Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Heart Rhythm ; 18(1): 109-117, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781160

RESUMO

BACKGROUND: Optogenetics uses light to regulate cardiac rhythms and terminate malignant arrhythmias. OBJECTIVE: The purpose of this study was to investigate the long-term validity of optical capture properties based on virus-transfected channelrhodopsin-2 (ChR2) and evaluate the effects of optogenetic-based defibrillation in an in vivo rat model of myocardial fibrosis enhanced by monocrotaline (MCT). METHODS: Fifteen infant rats received jugular vein injection of adeno-associated virus (AAV). After 8 weeks, 5 rats were randomly selected to verify the effectiveness ChR2 transfection. The remaining rats were administered MCT at 11 months. Four weeks after MCT, the availability of 473-nm blue light to capture heart rhythm in these rats was verified again. Ventricular tachycardia (VT) and ventricular fibrillation (VF) were induced by burst stimulation on the basis of enhanced myocardial fibrosis, and the termination effects of the optical manipulation were tested. RESULTS: Eight weeks after AAV injection, there was ChR2 expression throughout the ventricular myocardium as reflected by both fluorescence imaging and optical pacing. Four weeks after MCT, significant myocardial fibrosis was achieved. Light could still trigger the corresponding ectopic heart rhythm, and the pulse width and illumination area could affect the light capture rate. VT/VF was induced successfully in 1-year-observation rats, and the rate of termination of VT/VF under light was much higher than that of spontaneous termination. CONCLUSION: Viral ChR2 transfection can play a long-term role in the rat heart, and light can successfully regulate heart rhythm and defibrillate after cardiac fibrosis.


Assuntos
Arritmias Cardíacas/terapia , Cardiomiopatias/complicações , Channelrhodopsins/administração & dosagem , Terapia Genética/métodos , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/terapia , Dependovirus , Modelos Animais de Doenças , Feminino , Fibrose/induzido quimicamente , Fibrose/complicações , Fibrose/terapia , Frequência Cardíaca/fisiologia , Injeções Intravenosas , Masculino , Monocrotalina/toxicidade , Miocárdio/patologia , Optogenética/métodos , Ratos
2.
Behav Brain Res ; 396: 112913, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950607

RESUMO

Deficiencies in the ability to extinguish fear is a hallmark of Trauma- and stressor-related disorders, Anxiety disorders, and certain other neuropsychiatric conditions. Hence, a greater understanding of the brain mechanisms involved in the inhibition of fear is of significant translational relevance. Previous studies in rodents have shown that glutamatergic projections from the infralimbic prefrontal cortex (IL) to basolateral amygdala (BLA) play a crucial instructional role in the formation of extinction memories, and also indicate that variation in the strength of this input correlates with extinction efficacy. To further examine the relationship between the IL→BLA pathway and extinction we expressed three different titers of the excitatory opsin, channelrhodopsin (ChR2), in IL neurons and photostimulated their projections in the BLA during partial extinction training. The behavioral effects of photoexcitation differed across the titer groups: the low titer had no effect, the medium titer selectively facilitated extinction memory formation, and the high titer produced both an acute suppression of fear and a decrease in fear during (light-free) extinction retrieval. We discuss various possible explanations for these titer-specific effects, including the possibility of IL-mediated inhibition of BLA fear-encoding neurons under conditions of sufficiently strong photoexcitation. These findings further support the role of IL→BLA pathway in regulating fear and highlight the importance of methodological factors in optogenetic studies of neural circuits underling behavior.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Condicionamento Clássico/fisiologia , Extinção Psicológica/fisiologia , Medo/fisiologia , Optogenética , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Channelrhodopsins/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Vis Exp ; (151)2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31589202

RESUMO

Knowledge of cell-type specific synaptic connectivity is a crucial prerequisite for understanding brain-wide neuronal circuits. The functional investigation of long-range connections requires targeted recordings of single neurons combined with the specific stimulation of identified distant inputs. This is often difficult to achieve with conventional and electrical stimulation techniques, because axons from converging upstream brain areas may intermingle in the target region. The stereotaxic targeting of a specific brain region for virus-mediated expression of light-sensitive ion channels allows selective stimulation of axons originating from that region with light. Intracerebral stereotaxic injections can be used in well-delimited structures, such as the anterior thalamic nuclei, in addition to other subcortical or cortical areas throughout the brain. Described here is a set of techniques for precise stereotaxic injection of viral vectors expressing channelrhodopsin in the mouse brain, followed by photostimulation of axon terminals in the brain slice preparation. These protocols are simple and widely applicable. In combination with whole-cell patch clamp recording from a postsynaptically connected neuron, photostimulation of axons allows the detection of functional synaptic connections, pharmacological characterization, and evaluation of their strength. In addition, biocytin filling of the recorded neuron can be used for post-hoc morphological identification of the postsynaptic neuron.


Assuntos
Encéfalo/efeitos dos fármacos , Channelrhodopsins/administração & dosagem , Vetores Genéticos/administração & dosagem , Injeções Intraventriculares , Optogenética/métodos , Técnicas Estereotáxicas , Animais , Axônios/metabolismo , Encéfalo/fisiologia , Channelrhodopsins/metabolismo , Dependovirus , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp
4.
Eur Heart J ; 38(27): 2132-2136, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28011703

RESUMO

AIMS: Current treatments of ventricular arrhythmias rely on modulation of cardiac electrical function through drugs, ablation or electroshocks, which are all non-biological and rather unspecific, irreversible or traumatizing interventions. Optogenetics, however, is a novel, biological technique allowing electrical modulation in a specific, reversible and trauma-free manner using light-gated ion channels. The aim of our study was to investigate optogenetic termination of ventricular arrhythmias in the whole heart. METHODS AND RESULTS: Systemic delivery of cardiotropic adeno-associated virus vectors, encoding the light-gated depolarizing ion channel red-activatable channelrhodopsin (ReaChR), resulted in global cardiomyocyte-restricted transgene expression in adult Wistar rat hearts allowing ReaChR-mediated depolarization and pacing. Next, ventricular tachyarrhythmias (VTs) were induced in the optogenetically modified hearts by burst pacing in a Langendorff setup, followed by programmed, local epicardial illumination. A single 470-nm light pulse (1000 ms, 2.97 mW/mm2) terminated 97% of monomorphic and 57% of polymorphic VTs vs. 0% without illumination, as assessed by electrocardiogram recordings. Optical mapping showed significant prolongation of voltage signals just before arrhythmia termination. Pharmacological action potential duration (APD) shortening almost fully inhibited light-induced arrhythmia termination indicating an important role for APD in this process. CONCLUSION: Brief local epicardial illumination of the optogenetically modified adult rat heart allows contact- and shock-free termination of ventricular arrhythmias in an effective and repetitive manner after optogenetic modification. These findings could lay the basis for the development of fundamentally new and biological options for cardiac arrhythmia management.


Assuntos
Arritmias Cardíacas/terapia , Channelrhodopsins/farmacologia , Optogenética/métodos , Fototerapia/métodos , Adenoviridae , Animais , Channelrhodopsins/administração & dosagem , Terapia Genética/métodos , Vetores Genéticos , Ativação do Canal Iônico/efeitos da radiação , Luz , Miócitos Cardíacos/fisiologia , Ratos Wistar , Taquicardia Ventricular/terapia , Transgenes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...