyl]phenoxy}ethyl)amino}methyl)pyridine-2-carboxylic acid, Py-chal was synthesized to selectively identify amyloid plaques formed post head trauma using SPECT imaging by stable complexation to 99mTc with > 97% efficiency without compromising amyloid specificity. The binding potential of the Py-chal ligand to amyloid plaques remained high as confirmed by in vitro binding assay and photophysical spectra. Further, the Py-chal complex stained amyloid aggregates in the brain sections of rmTBI mice model. In vivo scintigraphy in TBI mice model displayed high uptake followed by high retention while the healthy rabbits displayed higher brain uptake followed by a rapid washout attributed to absence of amyloid plaques. Higher uptake in brain of TBI model was also confirmed by ex vivo biodistribution analysis wherein brain uptake of 3.38 ± 0.2% ID/g at 2 min p.i. was observed for TBI mice model. This was followed by prolonged retention and more than twofold higher activity as compared to sham mice brain. This preliminary data suggests the specificity of the radiotracer for amyloid detection post head trauma and applicability of 99mTc labeled Py-chal complex for TBI-induced ß-amyloid SPECT imaging.


Assuntos
Peptídeos beta-Amiloides , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Peptídeos beta-Amiloides/metabolismo , Camundongos , Tecnécio/química , Distribuição Tecidual , Chalcona/química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos de Organotecnécio/química , Compostos de Organotecnécio/farmacocinética , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Traumatismos Craniocerebrais/diagnóstico por imagem , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
18.
Bioorg Chem ; 147: 107310, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583249

RESUMO

Using the licochalcone moiety as a lead compound scaffold, 16 novel imidazole-chalcone derivatives were designed and synthesized as microtubule protein polymerization inhibitors. The proliferation inhibitory activities of the derivatives against SiHa (human cervical squamous cell carcinoma), C-33A (human cervical cancer), HeLa (human cervical cancer), HeLa/DDP (cisplatin-resistant human cervical cancer), and H8 (human cervical epithelial immortalized) cells were evaluated. Compound 5a exhibited significant anticancer activity with IC50 values ranging from 2.28 to 7.77 µM and a resistance index (RI) of 1.63, while showing minimal toxicity to normal H8 cells. When compound 5a was coadministered with cisplatin, the RI of cisplatin to HeLa/DDP cells decreased from 6.04 to 2.01, while compound 5a enhanced the fluorescence intensity of rhodamine 123 in HeLa/DDP cells. Further studies demonstrated that compound 5a arrested cells at the G2/M phase, induced apoptosis, reduced colony formation, inhibited cell migration, and inhibited cell invasion. Preliminary mechanistic studies revealed that compound 5a decreased the immunofluorescence intensity of α-/ß-tubulin in cancer cells, reduced the expression of polymerized α-/ß-tubulin, and increased the expression of depolymerized α-/ß-tubulin. Additionally, the molecular docking results demonstrate that compound 5a can interact with the tubulin colchicine binding site and generate multiple types of interactions. These results suggested that compound 5a has anticancer effects and significantly reverses cervical cancer resistance to cisplatin, which may be related to its inhibition of microtubule and P-glycoprotein (P-gp) activity.


Assuntos
Antineoplásicos , Proliferação de Células , Cisplatino , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Imidazóis , Neoplasias do Colo do Útero , Humanos , Cisplatino/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/metabolismo , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Imidazóis/química , Imidazóis/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Estrutura Molecular , Chalconas/farmacologia , Chalconas/química , Chalconas/síntese química , Polimerização/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Simulação de Acoplamento Molecular , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
19.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457745

RESUMO

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Assuntos
Antituberculosos , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis , Triazóis , Antituberculosos/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Relação Estrutura-Atividade , Enterococcus faecalis/efeitos dos fármacos , Estrutura Molecular , Chalcona/química , Chalcona/farmacologia , Chalcona/síntese química , Chalconas/química , Chalconas/farmacologia , Chalconas/síntese química
20.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38297894

RESUMO

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Assuntos
Antineoplásicos , Chalcona , Desenho de Fármacos , Receptores ErbB , Inibidores de Histona Desacetilases , Quinazolinas , Quinazolinas/química , Quinazolinas/farmacologia , Chalcona/análogos & derivados , Chalcona/química , Chalcona/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Receptores ErbB/antagonistas & inibidores , /farmacologia , Humanos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Apoptose/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Sítios de Ligação , Concentração Inibidora 50 , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...