Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 100(6): 1116-26, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23711907

RESUMO

PREMISE OF THE STUDY: On a compound leaf, leaflet primordia are repetitively formed along the apical-basal axis, with the direction varying among taxa. Why and how the directions vary among species is yet to be solved, although a change in a single factor was proposed to cause the variation. In this study, we compared two species in the Papaveraceae with different directions of leaflet initiation, Chelidonium majus subsp. asiaticum (basipetal) and Eschscholzia californica (acropetal). Because E. californica has been studied in some detail, we focused on C. majus and asked how basipetal pattern is achieved. • METHODS: Since only immature leaf primordial tissue has leaflet-generating competency, we performed histological and gene expression analyses on markers of the tissue maturation state. In addition, we performed a time-course analysis of leaf primordial growth. • KEY RESULTS: Quantitative reverse transcription-PCR analysis demonstrated that a putative regulator of tissue maturation in C. majus, the CINCINNATA homolog, had higher expression in apical parts than in basal parts during the organogenetic phase. In contrast, expression of the CIN homolog was not elevated in either the apical or basal parts in E. californica during the organogenetic phase. • CONCLUSIONS: In C. majus, apical parts of leaf primordia have already lost leaflet-generating competency during the organogenetic phase. We propose that precocious progression of the maturation process instructs basipetal progression of leaflet initiation in C. majus. This is not the mirror image of data on E. californica, which shows the opposite direction in leaflet formation, indicating that variation in direction is not attributable to a change in a single factor.


Assuntos
Chelidonium/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Chelidonium/genética , Chelidonium/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Fatores de Tempo
2.
Plant Mol Biol ; 58(3): 317-31, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16021398

RESUMO

Knotted-like homeobox (KNOX) genes encode important regulators of shoot development in flowering plants. In Arabidopsis, class I KNOX genes are part of a regulatory system that contributes to indeterminacy of shoot development, delimitation of leaf primordia and internode development. In other species, class I KNOX genes have also been recruited in the control of marginal blastozone fractionation during dissected leaf development. Here we report the isolation of class I KNOX genes from two species of the basal eudicot family Papaveraceae, Chelidonium majus and Eschscholzia californica. Sequence comparisons and expression patterns indicate that these genes are orthologs of SHOOTMERISTEMLESS (STM), a class I KNOX gene from Arabidopsis. Both genes are expressed in the center of vegetative and floral shoot apical meristems (SAM), but downregulated at leaf or floral organ initiating sites. While Eschscholzia californica STM (EcSTM) is again upregulated during acropetal pinna formation, in situ hybridization could not detect Chelidonium majus STM (CmSTM) transcripts at any stage of basipetal leaf development, indicating divergent evolution of STM gene function in leaves within Papaveraceae. Immunolocalization of KNOX proteins indicate that other gene family members may control leaf dissection in both species. The contrasting direction of pinna initiation in the two species was also investigated using Histone H4 expression. Leaves at early stages of development did not reveal notable differences in cell division activity of the elongating leaf axis, suggesting that differential meristematic growth may not play a role in determining the observed dissection patterns.


Assuntos
Perfilação da Expressão Gênica , Histonas/genética , Proteínas de Homeodomínio/genética , Papaveraceae/genética , Proteínas de Plantas/genética , Brotos de Planta/genética , Sequência de Aminoácidos , Chelidonium/genética , Chelidonium/crescimento & desenvolvimento , Chelidonium/metabolismo , DNA Complementar/química , DNA Complementar/genética , Eschscholzia/genética , Eschscholzia/crescimento & desenvolvimento , Eschscholzia/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/análise , Proteínas de Homeodomínio/análise , Imuno-Histoquímica , Hibridização In Situ/métodos , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Papaveraceae/crescimento & desenvolvimento , Papaveraceae/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/análise , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...